Advertisement

Quantitation of Proteins in Milk and Milk Products

  • D. DupontEmail author
  • T. Croguennec
  • A. Brodkorb
  • R. Kouaouci
Chapter

Abstract

Compared with other food products, milk is a fairly simple fluid which has been studied thoroughly since the beginning of the nineteenth century. Its composition and the main characteristics of its various constituents are now well known. This is especially true for the amino acid sequences of its proteins. No other food product today has its proteins so well characterised. This makes protein analysis in raw milk fairly straightforward.

Keywords

Nuclear Magnetic Resonance Circular Dichroism Dairy Product Milk Sample Whey Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AOAC

Association of Official Analytical Chemists

Arg

Arginine

Asp

Asparagine

BSA

Bovine serum albumin

CD

Circular dichroism

CE

Capillary electrophoresis

CID

Collision-induced dissociation

CMP

Caseino-macropeptide

CN

Casein

COSY

Humonuclear shift correlation spectrometry

CZE

Capillary zone electrophoresis

dc

Derivative of the concentration

DE

Delayed extraction

DEAE-TSK

Diethylaminoethyl-TSK

DNA

Deoxyribonucleic acid

dr

Derivative of the response

DTT

Dithiothreitol

ELISA

Enzyme-linked immunosorbent assay

ES

Electrospray

ESI

Electrospray ionisation

FIA

Flow injection analysis

FPLC

Fast protein liquid chromatography

FTIR

Fourier transform infrared

Glu

Glutamine

HA

Hydroxyapatite

HI-HPLC

Hydrophobic interaction HPLC

His

Histidine

HPLC

High-performance liquid chromatography

IDF

International Dairy Federation

IEF

Isoelectric focusing

Ig

Immunoglobulin

IR

Infrared

ISO

International Standardization Organization

KN

Kjeldahl nitrogen

LC-MS

Liquid chromatography mass spectrometry

Lys

Lysine

MAD

Multiple anomalous dispersions

MALDI

Matrix-assisted laser desorption ionisation

Mid-IR

Mid-infrared

MIR

Mid-infrared

MLR

Multiple linear regression

MS

Mass spectrometry

NCN

Non-casein nitrogen

NIR

Near-infrared

NMR

Nuclear magnetic resonance

NOE

The nuclear Overhauser effect

NPN

Non-protein nitrogen

PAGE

Polyacrylamide gel electrophoresis

PLG

Plasminogen

PLM

Plasmin

PLS

Partial least squares

PSD

Post-source decay

PTH

Phenylthiohydantoin

R

Reproducibility

R2

Correlation coefficient

RP-HPLC

Reversed-phase HPLC

SD

Standard deviation

SDS

Sodium dodecylsulphate

SEC

Standard error calibration

SEP

Standard error prediction

Ser

Serine

SRID

Single radial immunodiffusion

TCA

Trichloroacetic acid

TFA

Trifluoroacetic acid

Thr

Threonine

TN

Total nitrogen

TOCSY

Total correlation spectroscopy

TOF

Time-of-flight

TP

True protein

UHT

Ultrahigh temperature

UV

Ultraviolet

WPC

Whey protein concentrate

WPs

Whey proteins

α-La

α-Lactalbumin

β-Lg

β-Lactoglobulin

λ

Wavelength

References

  1. Addeo, F., Garro, G., Intorcia, N., Pellegrino, L., Resmini, P. and Chianese, L. (1995a). Gel electrophoresis and immunoblotting for the detection of casein proteolysis in cheese. J. Dairy Res. 62, 297–309.Google Scholar
  2. Addeo, F., Nicolai, M.A., Chianese, L., Moio, L., Musso, S.S., Bocca, A. and Del Giovine, L. (1995b). A control method to detect bovine milk in ewe and water buffalo cheese using immunoblotting. Milchwissenschaft. 50, 83–85.Google Scholar
  3. Addeo, F., Pizzano, R., Nicolai, M.A., Caira, S. and Chianese, L. (2009). Fast isoelectric focusing and antipeptide antibodies for detecting bovine casein in adulterated water buffalo milk and derived Mozzarella cheese. J. Agric. Food Chem. 57, 10063–10066.Google Scholar
  4. Adler, A.J., Greenfield, N.J. and Fasman, G.D. (1973). Circular dichroism and optical rotatory dispersion of proteins and polypeptides, in, Methods in Enzymology, Vol. 27, C.H.W. Hirs and S.N. Timasheff, eds., Academic Press, New York. pp. 675–735.Google Scholar
  5. Agnet, Y. (1998). Fourier transform infrared spectroscopy: a new concept for milk and milk product analysis, Bulletin 332, International Dairy Federation, Brussels. pp. 58–68.Google Scholar
  6. Al Mashikhi, S.A. and Nakai, S. (1987). Isolation of bovine immunoglobulins and lactoferrin from whey proteins by gel filtration techniques. J. Dairy Sci. 70, 2486–2492.Google Scholar
  7. Alexandrescu, A.T., Evans, P.A., Pitkcathly, M., Baum, J. and Dobson, C.M. (1993). Structure and dynamics of the acid denatured molten globule state of alpha lactalbumin: a two dimensional NMR study. Biochemistry. 32, 1707–1718.Google Scholar
  8. Alli, I., Okoniewska, M., Gibbs, B.F. and Konishi, Y. (1998). Identification of peptides in Cheddar cheese by electrospray ionization mass spectrometry. Int. Dairy J. 8, 643–649.Google Scholar
  9. Andersson, H., Andren, A. and Björck, L. (1989). An enzyme linked immunosorbent assay for detection of chymosin in dairy products. J. Dairy Sci. 72, 3129–3133.Google Scholar
  10. Andrews, A.L., Atkinson, D., Evans, M.T.A., Finer, E.G., Green, J.P., Phillips, M.C. and Robertson, R.N. (1979). The conformation and aggregation of bovine β-casein A. I. Molecular aspects of thermal aggregation. Biopolymers. 18, 1105–1121.Google Scholar
  11. Andrews, A.T. (1986). Polyacrylamide gel electrophoresis using multiphasic buffer systems, in, Electrophoresis. Theory, Techniques, and Biochemical and Clinical Applications, 2nd edn., A.R. Peacocke and W.F. Harrington eds., Clarendon Press, Oxford. pp. 79–92.Google Scholar
  12. Andrews, A.T., Taylor, M.D. and Owen, A.J. (1985). Rapid analysis of bovine milk proteins by HPLC. J. Chromatogr. 348, 177–185.Google Scholar
  13. Anema, S. G. (2009). The use of “lab-on-a-chip” microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. Int. Dairy J. 19, 198–204.Google Scholar
  14. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1995). Indirect ELISA for detection of cows’ milk in ewes’ and goats’ milks using a monoclonal antibody against bovine β-casein. J. Dairy Res. 62, 655–659.Google Scholar
  15. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1996). Immunostick ELISA for detection of cow’s milk in ewe’s milk and cheese using a monoclonal antibody against bovine β-casein. J. Food Prot. 59, 436–437.Google Scholar
  16. Anguita, G., Martin, R., Garcia, T., Morales, P., Haza, A.I., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1997). A competitive enzyme linked immunosorbent assay for detection of bovine milk in ovine and caprine milk and cheese using a monoclonal antibody against bovine β-casein. J. Food Prot. 60, 65–66.Google Scholar
  17. AOAC (1995) Official Methods of Analysis, 16th edn, Association of Official Analytical Chemists, Washington, DC.Google Scholar
  18. Aoki, T., Yamada, N., Tomito I., Kako, Y. and Imamura, T. (1987). Caseins are cross linked through their ester phosphate groups by colloidal calcium phosphate. Biochim. Biophys. Acta. 911, 238–243.Google Scholar
  19. Arena, S., Renzone, G., Novi, G., Paffetti, A., Bernardini, G., Santucci, A. and Scaloni, A. (2010). Modern proteomic methodologies for the characterization of lactosylation protein targets in milk. Proteomics. 10, 3414–3434.Google Scholar
  20. Arnott, D., Shabanowitz, J. and Hunt, D.F. (1993). Mass spectrometry of proteins and peptides: sensitive and accurate mass measurement and sequence analysis. Clin. Chem. 39, 2005–2010.Google Scholar
  21. Avrameas, S. and Ternynck, T. (1969). The cross linking of proteins with glutaraldehyde and the preparation of immunosorbents. Immunochemistry. 6, 53–66.Google Scholar
  22. Baer, R.J., Frank, J.F. and Loewenstein, M. (1983). Compositional analysis of non fat dry milk by using near infrared diffuse reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int. 66, 858–863.Google Scholar
  23. Ballabriga, A. (1982). Immunity of the infantile gastrointestinal tract and implication in modern feeding. Acta Pediatr Jap. 24, 235–239.Google Scholar
  24. Barbano, D.M. and Clark, J.L. (1989). Infrared milk analysis. Challenge for the future. J. Dairy Sci. 72, 1627–1636.Google Scholar
  25. Barbano, D.M. and Delavalle, M.E. (1987). Rapid method for determination of milk casein content by infrared analysis. J. Dairy Sci. 70, 1524–1528.Google Scholar
