Effects of Morphine and Alcohol on the Hypothalamic–Pituitary–Adrenal Axis, Immunity, and Cognitive Behavior



The hypothalamic–pituitary–adrenal (HPA) axis is a feedback loop that includes the hypothalamus, pituitary, and adrenal glands. The HPA axis has been shown to regulate immune responses. The main hormones involved in the HPA axis are corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and glucocorticoids (GC), which are also called stress hormones. These hormones contribute to the regulation of immune responses and can also affect neuronal survival, neurogenesis, synaptic plasticity, and behavioral responses [1, 2]. The HPA axis is a three-tiered biological system that begins at the highest level with the release of CRH from the hypothalamic paraventricular nucleus (PVN). CRH-expressing neurons located in the PVN of the hypothalamus play a pivotal role in orchestrating the central stress response. CRH stimulates the release of ACTH from the anterior pituitary gland. In turn, ACTH acts on the adrenal cortex to increase the production and release of GC hormones. Proper functioning of all of these neurons is essential for maintaining a homeostatic state following a stressful event. Several neuronal pathways modulate HPA axis activity. For example, the hippocampus and prefrontal cortex inhibit the HPA axis, and the amygdala and monoaminergic input from the brainstem stimulate CRH production by PVN neurons. GC hormones exert negative feedback control of the HPA axis by binding to GC receptors on hippocampal and hypothalamic PVN neurons [3–5].


  1. 1.
    Erdmann G, Berger S, Schutz G (2008) Genetic dissection of glucocorticoid receptor function in the mouse brain. J Neuroendocrinol 20(6):655–659PubMedCrossRefGoogle Scholar
  2. 2.
    Joels M (2007) Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 163:355–370PubMedCrossRefGoogle Scholar
  3. 3.
    Itoi K, Jiang YQ, Iwasaki Y, Watson SJ (2004) Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol 16(4):348–355PubMedCrossRefGoogle Scholar
  4. 4.
    Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194PubMedCrossRefGoogle Scholar
  5. 5.
    Reyes G, Elhai JD, Ford JD (2008) The Encyclopedia of Psychological Trauma. In: The Encyclopedia of Psychological Trauma Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
  6. 6.
    Maier SF (2003) Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav Immun 17(2):69–85PubMedCrossRefGoogle Scholar
  7. 7.
    Haddad JJ (2008) On the mechanisms and putative pathways involving neuroimmune interactions. Biochem Biophys Res Commun 370(4):531–535PubMedCrossRefGoogle Scholar
  8. 8.
    Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172(1–2):38–58PubMedCrossRefGoogle Scholar
  9. 9.
    Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328PubMedCrossRefGoogle Scholar
  10. 10.
    U.S. Department of Justice DEA (2011) Drugs of Abuse- A DEA Resource Guide. (Administration, DE ed): U.S. Department of Justice, Drug Enforcement Administration http://www.justice.gov/dea/pubs/drugs_of_abuse.pdfAccessed: Dec 2011
  11. 11.
    Chen YL, Law PY, Loh HH (2006) Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 1(3):270–279PubMedCrossRefGoogle Scholar
  12. 12.
    Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429(1–3):79–91PubMedCrossRefGoogle Scholar
  13. 13.
    Langsdorf EF, Chang SL (2011) Methamphetamine-mediated modulation of MOR expression in the SH-SY5Y neuroblastoma cell line. Synapse 65(9):858–865PubMedCrossRefGoogle Scholar
  14. 14.
    Chang SL, Beltran JA, Swarup S (2007) Expression of the mu opioid receptor in the human immunodeficiency virus type 1 transgenic rat model. J Virol 81(16):8406–8411PubMedCrossRefGoogle Scholar
  15. 15.
    Ocasio FM, Jiang Y, House SD, Chang SL (2004) Chronic morphine accelerates the progression of lipopolysaccharide-induced sepsis to septic shock. J Neuroimmunol 149(1–2):90–100PubMedCrossRefGoogle Scholar
  16. 16.
    Langsdorf EF, Mao X, Chang SL (2011) A role for reactive oxygen species in endotoxin-induced elevation of MOR expression in the nervous and immune systems. J Neuroimmunol 236(1–2):57–64PubMedCrossRefGoogle Scholar
  17. 17.
    Law PY, Loh HH, Wei LN (2004) Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 47(Suppl 1):300–311PubMedCrossRefGoogle Scholar
  18. 18.
    Frolich N, Dees C, Paetz C, Ren X, Lohse MJ, Nikolaev VO, Zenk MH (2011) Distinct pharmacological properties of morphine metabolites at G(i)-protein and beta-arrestin signaling pathways activated by the human mu-opioid receptor. Biochem Pharmacol 81(10):1248–1254PubMedCrossRefGoogle Scholar
  19. 19.
    Gris P, Cheng P, Pierson J, Maixner W, Diatchenko L (2010) Molecular assays for characterization of alternatively spliced isoforms of the u opioid receptor (MOR). Methods Mol Biol 617:421–435PubMedCrossRefGoogle Scholar
  20. 20.
    Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng H, Loh HH, Law PY (2010) Agonist-selective signaling of G protein-coupled receptor: mechanisms and implications. IUBMB Life 62(2):112–119PubMedGoogle Scholar
  22. 22.
    Zhou Y, Proudnikov D, Yuferov V, Kreek MJ (2010) Drug-induced and genetic alterations in stress-responsive systems: implications for specific addictive diseases. Brain Res 1314:235–252PubMedCrossRefGoogle Scholar
  23. 23.
    Benavides M, Laorden ML, Garcia-Borron JC, Milanes MV (2003) Regulation of tyrosine hydroxylase levels and activity and Fos expression during opioid withdrawal in the hypothalamic PVN and medulla oblongata catecholaminergic cell groups innervating the PVN. Eur J Neurosci 17(1):103–112PubMedCrossRefGoogle Scholar
  24. 24.
    Laorden ML, Nunez C, Almela P, Milanes MV (2002) Morphine withdrawal-induced c-fos expression in the hypothalamic paraventricular nucleus is dependent on the activation of catecholaminergic neurones. J Neurochem 83(1):132–140PubMedCrossRefGoogle Scholar
  25. 25.
    Laorden ML, Castells MT, Milanes MV (2002) Effects of morphine and morphine withdrawal on brainstem neurons innervating hypothalamic nuclei that control the pituitary-adrenocortical axis in rats. Br J Pharmacol 136(1):67–75PubMedCrossRefGoogle Scholar
  26. 26.
    Laorden ML, Fuertes G, Gonzalez-Cuello A, Milanes MV (2000) Changes in catecholaminergic pathways innervating paraventricular nucleus and pituitary-adrenal axis response during morphine dependence: implication of alpha(1)- and alpha(2)-adrenoceptors. J Pharmacol Exp Ther 293(2):578–584PubMedGoogle Scholar
  27. 27.
    Milanes MV, Puig MM, Vargas ML (1993) Simultaneous changes in hypothalamic catecholamine levels and plasma corticosterone concentration in the rat after acute morphine and during tolerance. Neuropeptides 24(5):279–284PubMedCrossRefGoogle Scholar
  28. 28.
    Palm S, Moenig H, Maier C (1997) Effects of oral treatment with sustained release morphine tablets on hypothalamic-pituitary-adrenal axis. Methods Find Exp Clin Pharmacol 19(4):269–273PubMedGoogle Scholar
  29. 29.
    Provinciali M, Di Stefano G, Stronati S, Raffaeli W, Pari G, Fabris N (1996) Role of prolactin in the modulation of NK and LAK cell activity after short- or long-term morphine administration in neoplastic patients. Int J Immunopharmacol 18(10):577–586PubMedCrossRefGoogle Scholar
  30. 30.
    Allolio B, Schulte HM, Deuss U, Kallabis D, Hamel E, Winkelman W (1987) Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by human corticotropin-releasing hormone. Acta Endocrinol (Copenh) 114(4):509–514Google Scholar
  31. 31.
    Rittmaster RS, Cutler GB Jr, Sobel DO, Goldstein DS, Koppelman MC, Loriaux DL, Chrousos GP (1985) Morphine inhibits the pituitary-adrenal response to ovine corticotropin-releasing hormone in normal subjects. J Clin Endocrinol Metab 60(5):891–895PubMedCrossRefGoogle Scholar
  32. 32.
    Esmaeili Mahani S, Motamedi F, Javan M, Ahmadiani A (2005) Involvement of hypothalamic pituitary adrenal axis on the effects of nifedipine in the development of morphine tolerance in rats. Pharmacol Biochem Behav 81(1):152–157PubMedCrossRefGoogle Scholar
  33. 33.
    Buckingham JC, Cooper TA (1984) Differences in hypothalamo-pituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology 38(5):411–417PubMedCrossRefGoogle Scholar
  34. 34.
    House SD, Mao X, Wu G, Espinelli D, Li WX, Chang SL (2001) Chronic morphine potentiates the inflammatory response by disrupting interleukin-1beta modulation of the hypothalamic-pituitary-adrenal axis. J Neuroimmunol 118(2):277–285PubMedCrossRefGoogle Scholar
  35. 35.
    Nunez C, Foldes A, Laorden ML, Milanes MV, Kovacs KJ (2007) Activation of stress-related hypothalamic neuropeptide gene expression during morphine withdrawal. J Neurochem 101(4):1060–1071PubMedCrossRefGoogle Scholar
  36. 36.
    Houshyar H, Gomez F, Manalo S, Bhargava A, Dallman MF (2003) Intermittent morphine administration induces dependence and is a chronic stressor in rats. Neuropsychopharmacology 28(11):1960–1972PubMedCrossRefGoogle Scholar
  37. 37.
    Martin F, Mora L, Laorden M, Milanes M (2011) Protein kinase C phosphorylates the cAMP response element binding protein in the hypothalamic paraventricular nucleus during morphine withdrawal. Br J Pharmacol 163(4):857–875PubMedCrossRefGoogle Scholar
  38. 38.
    Martin F, Laorden ML, Milanes MV (2009) Morphine withdrawal regulates phosphorylation of cAMP response element binding protein (CREB) through PKC in the nucleus tractus solitarius-A2 catecholaminergic neurons. J Neurochem 110(5):1422–1432PubMedCrossRefGoogle Scholar
  39. 39.
    Esmaeili-Mahani S, Fathi Y, Motamedi F, Hosseinpanah F, Ahmadiani A (2008) L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone. Horm Behav 53(2):351–357PubMedCrossRefGoogle Scholar
  40. 40.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820PubMedCrossRefGoogle Scholar
  41. 41.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMedCrossRefGoogle Scholar
  42. 42.
    Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34PubMedCrossRefGoogle Scholar
  43. 43.
    Schenten D, Medzhitov R (2011) The control of adaptive immune responses by the innate immune system. Adv Immunol 109:87–124PubMedCrossRefGoogle Scholar
  44. 44.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295PubMedCrossRefGoogle Scholar
  45. 45.
    Breslow JM, Monroy MA, Daly JM, Meissler JJ, Gaughan J, Adler MW, Eisenstein TK (2011) Morphine, but not trauma, sensitizes to systemic Acinetobacter baumannii infection. J Neuroimmune Pharmacol 6(4):551–565PubMedCrossRefGoogle Scholar
  46. 46.
    Martin JL, Koodie L, Krishnan AG, Charboneau R, Barke RA, Roy S (2010) Chronic morphine administration delays wound healing by inhibiting immune cell recruitment to the wound site. Am J Pathol 176(2):786–799PubMedCrossRefGoogle Scholar
  47. 47.
    Ma J, Wang J, Wan J, Charboneau R, Chang Y, Barke RA, Roy S (2010) Morphine disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense against Streptococcus pneumoniae infection. Infect Immun 78(2):830–837PubMedCrossRefGoogle Scholar
  48. 48.
    Tomassini N, Renaud F, Roy S, Loh HH (2004) Morphine inhibits Fc-mediated phagocytosis through mu and delta opioid receptors. J Neuroimmunol 147(1–2):131–133PubMedCrossRefGoogle Scholar
  49. 49.
    Tomassini N, Renaud FL, Roy S, Loh HH (2003) Mu and delta receptors mediate morphine effects on phagocytosis by murine peritoneal macrophages. J Neuroimmunol 136(1–2):9–16PubMedCrossRefGoogle Scholar
  50. 50.
    Delgado-Velez M, Lugo-Chinchilla A, Lizardo L, Morales I, Robles Y, Bruno N, Rodriguez JW, Rios-Olivares E, Correa M, Renaud FL (2008) Chronic exposure of human macrophages in vitro to morphine and methadone induces a putative tolerant/dependent state. J Neuroimmunol 196(1–2):94–100PubMedCrossRefGoogle Scholar
  51. 51.
    Lazaro MI, Tomassini N, Gonzalez I, Renaud FL (2000) Reversibility of morphine effects on phagocytosis by murine macrophages. Drug Alcohol Depend 58(1–2):159–164PubMedCrossRefGoogle Scholar
  52. 52.
    Wang J, Barke RA, Charboneau R, Schwendener R, Roy S (2008) Morphine induces defects in early response of alveolar macrophages to Streptococcus pneumoniae by modulating TLR9-NF-kappa B signaling. J Immunol 180(5):3594–3600PubMedGoogle Scholar
  53. 53.
    Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IG, Singhal PC (2006) Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation. Mol Med 12(11–12):284–290PubMedGoogle Scholar
  54. 54.
    Campana G, Sarti D, Spampinato S, Raffaeli W (2010) Long-term intrathecal morphine and bupivacaine upregulate MOR gene expression in lymphocytes. Int Immunopharmacol 10(9):1149–1152PubMedCrossRefGoogle Scholar
  55. 55.
    Yokota T, Uehara K, Nomoto Y (2000) Intrathecal morphine suppresses NK cell activity following abdominal surgery. Can J Anaesth 47(4):303–308PubMedCrossRefGoogle Scholar
  56. 56.