  26. Barbano, D.M. and Lynch, J.M. (1991). Direct and indirect determination of true protein content of milk by Kjeldahl analysis: collaborative study. J. Assoc. Off. Anal. Chem. Int. 74, 281–288.Google Scholar
  27. Barbano, D.M., Clark, J.L., Dunham, C.E. and Fleming, J.R. (1990). Kjeldahl method for determination of total nitrogen content of milk: collaborative study. J. Assoc. Off. Anal. Chem. Int. 73, 849–859.Google Scholar
  28. Beavis, R.C. and Chait, B.T. (1989). Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun. Mass Spectrom. 3, 233–237.Google Scholar
  29. Beer, M., Krause, I., Stapf, M., Schwarzer, C. and Klostermeyer, H. (1996). Indirect competitive ELISA for the detection of native and heat denatured bovine β-lactoglobulin in ewes’ and goats’ milk cheese. Z. Lebensm. Unters. Forsch. 203, 21–26.Google Scholar
  30. Beyer, H.J. and Kessler, H.G. (1989). Bestimmung des thermischen Denaturierungverhaltens von Molkenproteinen mittels HPLC. GIT Suppl. Lebensm. 2, 22–26.Google Scholar
  31. Biggs, D.A., Johnsson, G. and Sjaunja, L.O. (1987). Analysis of fat, protein, lactose and total solids by infrared absorption, Bulletin 208, International Dairy Federation, Brussels. pp. 21–30.Google Scholar
  32. Birkeland, S.E., Stepaniak, L. and Sorhaug, T. (1985). Quantitative studies of heat stable proteinase from Pseudomonas fluorescens P1 by the enzyme linked immunosorbent assay. Appl. Environ. Microbiol. 49, 382–387.Google Scholar
  33. Bitri, L., Rolland, M.P. and Besançon, P. (1993). Immunological detection of bovine caseinomacropeptide in ovine and caprine dairy products. Milchwissenschaft. 48, 367–371.Google Scholar
  34. Bobe, G., Beitz, D.C., Freeman, A.E. and Lindberg, G.L. (1998a). Separation and quantification of bovine milk proteins by reversed phase high performance liquid chromatography. J. Agric. Food Chem. 46, 458–463.Google Scholar
  35. Bobe, G., Beitz, D.C., Freeman, A.E. and Lindberg, G.L. (1998b). Sample preparation affects separation of whey proteins by reversed phase high performance liquid chromatography. J. Agric. Food Chem. 46, 1321–1325.Google Scholar
  36. Boudjellab, N., Rolet Repecaud, O. and Collin, J.C. (1994). Detection of residual chymosin in cheese by an enzyme linked immunosorbent assay. J. Dairy Res. 61, 101–109.Google Scholar
  37. Boudjellab, N., Grosclaude, J., Zhao, X. and Collin, J.C. (1998). Development of an inhibition enzyme linked immunosorbent assay for the detection of residual porcine pepsin in a soft cheese sample. J. Agric. Food Chem. 46, 4030–4033.Google Scholar
  38. Bovenhuis, H. and Verstege, A.J.M. (1989). Improved method for phenotyping milk protein variants by isoelectric focusing using PhastSystem. Neth. Milk Dairy J. 43, 447–451.Google Scholar
  39. Bradstreet, R.B. (1965). The Kjeldahl Method for Organic Nitrogen, Academic Press, New York.Google Scholar
  40. Brownlow, S., Cabral, M.J.H., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C.T. and Sawyer, L. (1997). Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure 5, 481–495.Google Scholar
  41. Burlingame, A.L., Boyd, R.K. and Gaskell, S.J. (1998). Mass spectrometry. Anal. Chem. 70, 647R–716R.Google Scholar
  42. Calabrese, M.G., Mamone, G., Caira, S., Ferranti, P. and Addeo F. (2009). Quantitation of lysinoalanine in dairy products by liquid chromatography-mass spectrometry with selective ion monitoring. Food chem. 116, 799–805.Google Scholar
  43. Campanella, L., Martini, E., Pintore, M. and Tomassetti, M. (2009). Determination of lactoferrin and immunoglobulin G in animal milks by new immunosensors. Sensors 9, 2202–2221.Google Scholar
  44. Carles, C. (1986). Fractionation of bovine caseins by reversed phase high performance chromatography: identification of a genetic variant. J. Dairy Res. 53, 35–41.Google Scholar
  45. Carter, R.M., Jr. and Sweet, R.M. (1997). Macromolecular crystallography. Part A. in, Methods in Enzymology, Academic Press, San Diego, USA. 276, pp. 659.Google Scholar
  46. Catinella, S., Traldi, P., Pinelli, C. and Dallaturca, E. (1996a). Matrix assisted laser desorption/ionization mass spectrometry: a valid analytical tool in the dairy industry. Rapid Commun. Mass. Spectrom. 10, 1123–1127.Google Scholar
  47. Catinella, S., Traldi, P., Pinelli C., Dallaturca, E. and Marsilio, R. (1996b). Matrix assisted laser desorption/ionization mass spectrometry in milk science. Rapid Commun. Mass. Spectrom. 10, 1629–1637.Google Scholar
  48. Chang Sam, K.C. (1998). Protein Analysis in Food Analysis, 2nd edn, S.S. Nielsen ed., Aspen Publishers, Gaithersburg, MD. pp. 237–249.Google Scholar
  49. Chapot Chartier, M.P., Deniel, C., Rousseau, M., Vassal, L. and Gripon, J.C. (1994). Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J. 4, 251–269.Google Scholar
  50. Chaurand, P., Luetzenkirchen, F. and Spengler, B. (1999). Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI Post Source decay time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 91–103.Google Scholar
  51. Chianese, L., Garro, G., Ferranti, P., Malorni, A., Addeo, F., Rabaco, A. and Pons, P.M. (1995). Discrete phosphorylation generates the electrophoretic heterogeneity of ovine β-casein. J. Dairy Res. 62, 89–100.Google Scholar
  52. Clements, R.S., Wyatt, D.M., Symons, M.H. and Ewings, K.N. (1990). Inhibition enzyme linked immunosorbent assay for detection of Pseudomonas fluorescens proteases in ultrahigh temperature treated milk. Appl. Environ. Microbiol. 56, 1188–1190.Google Scholar
  53. Clore, G.M. and Gronenborn, A.M. (1991). Structures of larger proteins in solution: three and four dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399.Google Scholar
  54. Clore, G.M. and Gronenborn, A.M. (1998). Determining the structure of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34.Google Scholar
  55. Collard Bovy, C., Marchal, E., Humbert, G., Linden, G., Montagne, P., El Bari, N., Duheille, J. and Varcin, P. (1991). Microparticle enhanced nephelometric immunoassay. 1. Measurement of αs-casein and κ-casein. J. Dairy Sci. 74, 3695–3701.Google Scholar
  56. Costa, N., Ravasco, F., Miranda, R., Duthoit, M. and Roseiro, L.B. (2008). Evaluation of a commercial ELISA method for the quantitative detection of goat and cow milk in ewe milk and cheese. Small Rum. Res. 79, 73–79.Google Scholar
  57. Creamer, L.K. (1991). Electrophoresis of cheese, Bulletin 261, International Dairy Federation, Brussels. pp. 14–28.Google Scholar
  58. Creamer, L.K. and Richardson, T. (1984). Anomalous behaviour of bovine αs1- and β-caseins on gel electrophoresis in sodium dodecyl sulfate buffer. Arch. Biochem. Biophys. 234, 476–486.Google Scholar
  59. Croguennec, T., Bouhallab, S., Mollé, D., O’Kennedy, B.T. and Mehra, R. (2003). Stable monomeric intermediate with exposed Cys-119 is formed during heat denaturation of β-lactoglobulin. Biochem. Biophys. Res. Comm. 301, 465–471.Google Scholar
  60. Croguennec, T., O’Kennedy, B.T. and Mehra, R. (2004). Heat-induced denaturation/aggregation of beta-lactoglobulin A and B: kinetics of the first intermediates formed. Int. Dairy J. 14, 399–409.Google Scholar
  61. Curley, D.M., Kumosinski, T.F., Unruh, J.J. and Farrell, H.M., Jr. (1998). Changes in the secondary structure of bovine casein by Fourier transform infrared spectroscopy: effects of calcium and temperature. J. Dairy Sci. 81, 3154–3162.Google Scholar
  62. Czerwenka, C., Muller, L. and Lindner, W. (2010). Detection of adulteration of water buffalo milk and Mozzarella with cow’s milk by liquid chromatography-mass spectrometry analysis of β-lactoglobulin variants. Food Chem. 122, 901–908.Google Scholar
  63. Dalgleish, D.G. (1985). Glycosylated κ-casein and the size of bovine casein micelles. Analysis of the different forms of the κ-casein. Biochim. Biophys. Acta. 830, 213–215.Google Scholar
  64. de Vilder, J. and Bossuyt, R. (1983). Practical experiences with an InfraAlyzer-400 in determining the water, protein and fat content of milk powder. Milchwissenschaft. 37, 65–69.Google Scholar
  65. Diaz Carillo, E., Munoz Serrano, A., Alonso Moraga, A. and Serradilla Manrique, J.M. (1993). Near infrared calibrations for goat’s milk components: protein, total casein, αs, β, and κ-caseins, fat and lactose. J. Near Infrared Spectrosc. 1, 141–146.Google Scholar