    Madera-Salcedo IK, Cruz SL, Gonzalez-Espinosa C (2011) Morphine decreases early peritoneal innate immunity responses in Swiss-Webster and C57BL6/J mice through the inhibition of mast cell TNF-alpha release. J Neuroimmunol 232(1–2):101–107PubMedCrossRefGoogle Scholar
  57. 57.
    Peng X, Mosser DM, Adler MW, Rogers TJ, Meissler JJ Jr, Eisenstein TK (2000) Morphine enhances interleukin-12 and the production of other pro-inflammatory cytokines in mouse peritoneal macrophages. J Leukoc Biol 68(5):723–728PubMedGoogle Scholar
  58. 58.
    Wang J, Ma J, Charboneau R, Barke R, Roy S (2011) Morphine inhibits murine dendritic cell IL-23 production by modulating Toll-like receptor 2 and Nod2 signaling. J Biol Chem 286(12):10225–10232PubMedCrossRefGoogle Scholar
  59. 59.
    Bonnet MP, Beloeil H, Benhamou D, Mazoit JX, Asehnoune K (2008) The mu opioid receptor mediates morphine-induced tumor necrosis factor and interleukin-6 inhibition in toll-like receptor 2-stimulated monocytes. Anesth Analg 106(4):1142–1149 (table of contents)PubMedCrossRefGoogle Scholar
  60. 60.
    Kelschenbach J, Ninkovic J, Wang J, Krishnan A, Charboneau R, Barke RA, Roy S (2008) Morphine withdrawal inhibits IL-12 induction in a macrophage cell line through a mechanism that involves cAMP. J Immunol 180(6):3670–3679PubMedGoogle Scholar
  61. 61.
    Kelschenbach J, Barke RA, Roy S (2005) Morphine withdrawal contributes to Th cell differentiation by biasing cells toward the Th2 lineage. J Immunol 175(4):2655–2665PubMedGoogle Scholar
  62. 62.
    Zhang E, Xiong J, Parker B, Chen A, Fields P, Ma X, Qiu J, Yankee T (2011) Depletion and recovery of lymphoid subsets following morphine administration. Br J Pharmacol 164(7):1829–1844PubMedCrossRefGoogle Scholar
  63. 63.
    Olin MR, Roy S, Molitor T (2010) In vivo morphine treatment synergistically increases LPS-induced caspase activity in immune organs. J Neuroimmune Pharmacol 5(4):546–552PubMedCrossRefGoogle Scholar
  64. 64.
    Mojadadi S, Jamali A, Khansarinejad B, Soleimanjahi H, Bamdad T (2009) Acute morphine administration reduces cell-mediated immunity and induces reactivation of latent herpes simplex virus type 1 in BALB/c mice. Cell Mol Immunol 6(2):111–116PubMedCrossRefGoogle Scholar
  65. 65.
    Borner C, Warnick B, Smida M, Hartig R, Lindquist JA, Schraven B, Hollt V, Kraus J (2009) Mechanisms of opioid-mediated inhibition of human T cell receptor signaling. J Immunol 183(2):882–889PubMedCrossRefGoogle Scholar
  66. 66.
    Olin M, Oh S, Roy S, Peterson P, Molitor T (2011) Morphine induces splenocyte trafficking into the CNS. J Neuroimmune Pharmacol 7:436–443PubMedCrossRefGoogle Scholar
  67. 67.
    Sharma HS, Sjoquist PO, Ali SF (2010) Alterations in blood–brain barrier function and brain pathology by morphine in the rat. Neuroprotective effects of antioxidant H-290/51. Acta Neurochir Suppl 106:61–66PubMedCrossRefGoogle Scholar
  68. 68.
    Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Fernandez SF, Chawda R, Shanahan TC, Schwartz SA (2008) Tight junction regulation by morphine and HIV-1 tat modulates blood–brain barrier permeability. J Clin Immunol 28(5):528–541PubMedCrossRefGoogle Scholar
  69. 69.
    Wen H, Lu Y, Yao H, Buch S (2011) Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability. PLoS One 6(6):e21707PubMedCrossRefGoogle Scholar
  70. 70.
    Rock RB, Hu S, Sheng WS, Peterson PK (2006) Morphine stimulates CCL2 production by human neurons. J Neuroinflammation 3:32PubMedCrossRefGoogle Scholar
  71. 71.
    Mahajan SD, Schwartz SA, Shanahan TC, Chawda RP, Nair MP (2002) Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroglial cells via the opioid mu receptor. J Immunol 169(7):3589–3599PubMedGoogle Scholar
  72. 72.
    Staikos L, Malellari L, Chang SL (2008) Lipopolysaccharide-induced pro-inflammatory cytokines in the brain of rats in the morphine-tolerant state. J Neuroimmune Pharmacol 3(4):236–240PubMedCrossRefGoogle Scholar
  73. 73.
    Suder P, Bodzon-Kulakowska A, Mak P, Bierczynska-Krzysik A, Daszykowski M, Walczak B, Lubec G, Kotlinska JH, Silberring J (2009) The proteomic analysis of primary cortical astrocyte cell culture after morphine administration. J Proteome Res 8(10):4633–4640PubMedCrossRefGoogle Scholar
  74. 74.
    Cottingham K (2009) Astrocyte proteins and morphine addiction. J Proteome Res 8(10):4394PubMedCrossRefGoogle Scholar
  75. 75.
    Narita M, Suzuki M, Kuzumaki N, Miyatake M, Suzuki T (2008) Implication of activated astrocytes in the development of drug dependence: differences between methamphetamine and morphine. Ann N Y Acad Sci 1141:96–104PubMedCrossRefGoogle Scholar
  76. 76.
    Narita M, Miyatake M, Shibasaki M, Shindo K, Nakamura A, Kuzumaki N, Nagumo Y, Suzuki T (2006) Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology 31(11):2476–2488PubMedCrossRefGoogle Scholar
  77. 77.
    Lazriev IL, Kiknadze GI, Kutateladze II, Nebieridze MI (2001) Effect of morphine on the number and branching of astrocytes in various regions of rat brain. Bull Exp Biol Med 131(3):248–250PubMedCrossRefGoogle Scholar
  78. 78.
    Mika J (2008) Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness. Pharmacol Rep 60(3):297–307PubMedGoogle Scholar
  79. 79.
    Lipovsky MM, Gekker G, Hu S, Hoepelman AI, Peterson PK (1998) Morphine enhances complement receptor-mediated phagocytosis of Cryptococcus neoformans by human microglia. Clin Immunol Immunopathol 87(2):163–167PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang Y, Li H, Li Y, Sun X, Zhu M, Hanley G, Lesage G, Yin D (2011) Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice. Neurosci Lett 489(1):43–47PubMedCrossRefGoogle Scholar
  81. 81.
    Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, Hughes TS, Landgraf KE, Chan S, Fong S, Phipps S, Falke JJ, Leinwand LA, Maier SF, Yin H, Rice KC, Watkins LR (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24(1):83–95PubMedCrossRefGoogle Scholar
  82. 82.
    Sawaya BE, Deshmane SL, Mukerjee R, Fan S, Khalili K (2009) TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J Neuroimmune Pharmacol 4(1):140–149PubMedCrossRefGoogle Scholar
  83. 83.
    Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29(4):998–1005PubMedCrossRefGoogle Scholar
  84. 84.
    Chang SL, Wu GD, Patel NA, Vidal EL, Fiala M (1998) The effects of interaction between morphine and interleukin-1 on the immune response. Adv Exp Med Biol 437:67–72PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang Y, Wu GC, He QZ, Cao XD (2000) Effect of morphine and electro-acupuncture (EA) on apoptosis of thymocytes. Acupunct Electrother Res 25(1):17–26PubMedGoogle Scholar
  86. 86.
    Saurer TB, Carrigan KA, Ijames SG, Lysle DT (2006) Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell. J Neuroimmunol 173(1–2):3–11PubMedCrossRefGoogle Scholar
  87. 87.
    Saurer TB, Ijames SG, Lysle DT (2006) Neuropeptide Y Y1 receptors mediate morphine-induced reductions of natural killer cell activity. J Neuroimmunol 177(1–2):18–26PubMedCrossRefGoogle Scholar
  88. 88.
    Saurer TB, Ijames SG, Carrigan KA, Lysle DT (2008) Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation. Brain Behav Immun 22(1):89–97PubMedCrossRefGoogle Scholar
  89. 89.
    Nugent AL, Houghtling RA, Bayer BM (2011) Morphine suppresses MHC-II expression on circulating B lymphocytes via activation of the HPA. J Neuroimmune Pharmacol 6(1):130–141PubMedCrossRefGoogle Scholar
  90. 90.
    Sinatra R (2006) Opioid analgesics in primary care: challenges and new advances in the management of noncancer pain. J Am Board Fam Med 19(2):165–177PubMedCrossRefGoogle Scholar
  91. 91.
    Hamilton GR, Baskett TF (2000) In the arms of Morpheus the development of morphine for postoperative pain relief. Can J Anaesth 47(4):367–374PubMedCrossRefGoogle Scholar
  92. 92.
    Schulz S, Schreff M, Koch T, Zimprich A, Gramsch C, Elde R, Hollt V (1998) Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience 82(2):613–622PubMedCrossRefGoogle Scholar
  93. 93.
    Ding YQ, Kaneko T, Nomura S, Mizuno N (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367(3):375–402PubMedCrossRefGoogle Scholar
  94. 94.
    Ninkovic J, Roy S (2011) Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids [2011 Dec 15 E-pub ahead of print]Google Scholar
  95. 95.
    Chen Y, Sommer C (2009) The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 40(2):101–107PubMedCrossRefGoogle Scholar
  96. 96.
    Cherny N, Ripamonti C, Pereira J, Davis C, Fallon M, McQuay H, Mercadante S, Pasternak G, Ventafridda V (2001) Strategies to manage the adverse effects of oral morphine: an evidence-based report. J Clin Oncol 19(9):2542–2554PubMedGoogle Scholar
  97. 97.
    Hassanzadeh K, Roshangar L, Habibi-asl B, Farajnia S, Izadpanah E, Nemati M, Arasteh M, Mohammadi S (2011) Riluzole prevents morphine-induced apoptosis in rat cerebral cortex. Pharmacol Rep 63(3):697–707PubMedGoogle Scholar
  98. 98.
    Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2008) Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery? Curr Drug Abuse Rev 1(2):222–238PubMedCrossRefGoogle Scholar
  99. 99.
    Gintzler AR, Chakrabarti S (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci 79(8):717–722PubMedCrossRefGoogle Scholar
  100. 100.
    Chakrabarti S, Regec A, Gintzler AR (2005) Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling. Brain Res Mol Brain Res 138(1):94–103PubMedCrossRefGoogle Scholar
  101. 101.
    Rozenfeld R, Abul-Husn NS, Gomez I, Devi LA (2007) An emerging role for the delta opioid receptor in the regulation of mu opioid receptor function. Sci World J 7:64–73CrossRefGoogle Scholar
  102. 102.
    Martini L, Whistler JL (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 17(5):556–564PubMedCrossRefGoogle Scholar
  103. 103.
    Zuo Z (2005) The role of opioid receptor internalization and beta-arrestins in the development of opioid tolerance. Anesth Analg 101(3):728–734 (table of contents)PubMedCrossRefGoogle Scholar
  104. 104.
    Dietis N, Guerrini R, Calo G, Salvadori S, Rowbotham DJ, Lambert DG (2009) Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth 103(1):38–49PubMedCrossRefGoogle Scholar
  105. 105.
    Toda N, Kishioka S, Hatano Y, Toda H (2009) Modulation of opioid actions by nitric oxide signaling. Anesthesiology 110(1):166–181PubMedCrossRefGoogle Scholar
  106. 106.
    Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162(8):1414–1422PubMedCrossRefGoogle Scholar
  107. 107.
    Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRefGoogle Scholar
  108. 108.
    Battaglia FP, Benchenane K, Sirota A, Pennartz CM, Wiener SI (2011) The hippocampus: hub of brain network communication for memory. Trends Cogn Sci 15(7):310–318PubMedGoogle Scholar
  109. 109.
    Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9(3):182–194PubMedCrossRefGoogle Scholar
  110. 110.
    Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y, Akhavan MM, Semnanian S, Safari M (2011) Voluntary exercise ameliorates cognitive deficits in morphine dependent rats: the role of hippocampal brain-derived neurotrophic factor. Neurobiol Learn Mem 96(3):479–491PubMedCrossRefGoogle Scholar
  111. 111.
    Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 97(13):7579–7584PubMedCrossRefGoogle Scholar
  112. 112.
    Sala M, Braida D, Leone MP, Calcaterra P, Frattola D, Gori E (1994) Chronic morphine affects working memory during treatment and withdrawal in rats: possible residual long-term impairment. Behav Pharmacol 5(6):570–580PubMedCrossRefGoogle Scholar
  113. 113.
    Spain JW, Newsom GC (1991) Chronic opioids impair acquisition of both radial maze and Y-maze choice escape. Psychopharmacology (Berl) 105(1):101–106CrossRefGoogle Scholar
  114. 114.
    Ma MX, Chen YM, He J, Zeng T, Wang JH (2007) Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice. Neuroscience 147(4):1059–1065PubMedCrossRefGoogle Scholar
  115. 115.
    Aguilar MA, Minarro J, Simon VM (1998) Dose-dependent impairing effects of morphine on avoidance acquisition and performance in male mice. Neurobiol Learn Mem 69(2): 92–105PubMedCrossRefGoogle Scholar
  116. 116.
    Farahmandfar M, Karimian SM, Naghdi N, Zarrindast MR, Kadivar M (2010) Morphine-induced impairment of spatial memory acquisition reversed by morphine sensitization in rats. Behav Brain Res 211(2):156–163PubMedCrossRefGoogle Scholar
  117. 117.
    Kamboj SK, Tookman A, Jones L, Curran HV (2005) The effects of immediate-release morphine on cognitive functioning in patients receiving chronic opioid therapy in palliative care. Pain 117(3):388–395PubMedCrossRefGoogle Scholar
  118. 118.
    World Health Organization, Global Status Report on Alcohol and Health (2011) http://www.who.int/substance_abuse/publications/global_alcohol_report/en/Accessed: Dec 2011
  119. 119.
    Chang SL, Patel NA, Romero AA (1995) Activation and desensitization of Fos immunoreactivity in the rat brain following ethanol administration. Brain Res 679(1):89–98PubMedCrossRefGoogle Scholar
  120. 120.
    Mechtcheriakov S, Brenneis C, Egger K, Koppelstaetter F, Schocke M, Marksteiner J (2007) A widespread distinct pattern of cerebral atrophy in patients with alcohol addiction revealed by voxel-based morphometry. J Neurol Neurosurg Psychiatry 78(6):610–614PubMedCrossRefGoogle Scholar
  121. 121.
    Chanraud S, Martelli C, Delain F, Kostogianni N, Douaud G, Aubin HJ, Reynaud M, Martinot JL (2007) Brain morphometry and cognitive performance in detoxified alcohol-dependents with preserved psychosocial functioning. Neuropsychopharmacology 32(2):429–438PubMedCrossRefGoogle Scholar
  122. 122.
    Makris N, Oscar-Berman M, Jaffin SK, Hodge SM, Kennedy DN, Caviness VS, Marinkovic K, Breiter HC, Gasic GP, Harris GJ (2008) Decreased volume of the brain reward system in alcoholism. Biol Psychiatry 64(3):192–202PubMedCrossRefGoogle Scholar
  123. 123.
    Fortier CB, Leritz EC, Salat DH, Venne JR, Maksimovskiy AL, Williams V, Milberg WP, McGlinchey RE (2011) Reduced cortical thickness in abstinent alcoholics and association with alcoholic behavior. Alcohol Clin Exp Res 35(12):2193–2201PubMedCrossRefGoogle Scholar
  124. 124.
    Zahr NM, Kaufman KL, Harper CG (2011) Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol 7(5):284–294PubMedCrossRefGoogle Scholar
  125. 125.
    Silva SM, Madeira MD, Ruela C, Paula-Barbosa MM (2002) Prolonged alcohol intake leads to irreversible loss of vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. Brain Res 925(1):76–88PubMedCrossRefGoogle Scholar
  126. 126.
    Harding AJ, Halliday GM, Ng JL, Harper CG, Kril JJ (1996) Loss of vasopressin-immunoreactive neurons in alcoholics is dose-related and time-dependent. Neuroscience 72(3):699–708PubMedCrossRefGoogle Scholar
  127. 127.
    Sivukhina EV, Dolzhikov AA, Morozov Iu E, Jirikowski GF, Grinevich V (2006) Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic neurons in men. Horm Metab Res 38(6):382–390PubMedCrossRefGoogle Scholar
  128. 128.
    Allen CD, Lee S, Koob GF, Rivier C (2011) Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic-pituitary-adrenal axis in adult and adolescent rats. Brain Behav Immun 25(Suppl 1):S50–S60PubMedCrossRefGoogle Scholar
  129. 129.
    Pronko SP, Saba LM, Hoffman PL, Tabakoff B (2010) Type 7 adenylyl cyclase-mediated hypothalamic-pituitary-adrenal axis responsiveness: influence of ethanol and sex. J Pharmacol Exp Ther 334(1):44–52PubMedCrossRefGoogle Scholar
  130. 130.
    Seo DO, Lee S, Rivier C (2004) Prolonged exposure to intermittent alcohol vapors decreases the ACTH as well as hypothalamic nitric oxide and cytokine responses to endotoxemia. Alcohol Clin Exp Res 28(6):848–854PubMedCrossRefGoogle Scholar
  131. 131.
    Rivier C, Lee S (1996) Acute alcohol administration stimulates the activity of hypothalamic neurons that express corticotropin-releasing factor and vasopressin. Brain Res 726(1–2):1–10PubMedCrossRefGoogle Scholar
  132. 132.
    Lee S, Schmidt D, Tilders F, Cole M, Smith A, Rivier C (2000) Prolonged exposure to intermittent alcohol vapors blunts hypothalamic responsiveness to immune and non-immune signals. Alcohol Clin Exp Res 24(1):110–122PubMedCrossRefGoogle Scholar
  133. 133.
    Sinha R, Fox HC, Hong KI, Hansen J, Tuit K, Kreek MJ (2011) Effects of adrenal sensitivity, stress- and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes. Arch Gen Psychiatry 68(9):942–952PubMedCrossRefGoogle Scholar
  134. 134.
    Szabo G, Mandrekar P (2009) A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33(2):220–232PubMedCrossRefGoogle Scholar
  135. 135.
    Cook RT (1998) Alcohol abuse, alcoholism, and damage to the immune system – a review. Alcohol Clin Exp Res 22(9):1927–1942PubMedGoogle Scholar
  136. 136.
    Watson RR, Borgs P, Witte M, McCuskey RS, Lantz C, Johnson MI, Mufti SI, Earnest DL (1994) Alcohol, immunomodulation, and disease. Alcohol Alcohol 29(2):131–139PubMedGoogle Scholar
  137. 137.
    Diaz LE, Montero A, Gonzalez-Gross M, Vallejo AI, Romeo J, Marcos A (2002) Influence of alcohol consumption on immunological status: a review. Eur J Clin Nutr 56(Suppl 3):S50–S53PubMedCrossRefGoogle Scholar
  138. 138.
    Goral J, Karavitis J, Kovacs EJ (2008) Exposure-dependent effects of ethanol on the innate immune system. Alcohol 42(4):237–247PubMedCrossRefGoogle Scholar
  139. 139.
    Szabo G, Mandrekar P, Catalano D (1995) Inhibition of superantigen-induced T cell proliferation and monocyte IL-1 beta, TNF-alpha, and IL-6 production by acute ethanol treatment. J Leukoc Biol 58(3):342–350PubMedGoogle Scholar
  140. 140.
    Szabo G, Mandrekar P, Girouard L, Catalano D (1996) Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-1 beta and elevated interleukin-10, and transforming growth factor-beta production. Alcohol Clin Exp Res 20(5):900–907PubMedCrossRefGoogle Scholar
  141. 141.
    Szabo G, Chavan S, Mandrekar P, Catalano D (1999) Acute alcohol consumption attenuates interleukin-8 (IL-8) and monocyte chemoattractant peptide-1 (MCP-1) induction in response to ex vivo stimulation. J Clin Immunol 19(1):67–76PubMedCrossRefGoogle Scholar
  142. 142.
    Liu X, Mao X, Chang L (2011) Altered gene expression in the spleen of adolescent rats following high ethanol concentration binge drinking. Int J Clin Exp Med 4(4):252–257PubMedGoogle Scholar
  143. 143.
    Spitzer JA, Zhang P (1996) Gender differences in phagocytic responses in the blood and liver, and the generation of cytokine-induced neutrophil chemoattractant in the liver of acutely ethanol-intoxicated rats. Alcohol Clin Exp Res 20(5):914–920PubMedCrossRefGoogle Scholar
  144. 144.