  66. Dimenna, G.P. and Segall, H.J. (1981). High performance gel permeation of bovine skim milk proteins. J. Liq. Chromatogr. 4. 639–649.Google Scholar
  67. Domon, B. and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212–217.Google Scholar
  68. Dong, C. and Ng Kwai Hang, K.F. (1998). Characterization of a non electrophoretic genetic variant of β-casein by peptide mapping and mass spectrometric analysis. Int. Dairy J. 8, 967–972.Google Scholar
  69. Dong, Y. (1999). Capillary electrophoresis in food analysis. Trends Food Sci. Technol. 10, 87–93.Google Scholar
  70. Dongré, A.R., Eng, J.K. and Yates, J.R., III. (1997). Emerging tandem mass spectrometry techniques for the rapid identification of proteins. Trends Biotechnol. 15, 418–425.Google Scholar
  71. Dupont, D. and Grappin, R. (1998). ELISA for differential quantitation of plasmin and plasminogen in cheese. J. Dairy Res. 65, 643–651.Google Scholar
  72. Dupont, D., Bailly, C., Grosclaude, J. and Collin, J.C. (1997). Differential titration of plasmin and plasminogen in milk using sandwich ELISA with monoclonal antibodies. J. Dairy Res. 64, 77–86.Google Scholar
  73. Dupont, D., Remond, B. and Collin, J.C. (1998). ELISA determination of plasmin and plasminogen in milk of individual cows managed without the dry period. Milchwissenschaft, 53, 66–69.Google Scholar
  74. Dupont, D., Rolet-Répécaud, O. and Muller-Renaud, S. (2004). Determination of the heat-treatment undergone by milk by following the denaturation of α-lactalbumin with a biosensor. J. Agric. Food Chem. 52, 677–681.Google Scholar
  75. Dupont, D., Arnould, C., Rolet-Repecaud, O., Duboz, G., Faurie, F., Martin, B. and Beuvier, E. (2006). Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. Int. Dairy J. 16, 1081–1087.Google Scholar
  76. Dupont D. and Muller-Renaud S. 2006. Quantification of proteins in dairy products using an optical biosensor. J. AOAC Int. 89, 843–848.Google Scholar
  77. Dupont D., Lugand D., Rolet-Repecaud O. and Degelaen J. 2007. An ELISA to detect proteolysis of UHT milk upon storage. J. Agric. Food Chem. 55, 6857–6862.Google Scholar
  78. Dupont, D., Boutrou, R., Menard, O., Jardin, J., Tanguy, G., Schuck, P., Haab, B.B. and Leonil, J. (2010a). Heat treatment of milk during powder manufacture increases casein resistance to simulated infant digestion. Food Dig. 1, 28–39.Google Scholar
  79. Dupont, D., Mandalari, G., Molle, D., Jardin, J., Rolet-Répécaud, O., Duboz, G., Léonil, J., Mills, E.N.C. and Mackie, A.R. (2010b). Food processing increases casein resistance to simulated infant digestion. Mol. Nutr. Food Res. 54, 1677–1689.Google Scholar
  80. Dupont, D., Johansson, A., Marchin, S., Rolet-Repecaud, O., Marchesseau, S. and Leonil, J. 2011. Topography of the casein micelle surface by SPR using a selection of specific monoclonal antibodies. J. Agric. Food Chem. Doi 10.1021/jf2024038.Google Scholar
  81. Duranti, M., Carpen, A., Iametti, S. and Pagani, S. (1991). α-Lactalbumin detection in heat treated milks by competitive ELISA. Milchwissenschaft. 46, 230–232.Google Scholar
  82. Egli, H.R. and Meyback, U. (1984). Measurements of the principal constituents of solid and liquid milk products by means of near infrared analyses, in, Challenges to Contemporary Dairy Analytical Techniques, Royal Society of Chemistry, London. pp. 103–116.Google Scholar
  83. Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Witney, R.McL. (1984). Nomenclature of proteins in cow’s milk: fifth revision. J. Dairy Sci. 67, 1599–1631.Google Scholar
  84. El-Aneed, A., Cohen, A. and Banoub, J. (2009). Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analysers. Appl. Spectroscopy Rev. 44, 210–230.Google Scholar
  85. Elfagm, A.A. and Wheelock, J.V. (1978). Heat interaction between α-lactalbumin, β-lactoglobulin and casein in bovine milk. J. Dairy Sci. 61, 159–163.Google Scholar
  86. Engvall, E. and Perlmann, P. (1971). Enzyme linked immunosorbent assay (ELISA) Quantitation assay to immunoglobulin G. Immunochemistry 8, 871–874.Google Scholar
  87. Erhardt, G. (1993) Allele frequencies of milk proteins in German cattle breeds and demonstration of αs2-casein variants by isoelectric focusing. Archiv. Tierzucht. Dummerstorf. 36, 145–152.Google Scholar
  88. Farrell, H.M., Jr, Wickham, E.D., Unruh, J.J., Qi, P.X. and Hoagland, P.D. (2001). Secondary structural studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocoll. 15, 341–354.Google Scholar
  89. Fee, C.J. and Chand, A. (2006). Capture of lactoferrin and lactoperoxidase from raw whole milk by cation exchange chromatography. Sep. Purif. Technol. 48, 143–149.Google Scholar
  90. Feinberg, M., Dupont, D., Efstathiou, T., Louâpre, V. and Guyonnet, J.-P. (2006). Evaluation of tracers for the authentication of thermal treatments of milks. Food Chem. 98, 188–194Google Scholar
  91. Feng, R., Konishi, Y. and Bell, A.W. (1991). High accuracy molecular weight determination and variation characterization of proteins up to 80 ku by ionspray mass spectrometry. J. Am. Soc. Mass Spectrom. 2, 387–401.Google Scholar
  92. Ferranti, P., Itolli, E., Barone, F., Malorni, A., Garro, G., Laezza, P., Chianese, L., Migliaccio, F., Stingo, V. and Addeo, F. (1997). Combined high resolution chromatographic techniques (FPLC and HPLC) and mass spectrometry based identification of peptides and proteins in Grana Padano cheese. Lait 77, 683–697.Google Scholar
  93. Ferranti, P., Malorni, A. Nitti, G., Laezza, P., Pizzano, R., Chianese, L. and Addeo, F. (1995). Primary structure of ovine αs1-caseins: localization of phosphorylation sites and characterization of genetic variants A, C and D. J. Dairy Res. 62, 281–296.Google Scholar
  94. Fong, B.Y., Norris, C.S. and MacGibbon, A.K.H. (2007). Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 17, 275–288.Google Scholar
  95. Fong, B.Y., Norris, C.S. and Palmano, K.P. (2008). Fractionation of bovine whey proteins and characterisation by proteomic techniques. Int. Dairy J. 18, 23–46.Google Scholar
  96. Frank, J.F. and Birth, G.S. (1982). Application of near infrared reflectance spectroscopy to cheese analysis. J. Dairy Sci. 65, 1110–1116.Google Scholar
  97. Frankhuizen, R. and van der Veen, N.G. (1985). Determination of major and minor constituents in milk powder and cheese by near infrared reflectance spectroscopy. Neth. Milk Dairy J. 39, 191–207.Google Scholar
  98. Fukushima, Y., Kawata, Y., Onda, T. and Kitagawa, M. (1997). Consumption of cow milk and egg by lactating women and the presence of β-lactoglobulin and ovalbumin in breast milk. Am. J. Clin. Nutr. 65, 30–35.Google Scholar
  99. Gagnaire, V., Mollé, D., Sorhaug, T. and Léonil, J. (1999). Peptidases of dairy propionic acid bacteria. Lait 79, 43–57.Google Scholar
  100. Gagnaire, V., Jardin, J., Jan, G. and Lortal, S. (2009). Proteomics of milk and bacteria used in fermented dairy products: from qualitative to quantitative advances. J. Dairy Sci. 92, 811–825.Google Scholar
  101. Garrett, D.S., Seok, Y.J., Liao, D.I., Peterkofsky, A., Gronenbo, A.M. and Clore, G.M. (1997). Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system by multidimensional NMR. Biochemistry 36, 2517–2530.Google Scholar
  102. Gaudin, J.C., Rabesona, H., Choiset, Y., Yeretssian, G., Chobert, J.M., Sakanyan, V., Drouet, M. and Haertle, T. (2008). Assessment of the immunoglobulin E-mediated immune response to milk-specific proteins in allergic patients using microarrays. Clin. Exp. Allergy. 38, 686–693.Google Scholar
  103. Giangiacomo, R. and Nzabonimpa, R. (1994). Approach to near infrared spectroscopy, Bulletin 298, International Dairy Federation, Brussels. pp. 37–42.Google Scholar
  104. Gonzalez de Llano, D., Polo, C. and Ramos, M. (1990). Update on HPLC and FPLC analysis of nitrogen compounds in dairy products. Lait 70, 255–277.Google Scholar
  105. Gonzalez, I., Martin, R., Garcia, T., Morales, P., Sanz, B. and Hernandez, P. (1993). A sandwich enzyme linked immunosorbent assay (ELISA) for detection of Pseudomonas fluorescens and related psychrotrophic bacteria in refrigerated milk. J. Appl. Bacteriol. 74, 394–401.Google Scholar