    Kovacs EJ, Messingham KA (2002) Influence of alcohol and gender on immune response. Alcohol Res Health 26(4):257–263PubMedGoogle Scholar
  145. 145.
    Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736PubMedCrossRefGoogle Scholar
  146. 146.
    Yamashina S, Ikejima K, Enomoto N, Takei Y, Sato N (2003) Ethanol changes sensitivity of Kupffer cells to endotoxin. Nihon Arukoru Yakubutsu Igakkai Zasshi 38(5):415–424PubMedGoogle Scholar
  147. 147.
    Robin MA, Demeilliers C, Sutton A, Paradis V, Maisonneuve C, Dubois S, Poirel O, Letteron P, Pessayre D, Fromenty B (2005) Alcohol increases tumor necrosis factor alpha and decreases nuclear factor-kappab to activate hepatic apoptosis in genetically obese mice. Hepatology 42(6):1280–1290PubMedCrossRefGoogle Scholar
  148. 148.
    Zhou Z, Wang L, Song Z, Lambert JC, McClain CJ, Kang YJ (2003) A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-alpha production. Am J Pathol 163(3):1137–1146PubMedCrossRefGoogle Scholar
  149. 149.
    Bautista AP (2000) Impact of alcohol on the ability of Kupffer cells to produce chemokines and its role in alcoholic liver disease. J Gastroenterol Hepatol 15(4):349–356PubMedCrossRefGoogle Scholar
  150. 150.
    Mandrekar P, Ambade A, Lim A, Szabo G, Catalano D (2011) An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54(6):2185–2197PubMedCrossRefGoogle Scholar
  151. 151.
    Thiele GM, Szabo G, Kovacs EJ, Bautista AP, Sosa L, Jerrells TR (2002) Modulation of immunity and viral-host interactions by alcohol. Alcohol Clin Exp Res 26(12):1897–1908PubMedCrossRefGoogle Scholar
  152. 152.
    Bautista AP, Wang E (2002) Acute ethanol administration downregulates human immunodeficiency virus-1 glycoprotein 120-induced KC and RANTES production by murine Kupffer cells and splenocytes. Life Sci 71(4):371–382PubMedCrossRefGoogle Scholar
  153. 153.
    Szabo G, Catalano D, White B, Mandrekar P (2004) Acute alcohol consumption inhibits accessory cell function of monocytes and dendritic cells. Alcohol Clin Exp Res 28(5):824–828PubMedCrossRefGoogle Scholar
  154. 154.
    Lau AH, Abe M, Thomson AW (2006) Ethanol affects the generation, cosignaling molecule expression, and function of plasmacytoid and myeloid dendritic cell subsets in vitro and in vivo. J Leukoc Biol 79(5):941–953PubMedCrossRefGoogle Scholar
  155. 155.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49PubMedCrossRefGoogle Scholar
  156. 156.
    Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S (2011) Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol 780:45–55PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang H, Zhu Z, Meadows GG (2011) Chronic alcohol consumption decreases the percentage and number of NK cells in the peripheral lymph nodes and exacerbates B16BL6 melanoma metastasis into the draining lymph nodes. Cell Immunol 266(2):172–179PubMedCrossRefGoogle Scholar
  158. 158.
    Zhang H, Meadows GG (2008) Chronic alcohol consumption perturbs the balance between thymus-derived and bone marrow-derived natural killer cells in the spleen. J Leukoc Biol 83(1):41–47PubMedCrossRefGoogle Scholar
  159. 159.
    Verma S, Alexander CM, Carlson MJ, Tygrett LT, Waldschmidt TJ (2008) B-cell studies in chronic ethanol mice. Methods Mol Biol 447:295–323PubMedCrossRefGoogle Scholar
  160. 160.
    Naude CE, Bouic P, Senekal M, Kidd M, Ferrett HL, Fein G, Carey PD (2011) Lymphocyte measures in treatment-naive 13-15-year old adolescents with alcohol use disorders. Alcohol 45(5):507–514PubMedCrossRefGoogle Scholar
  161. 161.
    Boyadjieva NI, Dokur M, Advis JP, Meadows GG, Sarkar DK (2002) Beta-endorphin modulation of lymphocyte proliferation: effects of ethanol. Alcohol Clin Exp Res 26(11):1719–1727PubMedGoogle Scholar
  162. 162.
    Gurung P, Young BM, Coleman RA, Wiechert S, Turner LE, Ray NB, Waldschmidt TJ, Legge KL, Cook RT (2009) Chronic ethanol induces inhibition of antigen-specific CD8+ but not CD4+ immunodominant T cell responses following Listeria monocytogenes inoculation. J Leukoc Biol 85(1):34–43PubMedCrossRefGoogle Scholar
  163. 163.
    Zhang H, Meadows GG (2010) Chronic alcohol consumption enhances myeloid-derived suppressor cells in B16BL6 melanoma-bearing mice. Cancer Immunol Immunother 59(8):1151–1159PubMedCrossRefGoogle Scholar
  164. 164.
    Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26(2):149–188PubMedCrossRefGoogle Scholar
  165. 165.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394PubMedCrossRefGoogle Scholar
  166. 166.
    Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31(4):513–525PubMedCrossRefGoogle Scholar
  167. 167.
    Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25(Suppl 1):S4–S12PubMedCrossRefGoogle Scholar
  168. 168.
    Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434PubMedCrossRefGoogle Scholar
  169. 169.
    Pekny M, Wilhelmsson U, Bogestal YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111PubMedCrossRefGoogle Scholar
  170. 170.
    Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183(7):4733–4744PubMedCrossRefGoogle Scholar
  171. 171.
    Blanco AM, Pascual M, Valles SL, Guerri C (2004) Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. Neuroreport 15(4):681–685PubMedCrossRefGoogle Scholar
  172. 172.
    Valles SL, Blanco AM, Pascual M, Guerri C (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14(4):365–371PubMedCrossRefGoogle Scholar
  173. 173.
    Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295PubMedCrossRefGoogle Scholar
  174. 174.
    Yakovleva T, Bazov I, Watanabe H, Hauser KF, Bakalkin G (2011) Transcriptional control of maladaptive and protective responses in alcoholics: a role of the NF-kappaB system. Brain Behav Immun 25(Suppl 1):S29–S38PubMedCrossRefGoogle Scholar
  175. 175.
    Rulten SL, Ripley TL, Hunt CL, Stephens DN, Mayne LV (2006) Sp1 and NFkappaB pathways are regulated in brain in response to acute and chronic ethanol. Genes Brain Behav 5(3):257–273PubMedCrossRefGoogle Scholar
  176. 176.
    Crews F, Nixon K, Kim D, Joseph J, Shukitt-Hale B, Qin L, Zou J (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949PubMedCrossRefGoogle Scholar
  177. 177.
    Okvist A, Johansson S, Kuzmin A, Bazov I, Merino-Martinez R, Ponomarev I, Mayfield RD, Harris RA, Sheedy D, Garrick T, Harper C, Hurd YL, Terenius L, Ekstrom TJ, Bakalkin G, Yakovleva T (2007) Neuroadaptations in human chronic alcoholics: dysregulation of the NF-kappaB system. PLoS One 2(9):e930PubMedCrossRefGoogle Scholar
  178. 178.
    Haorah J, Knipe B, Gorantla S, Zheng J, Persidsky Y (2007) Alcohol-induced blood–brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release. J Neurochem 100(2):324–336PubMedCrossRefGoogle Scholar
  179. 179.
    Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood–brain barrier dysfunction. J Leukoc Biol 78(6):1223–1232PubMedCrossRefGoogle Scholar
  180. 180.
    Rivest S (2010) Interactions between the immune and neuroendocrine systems. Prog Brain Res 181:43–53PubMedCrossRefGoogle Scholar
  181. 181.
    Glover M, Cheng B, Deng X, Pruett S (2011) The role of glucocorticoids in the immediate vs. delayed effects of acute ethanol exposure on cytokine production in a binge drinking model. Int Immunopharmacol 11(6):755–761PubMedCrossRefGoogle Scholar
  182. 182.
    Glover M, Pruett SB (2006) Role of corticosterone in immunosuppressive effects of acute ethanol exposure on Toll-like receptor mediated cytokine production. J Neuroimmune Pharmacol 1(4):435–442PubMedCrossRefGoogle Scholar
  183. 183.
    Collier SD, Wu WJ, Pruett SB (2000) Ethanol suppresses NK cell activation by polyinosinic-polycytidylic acid (poly I:C) in female B6C3F1 mice: role of endogenous corticosterone. Alcohol Clin Exp Res 24(3):291–299PubMedCrossRefGoogle Scholar
  184. 184.
    Padgett EL, Sibley DA, Jerrells TR (2000) Effect of adrenalectomy on ethanol-associated changes in lymphocyte cell numbers and subpopulations in thymus, spleen, and gut-­associated lymphoid tissues. Int J Immunopharmacol 22(4):285–298PubMedCrossRefGoogle Scholar
  185. 185.
    Rose AK, Shaw SG, Prendergast MA, Little HJ (2010) The importance of glucocorticoids in alcohol dependence and neurotoxicity. Alcohol Clin Exp Res 34(12):2011–2018PubMedCrossRefGoogle Scholar
  186. 186.
    Spencer RL, Hutchison KE (1999) Alcohol, aging, and the stress response. Alcohol Res Health 23(4):272–283PubMedGoogle Scholar
  187. 187.
    Flammer JR, Rogatsky I (2011) Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol 25(7):1075–1086PubMedCrossRefGoogle Scholar
  188. 188.
    Pruett SB, Fan R, Zheng Q (2003) Acute ethanol administration profoundly alters poly I:C-induced cytokine expression in mice by a mechanism that is not dependent on corticosterone. Life Sci 72(16):1825–1839PubMedCrossRefGoogle Scholar
  189. 189.
    Cook RT, Schlueter AJ, Coleman RA, Tygrett L, Ballas ZK, Jerrells TR, Nashelsky MB, Ray NB, Haugen TH, Waldschmidt TJ (2007) Thymocytes, pre-B cells, and organ changes in a mouse model of chronic ethanol ingestion – absence of subset-specific glucocorticoid-induced immune cell loss. Alcohol Clin Exp Res 31(10):1746–1758PubMedCrossRefGoogle Scholar
  190. 190.
    Frank MG, Watkins LR, Maier SF (2011) Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 25(Suppl 1):S21–S28PubMedCrossRefGoogle Scholar
  191. 191.
    Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J (2006) Cytokines and alcohol. Alcohol Clin Exp Res 30(4):720–730PubMedCrossRefGoogle Scholar
  192. 192.
    Keeler JF, Robbins TW (2011) Translating cognition from animals to humans. Biochem Pharmacol 81(12):1356–1366PubMedCrossRefGoogle Scholar
  193. 193.
    Schwartz M (2010) The emergence of a new science of the mind: immunology benefits the mind. Mol Psychiatry 15(4):337–338PubMedCrossRefGoogle Scholar
  194. 194.
    Dirnagl U, Schwab JM (2009) Brain-immune interactions in acute and chronic brain disorders. Neuroscience 158(3):969–971PubMedCrossRefGoogle Scholar
  195. 195.
    Irwin MR, Miller AH (2007) Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21(4):374–383PubMedCrossRefGoogle Scholar
  196. 196.
    Petitto JM (2006) A shared neuroimmunological mechanism for drugs of addiction? J Neuroimmunol 173(1–2):1–2PubMedCrossRefGoogle Scholar
  197. 197.
    Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91PubMedCrossRefGoogle Scholar
  198. 198.
    Prendergast MA, Little HJ (2007) Adolescence, glucocorticoids and alcohol. Pharmacol Biochem Behav 86(2):234–245PubMedCrossRefGoogle Scholar
  199. 199.
    Matsumoto I (2009) Proteomics approach in the study of the pathophysiology of alcohol-related brain damage. Alcohol Alcohol 44(2):171–176PubMedGoogle Scholar
  200. 200.
    Pfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV (2009) Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry 65(8):680–690PubMedCrossRefGoogle Scholar
  201. 201.
    Fitzpatrick LE, Jackson M, Crowe SF (2008) The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neurosci Biobehav Rev 32(3):466–485PubMedCrossRefGoogle Scholar
  202. 202.
    Oscar-Berman M, Marinkovic K (2007) Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev 17(3):239–257PubMedCrossRefGoogle Scholar
  203. 203.
    Harper C, Matsumoto I (2005) Ethanol and brain damage. Curr Opin Pharmacol 5(1):73–78PubMedCrossRefGoogle Scholar
  204. 204.
    Bates ME, Bowden SC, Barry D (2002) Neurocognitive impairment associated with alcohol use disorders: implications for treatment. Exp Clin Psychopharmacol 10(3):193–212PubMedCrossRefGoogle Scholar
  205. 205.
    Sanhueza C, Garcia-Moreno LM, Exposito J (2011) Weekend alcoholism in youth and neurocognitive aging. Psicothema 23(2):209–214PubMedGoogle Scholar
  206. 206.
    Neafsey EJ, Collins MA (2011) Moderate alcohol consumption and cognitive risk. Neuropsychiatr Dis Treat 7:465–484PubMedCrossRefGoogle Scholar
  207. 207.
    NIAAA (2009) Neuroscience: pathways to alcohol dependence. Alcohol Alert No. 77Google Scholar
  208. 208.
    Mukherjee S, Das SK, Vaidyanathan K, Vasudevan DM (2008) Consequences of alcohol consumption on neurotransmitters – an overview. Curr Neurovasc Res 5(4):266–272PubMedCrossRefGoogle Scholar
  209. 209.
    Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89(2):649–705PubMedCrossRefGoogle Scholar
  210. 210.
    Ward RJ, Lallemand F, de Witte P (2009) Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or ‘binge drinking’ alcohol abuse. Alcohol Alcohol 44(2):128–135PubMedGoogle Scholar
  211. 211.