  106. Gonzalez, I., Martin, R., Garcia, T., Morales, P., Sanz, B. and Hernandez, P. (1994). Polyclonal antibodies against live cells of Pseudomonas fluorescens for the detection of psychrotrophic bacteria in milk using a double antibody sandwich enzyme-linked immunosorbent assay. J. Dairy Sci. 77, 3552–3557.Google Scholar
  107. Gorg, A., Boguth, G., Obermaier, C., Porsch, A. and Weiss, W. (1995). Two dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.Google Scholar
  108. Goulden, J.D.S. (1957). Diffuse reflexion, spectra of dairy products in the near infrared region. J. Dairy Res. 24, 242–251.Google Scholar
  109. Goulden, J.D.S. (1964). Analysis of milk by infrared absorption. J Dairy Res. 31, 273–284.Google Scholar
  110. Grappin, R. and Jeunet, R. (1979). Methode de routine pour le dosage de la matiere grasse et des proteines du lait de chèvre. Lait 59, 345–360.Google Scholar
  111. Grappin, R., Jeunet. R. and Le Dore, A. (1979). Determination of the protein content of cows’ and goats’ milk by dye binding and infrared methods. J Dairy Sci. 62 (Suppl 1), 38 (abstr.).Google Scholar
  112. Grappin, R., Rank, T.C. and Olson, N.F. (1985). Primary proteolysis of cheese proteins during ripening. A review. J. Dairy Sci. 68, 531–540.Google Scholar
  113. Greenfield, N.J. (1996). Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235, 1–10.Google Scholar
  114. Groen, A.F., van der Vegt, R., van Boekel, M.A.J.S., de Row, O.L.A.D.M. and Vos, H. (1994). Case study on individual animal variation in milk protein composition as estimated by high pressure liquid chromatography. Neth. Milk Dairy J. 48, 201–212.Google Scholar
  115. Guillou, H., Miranda. G. and Pelissier, J.P. (1987). Analyse quantitative des caseines dans le lait de vache par chromatographic liquide rapide d’echange d’ions (FPLC). Lait 67, 135–148.Google Scholar
  116. Gupta, B.B. (1983). Determination of native and denatured milk proteins by high performance size exclusion chromatography. J. Chromatogr. 282, 463–475.Google Scholar
  117. Gutierrez, R., Gonzalez, I., Garcia, T., Carrera, E., Sanz, B., Hernandez, P.E. and Martin, R. (1997). Monoclonal antibodies and an indirect ELISA for detection of psychrotrophic bacteria in refrigerated milk. J. Food Prot. 60, 64–66.Google Scholar
  118. Haga, M., Yamauchi, K. and Aoyagi, S. (1983). Conformation and some properties of bovine αs2 group casein. Agric. Biol. Chem. 47, 1467–1471.Google Scholar
  119. Haque, Z.U. and Pruett, S.B. (1993). Development of an enzyme linked immunoassay for β-lactoglobulin in dairy products. Cultured Dairy Products J. 28, 23–24.Google Scholar
  120. Hayes, M.C., Stanton, C., Slattery H., O’Sullivan O., Hill, C., Fitzgerald, G.F. and Ross, R.P. (2007). Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 73, 4658–4667.Google Scholar
  121. Haza, A.I., Morales, P., Martin, R., Garcia, T., Anguita, G., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1996). Development of monoclonal antibodies against caprine αs2-casein and their potential for detecting the substitution of ovine milk by caprine milk by an indirect ELISA. J. Agric. Food Chem. 44, 1756–1761.Google Scholar
  122. Haza, A.I., Morales, P., Martin, R., Garcia, T., Anguita, G., Gonzalez, I., Sanz, B. and Hernandez, P.E. (1997). Use of a monoclonal antibody and two enzyme linked immunosorbent assay formats for detection and quantification of the substitution of caprine milk for ovine milk. J. Food Prot. 60, 973–977.Google Scholar
  123. Hewavitharana, A.K. and van Brakel, B. (1997). Fourier transform infrared spectrometric method for the rapid determination of casein in raw milk. Analyst 122, 701–704.Google Scholar
  124. Hewedy, M.M. and Smith, C.J. (1990). Modified immunoassay for the detection of soy milk in pasteurized skimmed bovine milk. Food Hydrocoll. 3, 485–490.Google Scholar
  125. Hiesberger, J. and Brandl, E. (1997). Erprobung eines kommerziell erhältlichen für den Sojanachweis in Fleisch bestimmten ELISA Verfahrens auf seine Anwendbarkeit für Milch und Tofu Topfen Gemische. Ernaehrung 21, 314–317.Google Scholar
  126. Hoagland, P.D., Unruh, J.J., Wickham, E.D. and Farrell, H.M., Jr. (2001). Secondary structure of αs1-casein: theoretical and experimental approaches. J. Dairy Sci. 84, 1944–1949.Google Scholar
  127. Holland, J.W., Deeth, H.C. and Alewood, P.F. (2004). Proteomic analysis of k-casein microheterogeneity. Proteomics 4, 743–752.Google Scholar
  128. Holland, J.W., Gupta, R., Deeth, H.C. and Alewwod, P.F. (2011). Proteomic analysis of temperature-dependent changes in stored UHT milk. J. Agric. Food Chem. 59, 1837–1846.Google Scholar
  129. Hollar, C.M., Law, A.J.R., Dalgleish, D.G., Medrano, J.F. and Brown, R.J. (1991). Separation of β-casein A1, A2 and B using cation exchange fast protein liquid chromatography. J. Dairy Sci. 74, 3308–3313.Google Scholar
  130. Holt, C., McPhail, D., Nevison, I., Nylander, T., Otte, J., Ipsen, R.H., Bauer, R., Øgendal, L., Olieman, K., de Kruif, K.G., Léonil, I., Mollé, D., Henry, G., Maubois, J.L., Pérez, M.D., Puyol, P., Calvo, M., Bury, S.M., Kontopidis, G., McNae, I., Sawyer, L., Ragona, L., Zetta, L., Molinari, H., Klarenbeek, B., Jonkman, M.J., Moulin, J. and Chatterton, D. (1999). Apparent chemical composition of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. Int. J. Food Sci. Technol. 34, 543–556.Google Scholar
  131. Hruschka, A.W.R. (1987). Data analysis: wavelength selection methods, in, Near Infrared Technology in the Agriculture and Food Industries, Williams, P.C. and Norris, K.H. eds., American Association of Cereal Chemists, St. Paul, MN. pp. 35–55.Google Scholar
  132. Humbert, G., Collard, Bovy, C., Marchal, E., Linden, G., Montagne, P., Duheille, J. and Varcin, P. (1991). Microparticle enhanced nephelometric immunoassay. Application to milk and dairy products. J. Dairy Sci. 74, 3709–3715.Google Scholar
  133. Humphrey, R. (1984). Whey proteins, in, Handbook of HPLC for the Separation of Amino Acids, Peptides and Proteins, Vol. 2, W.S. Hancock, ed., CRC Press, Boca Raton, FL. pp. 471–478.Google Scholar
  134. Humphrey, R.S. and Newsome, L.J. (1984). High performance ion exchange chromatography of the major bovine milk proteins. NZ J. Dairy Sci. Technol. 19, 197–204.Google Scholar
  135. Hurley, I.P., Coleman, R.C., Ireland, H.E. and Williams, J.H.H. (2006). Use of sandwich IgG ELISA for the detection and quantification of adulteration of milk and soft cheese. Int. Dairy J. 16, 805–812.Google Scholar
  136. IDF (1964) International Standard 29, Determination of the casein content of milk, International Dairy Federation, Brussels.Google Scholar
  137. IDF (1987) Monograph on rapid indirect methods for measurement of the major components of milk, Bulletin 2018, International Dairy Federation, Brussels.Google Scholar
  138. IDF (1993) Provisional Standard 20B, Milk, Determination of nitrogen content (Kjeldahl method), International Dairy Federation, Brussels.Google Scholar
  139. IDF (1996) Whole milk: determination of milk fat, protein and lactose content. Guide for the operation of Mid Infrared instruments. Standard 141 B, International Dairy Federation, Brussels.Google Scholar
  140. IDF (1999) Composantes azotées dans le lait et les produits laitiers. E Doc 705, International Dairy Federation, Brussels.Google Scholar
  141. Indyk, H.E. (2009). Development and application of an optical biosensor immunoassay for α-lactalbumin in bovine milk. Int. Dairy J. 19, 36–42.Google Scholar
  142. Indyk, H.E. and Filonzi, E.L. (2003). Determination of immunoglobulin G in bovine colostrum and milk by direct biosensor SPR-immunoassay. J. AOAC Int. 86, 386–393.Google Scholar
  143. Jeanson, S., Dupont, D., Grattard, N. and Rolet-Repecaud, O. (1999). Characterization of the heat treatment undergone by milk using two inhibition ELISAs for quantification of native and heat denatured α-lactalbumin. J. Agric. Food Chem. 47, 2249–2254.Google Scholar
  144. Jeunet, R. and Grappin, R. (1985). Evaluation de l’Infralyser Dairy pour le dosage des principaux constituants du lait. Tech. Lait. 1003, 53–58.Google Scholar
  145. Johansson, A., Lugand, D., Rolet-Répécaud, O., Mollé, D., Delage, M.-M., Peltre, G., Marchesseau, S., Léonil, J. and Dupont, D. (2009). Epitope characterization of a supramolecular protein assembly with a collection of monoclonal antibodies: the case of casein micelle. Mol. Immunol. 46, 1058–1066.Google Scholar
  146. Jones, J.A., Wilkins, D.K., Smith, L.J. and Dobson, C.M. (1997). Characterisation of protein unfolding by NMR diffusion measurements. J. Biomol. NMR 10, 199–203.Google Scholar
  147. Kamishikiryo, Yamashita, H., Oritani, Y., Takamura, H. and Matoba, T. (1994). Protein content in milk by near infrared spectroscopy. J. Food Sci. 59, 313–315.Google Scholar
  148. Karas, M. and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 60, 2299–2301.Google Scholar
  149. Karman, A.H. and Van Boekel, M.A.J.S. (1986). Evaluation of the Kjeldahl factor for conversion of the nitrogen content of milk and milk products to protein content. Neth. Milk Dairy J. 40 315–336.Google Scholar
  150. Karman, A.H., van Boekel, M.A.J.S. and Arentsen Stasse, A.P. (1987). A simple rapid method to determine the casein content of milk by infrared spectrophotometry. Neth. Milk Dairy J. 41, 175–187.Google Scholar
  151. Kawasaki, T., Ikeda, K., Takahashi, S. and Kuboki, Y. (1986). Further study of hydroxyapatite high performance liquid chromatography using both proteins and nucleic acids and a new technique to increase chromatographic efficiency. Eur. J. Biochem. 155, 249–257.Google Scholar
  152. Kehoe, J.J., Morris, E.R. and Brodkorb, A. (2007a). The influence of bovine serum albumin on [beta]-lactoglobulin denaturation, aggregation and gelation. Food Hydrocoll. 21, 747–755.Google Scholar
  153. Kehoe, J.J., Brodkorb, A., Mollé, D., Yokoyama, E., Famelart, M.H., Bouhallab, S., Morris, E.R. and Croguennec, T. (2007b). Determination of exposed sulfhydryl groups in heated β-lactoglobulin A using IAEDANS and mass spectrometry. J. Agric. Food Chem. 55, 7107–7113.Google Scholar
  154. Kelly, S.M., Jess, T.J. and Price N.C. (2005). How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139.Google Scholar
  155. Kilshaw, P. and Cant, A.J. (1984). The passage of maternal dietary proteins into human breast milk. Int. Arch. Allergy Appl. Immunol. 75, 8–15.Google Scholar
  156. Kobayashi, T., Ohmori, T., Yanai, M., Kawanishi, G., Yoshikai, Y. and Nomoto, K. (1991). Protective effect of orally administering immune milk on endogenous infection in X irradiated mice. Agric. Biol. Chem. 55, 2265–2272.Google Scholar
  157. Köhler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.Google Scholar
  158. Kummer, A., Kitts, D.D., Li Chan, E., Losso, J.N., Skura, B.J. and Nakai, S. (1992). Quantification of bovine IgG in milk using enzyme linked immunosorbent assay. Food Agric. Immunol. 4, 93–102.Google Scholar
  159. Kumosinski, T.F. and Farrell, H.M., Jr. (1993). Determination of the global secondary structure of protein by Fourier transform infrared (FTIR) spectroscopy. Trends Food Sci. Technol. 4, 169–175.Google Scholar
  160. Kverka, M., Burianova, J., Lodinova-Zadnikova R., Kocourkova, I., Cinova, J., Tuckova, L. and Tlaskalova-Hogenova, H. (2007). Cytokine profiling in human colostrum and milk by protein array. Clin. Chem. 53, 955–962.Google Scholar
  161. Laan, H., Haverkort, R.E., De Leij, L. and Konings, W. (1996). Detection and localization of peptidases in Lactococcus lactis with monoclonal antibodies. J. Dairy Res. 63, 245–256.Google Scholar
  162. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.Google Scholar
  163. Lanher, B.S. (1996). Evaluation of Aegys M1600 Fourier transform infrared milk analyzer for analysis of fat, protein, lactose and solids nonfat: a compilation of eight independent studies. J. Assoc. Off. Anal. Chem. Int. 79, 1388–1399.Google Scholar
  164. Laporte, M.F. and Paquin, P. (1998a). Near infrared technology and dairy food products analysis: a review. Seminars Food Anal. 3, 173–190.Google Scholar
  165. Laporte, M.F. and Paquin, P. (1998b). The near infrared optic probe for monitoring rennet coagulation in cow’s milk. Int. Dairy J. 8, 659–66.Google Scholar
  166. Laporte, M.F. and Paquin, P. (1999). Near infrared analysis of fat, protein and casein in cow’s milk. J. Agric. Food. Chem. 47, 2600–2605.Google Scholar
  167. Larsen, L.B. and Petersen, T. (1995). Identification of five molecular forms of cathepsin D in bovine milk, in, Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications, K. Takahashi, ed., Plenum press, New York. pp. 279–284.Google Scholar
  168. Larsen, L.B., Benfeldt, C., Rasmussen, L.K. and Petersen, T.E. (1996). Bovine milk procathepsin D and cathepsin D: coagulation and milk protein degradation. J. Dairy Res. 63, 119–130.Google Scholar
  169. Law, A.J.R. (1993). Quantitative examination of genetic polymorphism in κ- and β-caseins by anion and cation exchange FPLC. Milchwissenschaft 48, 243–247.Google Scholar
  170. Le Magnen, C., Rainard, P., Maubois, J.L., Paraf, A. and Phan Thanh, L. (1989). Dosage de la lactoferrine bovine par les techniques immunoenzymatiques (ELISA). Lait 69, 23–32.Google Scholar
  171. Lee, S.J., Leon, I.J. and Harbers, L.H. (1997). Near infrared reflectance spectroscopy for rapid analysis of curds during Cheddar cheese making. J. Food Sci. 62, 53–56.Google Scholar
  172. Lefèvre, T. and Subirade, M. (1999). Structural and interaction properties of beta-lactoglobulin as studied by FTIR spectroscopy. Int. J. Food Sci. Technol. 34, 419–428.Google Scholar
  173. Lefier, D. (1998). Application of Fourier transform infrared spectroscopy in milk and milk product analysis. A literature survey. Bulletin 332, International Dairy Federation, Brussels, pp. 54–57.Google Scholar
  174. Lefier, D., Arnould, C., Duployer, M.H., Martin, B., Dupont, D. and Beuvier, E. (2010). Effects of two different diets on lactoferrin concentrations in bovine milk. Milchwissenschaft 65, 356–359.Google Scholar
  175. Léonil, J., Mollé, D., Gaucheron, F., Arpino, P., Guenot, P. and Maubois, J.L. (1995). Analysis of major bovine milk proteins by on line high performance liquid chromatography and electrospray ionization mass spectrometry. Lait 75, 193–210.Google Scholar
  176. Léonil, J., Mollé, D., Fauquant, J., Maubois, J.L., Pearce, R.J. and Bouhallab, S. (1997). Characterization by ionization mass spectrometry of lactosyl β-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose binding site. J. Dairy Sci. 80, 2270–2281.Google Scholar
  177. Léonil, J., Gagnaire, V., Mollé, D., Pezennec, S. and Bouhallab, S. (2000). Application of chromatography and mass spectrometry to the characterization of food proteins and derived peptides. J. Chromatogr. A 881, 1–21.Google Scholar
  178. Levieux, D. (1980). Heat denaturation of whey proteins comparative studies with physical and immunological methods. Ann. Rech. Vet. 11, 89–97.Google Scholar
  179. Levieux, D. (1991). Dosage des IgG du lait de vache par immunodiffusion radiale semi automatisée, pour la détection du colostrum, des laits de mammites ou de fin de gestation. I. Mise au point du dosage. Lait 71, 327–338.Google Scholar
  180. Levieux, D. and Oilier, A. (1999). Bovine immunoglobulin G, β-lactoglobulin, α-lactalbumin and serum albumin in colostrum and milk during the early postpartum period. J. Dairy Res. 66, 421–430.Google Scholar
  181. Levieux, D. and Venien, A. (1994). Rapid, sensitive two-site ELISA for detection of cows’ milk in goats’ or ewes’ milk using monoclonal antibodies. J. Dairy Res. 61, 91–99.Google Scholar
  182. Li Chan, E. and Kummer, A. (1997). Influence of standards and antibodies in immunochemical assays for quantitation of immunoglobulin G in bovine milk. J. Dairy Sci. 80, 1038–1046.Google Scholar
  183. Liland, K.H., Mevik, B.H., Rukke, E.O., Almoy, T., Skaugen M. and Isaksson, T. (2009). Quantitative whole spectrum analysis with MALDI-TOF MS, Part 1: Measurement optimisation. Chemometr. Intell. Lab. 96, 210–218.Google Scholar
  184. Lindeberg, J. (1996). Capillary electrophoresis in food analysis. Food Chem. 55, 73–94.Google Scholar
  185. Livney, Y.D., Verespej, E. and Dalgleish, D.G. (2003). Steric effects governing disulfide bond interchange during thermal aggregation in solutions of β-lactoglobulin B and α-lactalbumin. J. Agric. Food Chem. 51, 8098–8106.Google Scholar
  186. Lopez-Exposito, I., Gomez-Ruiz, J.A., Amigo, L. and Recio, I. (2006). Identification of antibacterial peptides from ovine as2-casein. Int. Dairy J. 16, 1072–1080.Google Scholar
  187. Losito, L., Carbonara, T., De Bari, M.D., Gobbetti, M., Palmisano, F., Rizzelo, C.G. and Zambonin, P.G. (2007). Identification of antimicrobial fractions of cheese extracts by electrospray ionisation ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. Rapid Commun. Mass Spectrom. 20, 447–455.Google Scholar
  188. Losso, J.N., Kummer, A., Li Chan, E. and Nakai, S. (1993). Development of a particle concentration fluorescence immunoassay for the quantitative determination of IgG in bovine milk. J. Agric. Food Chem. 41, 682–686.Google Scholar
  189. Loucheux Lefebvre, M.H., Auber, J.P. and Jolles, P. (1978). Prediction of the conformation of the cow and sheep κ-caseins. Biophys. J. 23, 323–336.Google Scholar
  190. Luinge, H.J., Hop, E., Lutz, T.T.G., van Hemert, J.A. and de Jong, E.A.M. (1993). Determination of fat, protein and lactose content in milk using Fourier transform infrared spectrometry. Anal. Chim. Acta 284, 419–433.Google Scholar
  191. Lynch, J.M., Barbano, D.M. and Fleming, J.R. (1998). Indirect and direct determination of the casein content of milk by Kjeldahl nitrogen analysis: collaborative study. J. Assoc. Off. Anal. Chem. Int. 81, 763–774.Google Scholar
  192. Makinen Kiljunen, S. and Palosuo, T. (1992). A sensitive enzyme linked immunosorbent assay for determination of bovine β-lactoglobulin in infant feeding formulas and in human milk. Allergy, 47, 347–52.Google Scholar
  193. Mamone, G., Caira, S., Garro, G., Nicolai, A., Ferranti, P., Picariello, G., Malorni, A., Chianese, L. and Addeo, F. (2003). Casein phosphoproteome: identification of phosphoproteins by combined mass spectrometry and two-dimensional gel electrophoresis. Electrophoresis 24, 2824–2837.Google Scholar
  194. Mamone, G., Picariello, G., Caira, S., Addeo, F. and Ferranti, P. (2009). Analysis of food proteins and peptides by mass spectrometry-based techniques. J. Chromatogr. A 1216, 7130–7142.Google Scholar
  195. Mancini, G., Carbonara, A.O. and Heremans, J.F. (1965). Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235–254.Google Scholar
  196. Manji, B., Hill, A., Kakuda, Y. and Irvine, D.M. (1985). Rapid separation of milk whey proteins by anion exchange chromatography. J. Dairy Sci. 68, 3176–3179.Google Scholar
  197. Marchal, E., Collard Bovy, C., Humbert, G., Linden, G., Montagne, P., Duheille, J. and Varcin, P. (1991). Microparticle enhanced nephelometric immunoassay. 2. Measurement of α-lactalbumin and β-lactoglobulin. J. Dairy Sci. 74, 3702–3708.Google Scholar
  198. Marchal, E., Haissat, S., Montagne, P., Cuilliere, M.L., Bene, M.C., Faure, G., Humbert, G. and Linden, G. (1995). Microparticle enhanced nephelometric immunoassay of plasminogen in bovine milk. Food Agric. Immunol. 7, 323–331.Google Scholar
  199. Marchesseau, S., Mani, J. C., Martineau, P., Roquet, F., Cuq, J. L. and Pugnière, M. (2002). Casein interactions studied by the surface plasmon resonance technique. J. Dairy Sci. 85, 2711–2721.Google Scholar
  200. Marshall, K.R. (1995). Protein standardization of milk products, in, Milk Protein Definition and Standardization, 2nd IDF Symposium, 22–24 June 1994, Aarhus, Denmark, pp. 49–54.Google Scholar
  201. Marsilio, R., Catinella, S., Seraglia, R. and Traldi, P. (1995). Matrix assisted laser desorption/ionization mass spectrometry for the rapid evaluation of thermal damage in milk. Rapid Commun. Mass Spectrom. 9, 550–552.Google Scholar
  202. Marvin, L.F., Parisod, V., Fay, L.B. and Guy, P.A. (2002). Characterization of lactosylated proteins of infant formula powders using two dimensional gel electrophoresis and nanoelectrospray mass spectrometry. Electrophoresis 23, 2505–2512.Google Scholar
  203. McSweeney, P.H. and Fox, P.F. (1997). Chemical methods for the characterization of proteolysis in cheese during ripening. Lait 77, 4176.Google Scholar
  204. Meltretter, J., Schmidt, A., Humeny, A., Becker, C.M. and Pischetsrieder, M. (2008). Analysis of the peptide profile of milk and its changes during thermal treatment and storage. J. Agric. Food Chem. 56, 2899–2906.Google Scholar
  205. Meltretter, J., Birlouez-Aragon, I., Becker, C.M. and Pischetsrieder, M. (2009). Assessment of heat treatment of dairy products by MALDI-TOF-MS. Mol. Nutr. Food Res. 53, 1487–1495.Google Scholar
  206. Miranda, G. (1983). Etude Cinetique de la Proteolyse in vivo des Lactoproteines Bovines dans l’Estomac du Rat: Effet du Traitement Thermique. Thesis, University of Paris VII.Google Scholar
  207. Moatsou, G. and Anifantakis, E. (2003). Recent developments in antibody-based analytical methods for the differentiation of milk from different species. Int. J. Dairy Technol. 56, 133–138.Google Scholar
  208. Molina, E., Fernandez Fournier, A., De Frutos, M. and Ramos, M. (1996). Western blotting of native and denatured bovine β-lactoglobulin to detect addition of bovine milk in cheese. J. Dairy Sci. 79, 191–197.Google Scholar
  209. Molinari, H., Ragona, L., Varani, L., Musco, G., Consonni, R., Zetta, L. and Monaco, H.L. (1996). Partially folded structure of monomeric bovine β-lactoglobulin. FEBS Lett. 381, 237–243.Google Scholar
  210. Mollé, D. and Léonil, J. (1995). Heterogeneity of the bovine k-casein caseinomacropeptide, resolved by liquid-chromatography online with electrospray-ionization mass-spectrometry. J. Chromatogr. A 708, 223–230.Google Scholar
  211. Montagne, P., Cuillière, M.L., Marchal, E., El Bari, N., Montagne, M., Benali, M., Faure, G., Duheille, J., Humbert, G., Linden, G., Heurtaux, N., Blesche, J.L., Gosselin, D., Desmares, A. and Delahaye, D. (1995). Application des dosages par immunonéphélémétrie microparticulaire des caséines α, β et κ à l’évaluation de la qualité du lait, de sa production à sa valorisation fromagère. Lait, 75, 211–237.Google Scholar
  212. Montagne, P., Gavriloff, C., Humbert, G., Cuillière, M.L., Duheille, J. and Linden, G. (1991). Microparticle enhanced nephelometric immunoassay for immunoglobulins G in cow’s milk. Lait 71, 493–499.Google Scholar
  213. Muller-Renaud, S., Dupont, D. and Dulieu, P. (2003). Quantification of k-casein in milk by an optical immunosensor. Food Agric. Immunol. 15, 265–277.Google Scholar
  214. Muller-Renaud, S., Dupont, D., and Dulieu, P. (2004). Quantification of k-casein in milk and cheese using an optical immunosensor. J. Agric. Food Chem. 52, 659–664.Google Scholar
  215. Muller-Renaud, S., Dupont, D. and Dulieu, P. (2005). Development of a biosensor immunoassay for the quantification of as1-casein in milk. J. Dairy Res. 72, 57–64.Google Scholar
  216. Narayanan, I., Prakash, K., Verna, R.K. and Gujral, V.V. (1983). Administration of colostrum for the prevention of infection in the low birth weight infant in a developing country. J. Trop. Paediatr. 29, 197–202.Google Scholar
  217. Negroni, L., Bernard, H., Clement, G., Chatel, J.M., Brune, P., Frobert, Y., Wal, J.M. and Grassi, J. (1998). Two site enzyme immunometric assays for determination of native and denatured β-lactoglobulin. J. Immunol. Meth. 220, 25–37.Google Scholar
  218. Neveu, C., Mollé, D., Moreno, J., Martin, P. and Léonil, J. (2002). Heterogeneity of caprine beta-casein elucidated by RP-HPLC/MS: genetic variants and phosphorylations. J. Prot. Chem. 21, 557–567.Google Scholar
  219. Nicolaou, N., Xu, Y. and Goodacre, R. (2011). MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 399, 3491–3502.Google Scholar
  220. O’Donnell, R., Holland, J.W., Deeth, H.C. and Alewwod, P. (2004). Milk proteomics. Int. Dairy J. 14, 1013–1023.Google Scholar
  221. Oliver, C.M. (2011). Insight into the glycation of milk proteins: an ESI- and MALDI-MS perspective (review). Crit. Rev. Food Sci. Nut. 51, 410–431.Google Scholar
  222. Osborne, B.G., Fearn, T. and Hindle, P.H. (1993). Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific and Technical, Harlow, Essex.Google Scholar
  223. Oschkinat, H., Griesinger, C., Kraulis, P.J., Sorensen, O.W., Ernst, R.J.L., Gronenborn, A.M. and Clore, G.M. (1988). Three dimensional NMR spectroscopy of a protein in solution. Nature 332, 374–376.Google Scholar
  224. Parris, N. and Baginski, M.A. (1991). A rapid method for the determination of whey protein denaturation. J. Dairy Sci. 74, 58–64.Google Scholar
  225. Parris, N. and Purcell, J.M. (1990). Examination of thermal denaturation of whey proteins in milk by RP HPLC and FTIR. J. Dairy Sci. 73 (Suppl. 1), 106. (abstr).Google Scholar
  226. Payne, F.A., Hicks, C.L., Madangopal, S. and Shearer. S. (1993). Predicting optimal cutting time of coagulating milk using diffuse reflectance. J. Dairy. Sci. 76, 48–61.Google Scholar
  227. Pearce, R.J. (1983). Analysis of whey proteins by high performance liquid chromatography. Aust. J. Dairy Technol. 38, 114–117.Google Scholar
  228. Pearce, R.J. and Shanley, R M. (1981). Analytical and preparative separation of whey proteins by chromatofocusing. J. Dairy Technol. 36, 110–114.Google Scholar
  229. Picard, C., Plard, I., Rongdaux Gaida, D. and Collin, J.C. (1994). Detection of proteolysis in raw milk stored at low temperature by an inhibition ELISA. J. Dairy Res. 61, 395–404.Google Scholar
  230. Pizzano, R., Nicolai, M.A. and Addeo, F. (1997). Antigenicity of the 139–149 αs1-casein region in different species revealed by ELISA and immunoblotting using antipeptide antibodies. J. Agric. Food Chem. 45, 2807–2813.Google Scholar
  231. Pizzano, R., Nicolai, M.A. and Addeo, F. (1998). Antipeptide antibodies as analytical tools to discriminate among bovine αs1-casein components. J. Agric. Food Chem. 46, 766–771.Google Scholar
  232. Pizzano, R., Nicolai, M.A., Manzo, C. and Addeo, F. (2011). Authentication of dairy products by immunochemical methods: a review. Dairy Sci. Technol. 91, 77–95.Google Scholar
  233. Pouliot, M., Paquin, P., Richard, M., Gauthier, S.F. and Pouliot, Y. (1997). Whey changes during processing determined by near infrared spectroscopy. J. Food Sci. 62, 475–479.Google Scholar
  234. Prestrelski, S.I., Byler, D.M. and Thompson, M.P. (1991). Infrared spectroscopic discrimination between alpha and 310 helices in globular proteins. Reexamination of amide I infrared bands of alpha lactalbumin and their assignment to secondary structures. Int. J. Peptide Prot. Res. 37, 508–512.Google Scholar
  235. Prin, C., El Bari, N., Montagne, P., Cuilliere, M.L., Bene, M.C., Faure, G., Humbert, G. and Linden G. (1996). Microparticle enhanced nephelometric immunoassay for caseinomacropeptide in milk. J. Dairy Res. 63, 73–81.Google Scholar
  236. Quiros, A., Ramos, M., Muguerza B., Delgado M.A., Martin-Alvarez P.J., Aleixandre A. and Recio, I. (2006). Determination of the antihypertensive peptide LHLPLP in fermented milk by high-performance liquid chromatography-mass spectrometry. J. Dairy Sci. 89, 4527–4535.Google Scholar
  237. Quiros, A., Ramos, M., Muguerza B., Delgado M.A., Miguel, M., Aleixandre A. and Recio, I. (2007). Identification of the novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy J. 17, 33–41.Google Scholar
  238. Raap, J., Kerling, K.E.T., Vreeman, H.J. and Visser, S. (1983). Peptide substrates for chymosin (rennin): conformational studies of κ-casein and some κ-casein-related oligopeptides by circular dichroism and secondary structure prediction. Arch. Biochem. Biophys. 221, 117–124.Google Scholar
  239. Ragona, L., Pustula, F., Zetta, L., Monaco, H.L. and Molinari, H. (1997). Identification of a conserved hydrophobic cluster in partially folded bovine β-lactoglobulin at pH 2. Folding and Design 2, 281–290.Google Scholar
  240. Rauch, P., Hochel, I., Berankova, E. and Kas, J. (1989). Sandwich enzyme immunoassay of Mucor miehei proteinase (Fromase) in cheese. J. Dairy Res. 56, 793–797.Google Scholar
  241. Recio, I., Pérez Rodríguez, M.L., Ramos, M. and Amigo, L. (1997a). Capillary electrophoretic analysis of genetic variants of milk proteins from different species. J. Chromatogr. A 768, 47–56.Google Scholar
  242. Recio, L., Pérez Rodríguez, M.L., Amigo, L. and Ramos, M. (1997b). Study of the polymorphism of caprine milk caseins by capillary electrophoresis. J. Dairy Res. 64, 515–523.Google Scholar
  243. Recio, I., Amigo, L. and Lopez Fandiño, R. (1997c). Assessment of the quality of dairy products by capillary electrophoresis of milk proteins. J. Chromatogr. B 697, 231–242.Google Scholar
  244. Redfield, C., Schulman, B.A., Milhollen, M.A., Kim, P.S. and Dobson, C.M. (1999) α-Lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat. Struct. Mol. Biol. 6, 948–952.Google Scholar
  245. Reinhardt, T.A. and Lippolis, J.D. (2008). Developmental changes in milk fat globule membrane proteome during the transition from colostrum to milk. J. Dairy Sci. 91, 2307–2318.Google Scholar
  246. Reynolds, J.A. and Tanford, C. (1970). The gross conformation of protein sodium dodecyl sulfate complexes. J. Biol. Chem. 245, 5161–5165.Google Scholar
  247. Richter, W., Krause, I., Graf, C., Sperrer, I., Schwarzer, C. and Klostermeyer, H. (1997). An indirect competitive ELISA for the detection of cows’ milk and caseinate in goats’ and ewes’ milk and cheese using polyclonal antibodies against bovine γ-caseins. Z. Lebensm. Unters. Forsch. 204, 21–26.Google Scholar
  248. Robert, P., Bertrand, D., Daux, M.F. and Grappin, R. (1987). Multivariate analysis applied to near infrared spectra of milk. Anal. Chem. 59, 2187–2191.Google Scholar
  249. Rodbard, D., Kapadia, G. and Chrombach, A. (1971). Pore gradient electrophoresis. Anal. Biochem. 40, 135–157.Google Scholar
  250. Rodriguez Otero, J.L. and Hermida, M. (1996). Analysis of fermented milk products by near infrared reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int. 79, 817–821.Google Scholar
  251. Rodriguez Otero, J.L., Hermida, M. and Cepada, A. (1995). Determination of fat protein and total solids in cheese by near infrared reflectance spectroscopy. J. Assoc. Off. Anal. Chem. Int. 78, 802–806.Google Scholar
  252. Rodriguez Otero, J.L., Hermida, M. and Centeno, J. (1997a). Analysis of dairy products by near infrared spectroscopy: a review. J. Agric. Food. Chem. 45, 2815–2819.Google Scholar
  253. Rodriguez Otero, J.L., Centeno, J.A. and Hermida, M. (1997b). Application of near infrared transflectance spectroscopy to the analysis of fermented milks. Milchwissenschaft 52, 196–199.Google Scholar
  254. Roncada, P., Gaviraghi, A., Liberatori, S., Canas, B., Bini, L. and Greppi, G.F. (2002). Identification of caseins in goat milk. Proteomics 2, 723–726.Google Scholar
  255. Rösner, H.I., and Redfield, C. (2009). The human α-latalbumin molten globule: comparison of structural preferences at pH 2 and pH 7. J. Mol. Biol. 394, 351–362.Google Scholar
  256. Rowland, S.J. (1938). The determination of the nitrogen distribution in milk. J. Dairy Res. 9, 42–46.Google Scholar
  257. Rudzik, L. (1985). MIR NIR ein Methodenvergleich. Deutsche Milchwirschaft 8, 225–228.Google Scholar
  258. Saputra, D., Payne, F.A. and Hick, C.L. (1994). Analysis of enzymatic hydrolysis of κ-casein in milk using diffuse reflectance of near infrared radiation. Transaction ASAE 37, 1947–1955.Google Scholar
  259. Sato, T., Yoshino, M., Furukawa, S., Somey, Y., Yano, N., Uozumi, J. and Iwamoto, W. (1987). Analysis of milk constituents by the near infrared spectrophotometric method. Jpn. J. Zootech. Sci. 58, 698–706.Google Scholar
  260. Sawyer, L. and Holt, C. (1993). The secondary structure of milk proteins and their biological function. J. Dairy Sci. 76, 3062–3078.Google Scholar
  261. Scherrer, R. and Bernard, S. (1977). Application d’une méthode immunoenzymologique (ELISA) à la détection du rotavirus bovin et des anticorps dirigés centre lui. Ann. Microbiol. (Institut Pasteur) 128A, 499–510.Google Scholar
  262. Seibert, B., Erhardt, G. and Senft, B. (1985). Procedure for simultaneous phenotyping of genetic variants in cow’s milk by using isoelectric focusing. Anim. Blood Groups Biochem. Genet. 16, 183–191.Google Scholar
  263. Shalabi, S.I. and Fox, P.F. (1987). Electrophoretic analysis of cheese: comparison of methods. Irish J. Food Sci. Technol. 11, 135–151.Google Scholar
  264. Shapiro, A.L., Vinuela, E. and Maizel, J.V. (1967). Molecular weight estimation of polypeptide chains by electrophoresis in SDS polyacrylamide gels. Biochem. Biophys. Res. Commun. 28, 815–820.Google Scholar
  265. Shimazaki, K. and Sukegawa, K. (1982). Chromatographic profiles of bovine milk whey components by gel filtration. J. Dairy Sci. 65, 2055–2062.Google Scholar
  266. Shinmoto, H., Kobori, M., Tsushida, T. and Shinohara, K. (1997). Competitive ELISA of bovine lactoferrin with bispecific monoclonal antibodies. Biosci. Biotechnol. Biochem. 61, 1044–1046.Google Scholar
  267. Sjaunja, L.O. and Andersson, I. (1985). Laboratory experiments with a new IR milk analyzer, the Milko Scan. Acta Agric. Scand. 35, 345–352.Google Scholar
  268. Sjaunja, L.O. and Schaar, J. (1984). Determination of casein in milk by infrared spectrophotometry. Milchwissenschaft 39, 288–290.Google Scholar
  269. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1993a). A quantitative linearity evaluation method for infrared milk analyzers. J. Assoc. Off. Anal. Chem. Int. 76, 1300–1308.Google Scholar
  270. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1993b). Performance of homogenizers in infrared milk analyzers: a survey. J. Assoc. Off. Anal. Chem. Int. 76, 1033–1041.Google Scholar
  271. Smith, E.B., Barbano, D.M., Lynch, J.M. and Fleming, J.R. (1995). Infrared analysis of milk: effect of homogenizer and optical filter selection on apparent homogenization efficiency and repeatability. J. Assoc. Off Anal. Chem. Int. 78, 1225–1233.Google Scholar
  272. Smith, J.L., Hendrickson, W.A., Honzatko, R.B. and Sheriff, S. (1986). Structural heterogeneity in protein crystals. Biochemistry 25, 5018–5027.Google Scholar
  273. Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J. and Udseth, H.R. (1990). New developments in biochemical mass spectrometry: electrospray ionization. Anal. Biochem. 62, 882–899.Google Scholar
  274. Smolenski, G., Haines, S., Kwan, F.Y.S., Bond, J., Farr, V., Davis, S.R., Stelwagen, K. and Wheeler, T.T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. J. Proteome Res. 6, 207–215.Google Scholar
  275. Spengler, B and Cotter, R. (1990). Ultraviolet laser desorption/ionization mass spectrometry of proteins above 100,000 daltons by pulsed ion extraction time of flight analysis. Anal. Chem. 62, 793–796.Google Scholar
  276. Spengler, B. (1997). Post source decay analysis in matrix assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom. 32, 1019–1036.Google Scholar
  277. Stelwagen, K. and Lacy Hulbert, S.J. (1996). Effect of milking frequency on milk somatic cell count characteristics and mammary secretory cell damage in cows. Am. J. Vet. Res. 57, 902–905.Google Scholar
  278. Strange, E.D., van Hekken, D. and Thompson, M.P. (1991). Qualitative and quantitative determination of caseins with reverse phase and anion exchange HPLC. J. Food Sci. 56, 1415–1420.Google Scholar
  279. Strange, E.D., Malin, E.L., van Hekken, D.J.L. and Basch, J.J. (1992). Chromatographic and electrophoretic methods used for analysis of milk proteins. J. Chromatogr. 624, 81–102.Google Scholar
  280. Subirade, M., Loupil, F., Allain, A.F. and Paquin, P. (1998). Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier Transform Infrared Spectroscopy. Int. Dairy J. 8, 135–140.Google Scholar
  281. Surroca, Y., Haverkamp, J. and Heck, A.J.R. (2002). Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB. J. Chromatogr. A 970, 275–285.Google Scholar
  282. Swaisgood, H.E. (1992). Chemistry of the caseins, in, Advanced Dairy Chemistry-1, Proteins, 2nd edn., P.F. Fox, ed., Elsevier Science Publishers, London, pp. 63–110.Google Scholar
  283. Swaisgood, H.E. (2005). The importance of disulfide bridging. Biotechnol. Adv. 23, 7173.Google Scholar
  284. Tam, J.P. (1994). Immunization with peptide carrier complexes: traditional and multiple antigen peptide systems, in, Peptide Antigens. A Practical Approach, G.B. Wisdom, ed., Oxford University Press, pp. 83–114.Google Scholar
  285. Thompson, A. K., Singh, H., Dalgleish, D. G. (2010). Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins. J. Agric. Food Chem. 58, 11962–11968.Google Scholar
  286. Tijssen, P. (1988). Practice and theory of enzyme immunoassays, in, Laboratory Techniques in Biochemistry and Molecular Biology, R.H. Burdon and P.H. Van Knippenberg, eds., Elsevier, Amsterdam, pp. 1–7.Google Scholar
  287. Tolkach, A., Steinle, S., and Kulozik, U. (2005). Optimization of thermal pretreatment conditions for the separation of native alpha-lactalbumin from whey protein concentrates by means of selective denaturation of beta-lactoglobulin. J. Food Sci. 70, E557–E566.Google Scholar
  288. Trieu Cuot, P. and Gripon, J.C. (1981). Electrofocusing and two dimensional electrophoresis of bovine caseins. J. Dairy Res. 48, 303–310.Google Scholar
  289. Valence, F., Richoux, R., Thierry, A., Palva, A. and Lortal, S. (1999). Autolysis of Lactobacillus helveticus and Propionibacterium freudenreichii in Swiss cheeses: first evidence by using species specific lysis markers. J. Dairy Res. 65, 609–620.Google Scholar
  290. van de Voort, F.R., Sedman, J., Emo, G. and Ismael, A.A. (1992). Assessment of Fourier transform infrared analysis of milk. J. Assoc. Off. Anal. Chem. Int. 75, 780–785.Google Scholar
  291. van Hekken, D.L. and Thompson, M.P. (1992). Application of PhastSystem® to the resolution of bovine milk proteins on urea polyacrylamide gel electrophoresis. J. Dairy Sci. 75, 1204–1210.Google Scholar
  292. Vegarud, G.E., Molland, T.S., Brovold, M.J., Devoid, T.G., Alestrom, P., Steine, T., Rogne, S. and Langsrud, T. (1989). Rapid separation of genetic variants of caseins and whey proteins using urea modified gels and fast electrophoresis. Milchwissenschaft 44, 689–691.Google Scholar
  293. Visschers, R.W. and de Jongh, H.H.J. (2005). Disulfide bond formation in food protein aggregation and gelation. Biotechnol. Adv. 23, 75–80.Google Scholar
  294. Visser, S., Slangen, C.J. and Rollema, H.S. (1991). Phenotyping of bovine milk proteins by reversed phase high performance liquid chromatography. J. Chromatogr. 548, 361–370.Google Scholar
  295. Visser, S., Slangen, C.J., Lagerwerf, F.M., van Dongen, W.D. and Haverkamp, J. (1995). Identification of a new genetic variant of bovine β-casein using reversed phase high performance liquid chromatography and mass spectrometric analysis. J. Chromatogr. A 711, 141–150.Google Scholar
  296. Visser, S., Slangen, K.J. and Rollema, H.S. (1986). High performance liquid chromatography of bovine caseins with the application of various stationary phases. Milchwissenschaft 41, 559–562.Google Scholar
  297. Wake, R.G. and Baldwin, R.C. (1961). Analysis of casein fractions by zone electrophoresis in concentrated urea. Biochim. Biophys. Acta 47, 225–239.Google Scholar
  298. Ward, L.S. and Bastian, E.D. (1998). Isolation and identification of β-casein A1 4P and β-casein A2 4P in commercial caseinates. J. Agric. Food Chem. 46, 77–83.Google Scholar
  299. Warme, P.K., Momany, F.A., Rumball, S.V., Tuttle, R.W. and Scheraga, H.A. (1974). Computation of structures of homologous proteins α-lactalbumin from lysozyme. Biochemistry 13, 768–782.Google Scholar
  300. Wehling, M.M. and Pierce, R.L. (1994). Comparison of sample handling and data treatment methods for determining moisture and fat in Cheddar cheese by near infrared spectroscopy. J. Agric. Food. Chem. 42, 2830–2835.Google Scholar
  301. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992). The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.Google Scholar
  302. Wüthrich, K. (1989). Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50.Google Scholar
  303. Walstra, P. (1999). Dairy Technology: Principles of Milk Properties and Processes. Marcel Dekker, New York. p. 727.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Dupont
    • 1
    Email author
  • T. Croguennec
    • 1
  • A. Brodkorb
    • 2
  • R. Kouaouci
    • 3
  1. 1.INRA AGROCAMPUS OUEST, Science et Technologie du Lait et de l’oeufRennes CedexFRANCE
  2. 2.Teagasc Food Research CentreFermoyIRELAND
  3. 3.VALACTA, Centre d’expertise en production laitiereSte-Anne de BellevueCANADA

Personalised recommendations