    Heinz A, Beck A, Wrase J, Mohr J, Obermayer K, Gallinat J, Puls I (2009) Neurotransmitter systems in alcohol dependence. Pharmacopsychiatry 42(Suppl 1):S95–S101PubMedCrossRefGoogle Scholar
  212. 212.
    Shaham Y, Hope BT (2005) The role of neuroadaptations in relapse to drug seeking. Nat Neurosci 8(11):1437–1439PubMedCrossRefGoogle Scholar
  213. 213.
    Alfonso-Loeches S, Guerri C (2011) Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 48(1):19–47PubMedCrossRefGoogle Scholar
  214. 214.
    Committee on Substance Abuse (2010) From the American Academy of Pediatrics: Policy Statement – Alcohol use by youth and adolescents: a pediatric concern. Pediatrics 125(5):1078–1087Google Scholar
  215. 215.
    U.S. Department of Health and Human Services (2007) The surgeon General’s Call to action to prevent and reduce underage drinking. U.S. Department of Health and human Services, Office of the Surgeon General. http://www.surgeongeneral.gov/library/calls/underagedrinking/calltoaction.pdf Accessed: Dec 2011
  216. 216.
    Liu X, Chang SL (2011) Development and aging of the mesolimbic dopamine system and alcohol use. J Med Sci 31(2):061–066Google Scholar
  217. 217.
    Casey BJ, Jones RM (2010) Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J Am Acad Child Adolesc Psychiatry 49(12):1189–1201 (quiz 1285)PubMedGoogle Scholar
  218. 218.
    Romeo J, Warnberg J, Marcos A (2010) Drinking pattern and socio-cultural aspects on immune response: an overview. Proc Nutr Soc 69(3):341–346PubMedCrossRefGoogle Scholar
  219. 219.
    Lee H, Roh S, Kim DJ (2009) Alcohol-induced blackout. Int J Environ Res Public Health 6(11):2783–2792PubMedCrossRefGoogle Scholar
  220. 220.
    Stephens DN, Duka T (2008) Review. Cognitive and emotional consequences of binge drinking: role of amygdala and prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 363(1507):3169–3179PubMedCrossRefGoogle Scholar
  221. 221.
    Obernier JA, White AM, Swartzwelder HS, Crews FT (2002) Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 72(3):521–532PubMedCrossRefGoogle Scholar
  222. 222.
    Kuzmin A, Liljequist S, Meis J, Chefer V, Shippenberg T, Bakalkin G (2012) Repeated ­moderate-dose ethanol bouts impair cognitive function in Wistar rats. Addict Biol 17:132–140PubMedCrossRefGoogle Scholar
  223. 223.
    Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89(4):1379–1412PubMedCrossRefGoogle Scholar
  224. 224.
    Cosgrove KP (2010) Imaging receptor changes in human drug abusers. Curr Top Behav Neurosci 3:199–217PubMedCrossRefGoogle Scholar
  225. 225.
    Roy S, Wang JH, Balasubramanian S, Sumandeep, Charboneau R, Barke R, Loh HH (2001) Role of hypothalamic-pituitary axis in morphine-induced alteration in thymic cell distribution using mu-opioid receptor knockout mice. J Neuroimmunol 116(2):147–155PubMedCrossRefGoogle Scholar
  226. 226.
    Sanchis-Segura C, Grisel JE, Olive MF, Ghozland S, Koob GF, Roberts AJ, Cowen MS (2005) Role of the endogenous opioid system on the neuropsychopharmacological effects of ethanol: new insights about an old question. Alcohol Clin Exp Res 29(8):1522–1527PubMedCrossRefGoogle Scholar
  227. 227.
    Gianoulakis C (2009) Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem 9(11):999–1PubMedCrossRefGoogle Scholar
  228. 228.
    Gianoulakis C (2001) Influence of the endogenous opioid system on high alcohol consumption and genetic predisposition to alcoholism. J Psychiatry Neurosci 26(4):304–318PubMedGoogle Scholar
  229. 229.
    Chang SL, Patel NA, Romero AA, Thompson J, Zadina JE (1996) FOS expression induced by interleukin-1 or acute morphine treatment in the rat hypothalamus is attenuated by chronic exposure to morphine. Brain Res 736(1–2):227–236PubMedCrossRefGoogle Scholar
  230. 230.
    Chang SL, Kenigs V, Moldow RL, Zadina JE (1995) Chronic treatment with morphine and ethanol, but not cocaine, attenuates IL-1 beta activation of FOS expression in the rat hypothalamic paraventricular nucleus. Adv Exp Med Biol 373:201–208PubMedCrossRefGoogle Scholar
  231. 231.
    Allolio B, Schulte HM, Deuss U, Kallabis D, Hamel E, Winkelman W (1987) Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by human corticotropin-releasing hormone. Acta Endocrinol 114(4):509–514PubMedGoogle Scholar
  232. 232.
    Pruett SB, Fan R, Cheng B, Glover M, Tan W, Deng X (2010) Innate immunity and inflammation in sepsis: mechanisms of suppressed host resistance in mice treated with ethanol in a binge-drinking model. Toxicol Sci 117(2):314–324PubMedCrossRefGoogle Scholar
  233. 233.
    Bosshart H (2010) Morphine-mediated suppression of phagocytosis. Int Immunopharmacol 10(2):264–265PubMedCrossRefGoogle Scholar
  234. 234.
    Pruett SB, Fan R, Zheng Q (2003) Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int Immunopharmacol 3(1):1–16PubMedCrossRefGoogle Scholar
  235. 235.
    Sharp FR, Liu J, Nickolenko J, Bontempi B (1995) NMDA and D1 receptors mediate induction of c-fos and junB genes in striatum following morphine administration: implications for studies of memory. Behav Brain Res 66(1–2):225–230PubMedCrossRefGoogle Scholar
  236. 236.
    Bontempi B, Sharp FR (1997) Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 17(21):8596–8612PubMedGoogle Scholar
  237. 237.
    Garcia MM, Anderson AT, Edwards R, Harlan RE (2003) Morphine induction of c-fos expression in the rat forebrain through glutamatergic mechanisms: role of non-n-methyl-d-aspartate receptors. Neuroscience 119(3):787–794PubMedCrossRefGoogle Scholar
  238. 238.
    Frankel PS, Harlan RE, Garcia MM (1999) Chronic administration of morphine alters immediate-early gene expression in the forebrain of post-dependent rats. Brain Res 835(2):204–212PubMedCrossRefGoogle Scholar
  239. 239.
    Valenzuela CF (1997) Alcohol and neurotransmitter interactions. Alcohol Health Res World 21(2):144–148PubMedGoogle Scholar
  240. 240.
    He L, Kim JA, Whistler JL (2009) Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant mu-opioid receptor. FASEB J 23(12):4327–4334PubMedCrossRefGoogle Scholar
  241. 241.
    Lovallo WR (2006) The hypothalamic-pituitary-adrenocortical axis in addiction. Int J Psychophysiol 59(3):193–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of NeuroImmune PharmacologySeton Hall UniversitySouth OrangeUSA
  2. 2.Department of Biological SciencesSeton Hall UniversitySouth OrangeUSA
  3. 3.Department of Histology and Embryology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations