Milk Proteins: Introduction and Historical Aspects

  • J. A. O’MahonyEmail author
  • P. F. Fox


This chapter provides a general overview of the milk protein system: the history of its elucidation, heterogeneity, fractionation and characterization of the molecular properties of the principal proteins. Many of the minor proteins are also described. In addition to serving as sources of amino acids, many of the whey proteins have biological functions, which are now attracting much attention. The caseins exist as large colloidal aggregates, micelles, the structure and properties of which have been studied for more than 100 years; the history of these developments and the present views on the structure and properties of the casein micelle are described.


Human Milk Whey Protein Milk Protein Bovine Milk Casein Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Addeo, F., Mercier, J.-C. and Ribadeau-Dumas, B. (1977). The caseins of buffalo milk. J. Dairy Res. 44, 455–468.Google Scholar
  2. Aimutis, W.R. and Eigel, W.N. (1982). Identification of l-casein as plasmin-derived fragments of bovine αs1-casein. J. Dairy Sci. 65, 175–181.Google Scholar
  3. Akers, R.M. (2000). Selection for milk production from a lactation biology viewpoint. J. Dairy Sci. 83, 1151–1158.Google Scholar
  4. Alexander, J. (1910). Some colloid-chemical aspects of digestion, with ultramicroscopic observations. J. Am. Chem. Soc. 32, 680–687.Google Scholar
  5. Amundson, C.H., Watanawamichakorn, S. and Hill, C.G. (1982). Production of enriched protein fractions of β-lactoglobulin and α-lactalbumin from cheese whey. J. Food Proc. Preserv. 6, 55–71.Google Scholar
  6. Andersson, J. and Mattiasson, B. (2006). Simulated moving bed technology with a simplified approach for protein purification: Separation of lactoperoxidase and lactoferrin from whey protein concentrate. J. Chrom. A. 1107, 88–95.Google Scholar
  7. Andrews, A.T. (1983). Proteinases in normal bovine milk and their action on casein. J. Dairy Res. 50, 45–55.Google Scholar
  8. Andrews, A.T. and Alichanidis, E. (1983). Proteolysis of caseins and the proteose-peptone fraction of milk. J. Dairy Res. 50, 275–290.Google Scholar
  9. Andrews, A.T., Williams, R.J.H., Brownsell, V.L., Isgrove, F.H., Jenkins, K. and Kanekanian, A.D. (2006). β-CN-5P and β-CN-4P components of bovine milk proteose-peptone: Large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234–241.Google Scholar
  10. Annan, W.D. and Manson, W. (1969). A fractionation of the αs-casein complex of bovine milk. J. Dairy Res. 36, 259–268.Google Scholar
  11. Armaforte, E., Curran, E., Huppertz, T., Ryan, C.A., Caboni, M.F., O’Connor, P., Ross, P., Hirtz, C., Sommerer, N., Chevalier, F. and Kelly, A.L. (2010). Proteins and proteolysis in pre-term and term human milk and possible implications for infant formulae. Int. Dairy J. 20, 715–723.Google Scholar
  12. Armstrong, J.McD., McKenzie, H.A. and Sawyer, W.H. (1967). On the fractionation of β-lactoglobulin and α-lactalbumin. Biochim. Biophys. Acta 147, 60–72.Google Scholar
  13. Aschaffenburg, R. and Drewry, J. (1955). Occurrence of different b-lactoglobulins in cow’s milk. Nature 176, 218–219.Google Scholar
  14. Aschaffenburg, R. and Drewry, J. (1957). Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow’s milk. Biochem. J. 65, 273–277.Google Scholar
  15. Aschaffenburg, R. and Drewry, J. (1959). A procedure for the routine determination of the various non-casein proteins in milk. Proc. 15th Int. Dairy Congr. (London) 3, 1631–1637.Google Scholar
  16. Associates of L.A. Rogers. (1935). Fundamentals of Dairy Science, 2nd edn. Reinhold Publishing Corporation, New York.Google Scholar
  17. Atkinson, S.A. and Lonnerdal, B. (1989). Protein and Non-Protein Nitrogen in Human Milk. CRC Press, Inc., Boca Raton, FL.Google Scholar
  18. Attia, H., Kherouatou, N., Nasri, M. and Khorcheni, T. (2000). Characterization of the dromedary milk casein micelle and study of its changes during acidification. Lait 80, 503–515.Google Scholar
  19. Barth, C.A. and Schlimme, E. (1988). Milk Proteins: Nutritional, Clinical, Functional and Technological Aspects. Springer Verlag, New York.Google Scholar
  20. Berzelius, J.J. (1814). Uber Thierische Chemie. Schweiggers J. Chemie Physik. 1, 261–280.Google Scholar
  21. Blackburn, D.G., Hayssen, V. and Murphy, C.J. (1989). The origins of lactation and the evolution of milk: a review with new hypotheses. Mammal Rev. 19, 1–26.Google Scholar
  22. Blakesley, R.W. and Boezi, J.A. (1977). A new staining technique for proteins in polyacrylamide gels using Coomassie Brilliant Blue G250. Anal. Biochem. 82, 580–582.Google Scholar
  23. Bordin, G., Cordeiro Raposo, F., de la Calle, B. and Rodriguez, A.R. (2001). Identification and quantification of major bovine milk proteins by liquid chromatography. J. Chrom. A 928, 63–76.Google Scholar
  24. Bouchoux, A., Gesan-Guiziou, G., Perez, J. and Cabane, B. (2010). How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophys. J. 99, 3754–3762.Google Scholar
  25. Brew, K. (2003). α-Lactalbumin, in, Advanced Dairy Chemistry—Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 387–419.Google Scholar
  26. Brew, K. and Grobler, J.A. (1992). α-Lactalbumin, in, Advanced Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 191–229.Google Scholar
  27. Brinkmann, C.R., Thiel, S., Larsen, M.K., Petersen, T.E., Jensenius, J.C. and Heegaard, C.W. (2011). Preparation and comparison of cytotoxic complexes formed between oleic acid and either bovine or human α-lactalbumin. J. Dairy Sci. 94, 2159–2170.Google Scholar
  28. Brunner, J.R. (1981). Cow milk proteins: twenty-five years of progress. J. Dairy Sci. 64, 1038–1045.Google Scholar
  29. Brunner, J.R., Ernstrom, C.A., Hollis, R.A., Larson, B.L., Whitney, R.McL. and Zittle, C.A. (1960). Nomenclature of the proteins of bovine milk—first revision. J. Dairy Sci. 43, 901–911.Google Scholar
  30. Buchheim, W., Lund, S. and Scholtissek, J. (1989). Vergleichende Untersuchungen zur Struktur und Grosse von Caseinmicellen in der Milch verschiedener Species. Kieler Milchw. Forsch. 41, 253–265.Google Scholar
  31. Campbell, B. and Petersen, W.E. (1959). Antibodies in milk for protection against human disease. Milchwissenschaft 14, 469–473.Google Scholar
  32. Campbell, S.M., Rosen, J.M., Henighausen, L.G., Strech-Jurk, U. and Sippel, A.E. (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12, 8685–8697.Google Scholar
  33. Carroll, T.J., Patel, H.A., Gonzalez-Martin, M.A., Dekker, J.W., Collett, M.A. and Lubbers, M.W. (2006). High pressure processing of bioactive compositions. World Patent WO2006/096074 A1.Google Scholar
  34. Carter, D.C. and Ho, J.X. (1994). Structure of serum albumin. Adv. Protein Chem. 45, 153–205.Google Scholar
  35. Cayot, P. and Lorient, D. (1998). Structures et Technofonctions des Proteins du Lait. Lavoisier Technique & Documentation, Paris.Google Scholar
  36. Chanat, E., Martin, P. and Ollivier-Bousquet, M. (1999). αs1-Casein is required for the efficient transport of β- and κ-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells. J. Cell Sci. 112, 3399–3412.Google Scholar
  37. Chatterton, D.E.W., Smithers, G., Roupas, P. and Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing. Int. Dairy J. 16, 1229–1240.Google Scholar
  38. Cheang, B. and Zydney, A.L. (2004). A two-stage ultrafiltration process for fractionation of whey protein isolate. J. Membrane Sci. 231, 159–167.Google Scholar
  39. Chevalier, F. (2011a). Analytical methods: Electro­phoresis, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 1, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 185–192.Google Scholar
  40. Chevalier, F. (2011b). Milk proteins: proteomics, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 843–847.Google Scholar
  41. Creamer, L.K. and Richardson, T. (1984). Anomalous behavior of bovine αs1- and β-caseins on gel electrophoresis in sodium dodecyl sulfate buffer. Arch. Biochem. Biophys. 234, 476–486.Google Scholar
  42. Creamer, L.K., Berry, G.P. and Mills, O.E. (1977). A study of the dissociation of β-casein from the bovine casein micelle at low temperature. N. Z. J. Dairy Sci. Technol. 12, 58–66.Google Scholar
  43. Dalgleish, D.G. (1998). Casein micelles as colloids: Surface structures and stabilities. J. Dairy Sci. 81, 3013–3018.Google Scholar
  44. Dalgleish, D.G. (2011). On the structural models of bovine casein micelles - review and possible improvements. Soft Matter 7, 2265–2272.Google Scholar
  45. Dandekar, A.M., Robinson, E.A., Appella, E. and Qasba, P.K. (1982). Complete sequence analysis of cDNA clones encoding rat whey phosphoprotein: homology to a protease inhibitor. Proc. Nat. Acad. Sci. U.S.A. 79, 3987–3991.Google Scholar
  46. Davis, J.G. and MacDonald, F.J. (1953). Richmond’s Dairy Chemistry, 5th edn. Charles Griffin & Co. Ltd., London.Google Scholar
  47. de Kruif, C.G. (1998). Supra-aggregates of casein micelles as a prelude to coagulation. J. Dairy Sci. 81, 3019–3038.Google Scholar
  48. de Kruif, C.G. (1999). Casein micelle interactions. Int. Dairy J. 9, 183-188.Google Scholar
  49. De Kruif, C.G. and Holt, C. (2003). Casein micelle structure, functions and interactions, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 233–276.Google Scholar
  50. De Noni, I., Pellegrino, L., Cattaneo, S. and Resmini, P. (2007). HPLC of proteose peptones for evaluating ageing of packaged pasteurised milk. Int. Dairy J. 17, 12–19.Google Scholar
  51. De Wit, J.N. (2009). Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150oC. A review. Trends Food Sci. Technol. 20, 27–34.Google Scholar
  52. Demmer, J., Stasiuk, S.J., Grigor, M.R., Simpson, K.J. and Nicholas, K.R. (2001). Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). Biochim. Biophys. Acta 1522, 187–194.Google Scholar
  53. Desobry-Banon, S., Richard, F. and Hardy, J. (1994). Study of acid and rennet coagulation of high pressurized milk. J. Dairy Sci. 77, 3267–3274.Google Scholar
  54. Downey, W.K. and Murphy, R.F. (1970). The temperature-dependant dissociation of β-casein from bovine casein micelles and complexes. J. Dairy Res. 37, 361–375.Google Scholar
  55. Eigel, W.N. and Keenan, T.W. (1979). Identification of proteose peptone component 8-slow as a plasmin derived fragment of β-casein. Int. J. Biochem. 10, 529–535.Google Scholar
  56. Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Whitney, R.McL. (1984). Nomenclature of proteins of cow’s milk, 5th revision. J. Dairy Sci. 67, 1559–1631.Google Scholar
  57. Eilers, H., Saal, R.N.J. and van der Waarden, M. (1947). Chemical and Physical Investigations on Dairy Products. Elsevier Publishing Company, Inc., New York.Google Scholar
  58. El-Agamy, E.I. (2007). The challenge of cow milk protein allergy. Small Ruminant Res. 68, 64–72.Google Scholar
  59. El-Negoumy, A.M. (1973). Separation of lambda casein and some of its properties. J. Dairy Sci. 56, 1486–1491.Google Scholar
  60. Ennis, M.P. and Mulvihill, D.M. (1999). Compositional characteristics of rennet caseins and hydration characteristics of the caseins in a model system as indicators of performance in Mozzarella cheese analogue manufacture. Food Hydrocolloid 13, 325–337.Google Scholar
  61. Evans, D.E. (1959). Milk composition of mammals whose milk is not normally used for human consumption. Dairy Sci. Abstr. 21, 277–288.Google Scholar
  62. Farah, Z. (1993). Composition and characteristics of buffalo milk. J. Dairy Res. 60, 603–626.Google Scholar
  63. Farrell, H.M., Jr. (1973). Models for casein micelle formation. J. Dairy Sci. 56, 1195–1206.Google Scholar
  64. Farrell, H.M., Jr. and Thompson, M.P. (1974). Physical equilibria: proteins, in, Fundamentals of Dairy Chemistry, 2nd edn., B.H. Webb, A.H. Johnson and J.A. Alford, eds., AVI Publishing Company, Inc., Westport, CT, pp. 442–473.Google Scholar
  65. Farrell, H.M., Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk—sixth revision. J. Dairy Sci. 87, 1641–1674.Google Scholar
  66. FitzGerald, R.J. and Meisel, H. (2003). Milk protein hydrolysates and bioactive peptides, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 675–698.Google Scholar
  67. Flower, D.R., North, A.C.T. and Sansom, C.E. (2000). The lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta 1482, 9–24.Google Scholar
  68. Fox, K.K., Holsinger, V.H., Posati, L.P. and Pallansch, M.J. (1967). Separation of β-lactoglobulin from other milk serum proteins by trichloroacetic acid. J. Dairy Sci. 50, 1363–1367.Google Scholar
  69. Fox, P.F. (1981). Heat stability of milk: significance of heat induced acid formation in coagulation. Irish J. Food Sci. Technol. 5, 1–11.Google Scholar
  70. Fox, P.F. (1982). Developments in Dairy Chemistry, Volume 1: Proteins. Applied Science Publishers, London.Google Scholar
  71. Fox, P.F. (1989). Developments in Dairy Chemistry, Volume 4: Functional Proteins. Elsevier Applied Science Publishers, London.Google Scholar
  72. Fox, P.F. (1992). Advanced Dairy Chemistry, vol. 1, Proteins: Molecular, Physico-Chemical and Biological Aspects. Elsevier Applied Science Publishers, London.Google Scholar
  73. Fox, P.F. (2003). Milk proteins: general and historical aspects, in, Advanced Dairy Chemistry,–Volume 1; Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic-Plenum Publishers, New York, pp. 1–48.Google Scholar
  74. Fox, P.F. and Brodkorb, A. (2008). The casein micelle: Historical aspects, current concepts and significance. Int. Dairy J. 18, 677–684.Google Scholar
  75. Fox, P.F. and Guiney, J. (1972). A procedure for the fractionation of the α-casein complex. J. Dairy Sci. 39, 49–53.Google Scholar
  76. Fox, P.F. and McSweeney, P.L.H. (1998). Dairy Chemistry and Biochemistry. Chapman and Hall, London.Google Scholar
  77. Gallagher, D.P., Cotter, P.F. and Mulvihill, D.M. (1997). Porcine milk proteins: a review. Int. Dairy J. 7, 99–118.Google Scholar
  78. Garnier, J. (1973). Models of casein micelle structure. Neth. Milk Dairy J. 27, 240–248.Google Scholar
  79. Garnier, J. and Ribadeau-Dumas, B. (1970). Structure of the casein micelle. J. Dairy Res. 37, 493–504.Google Scholar
  80. Gaucheron, F., Famelart, M.H., Mariette, F., Raulot, K., Michel, F. and Le Graet, Y. (1997). Combined effects of temperature and high-pressure treatments on physicochemical characteristics of skim milk. Food Chem. 59, 439–447.Google Scholar
  81. Gaucheron, F., Molle, D. and Leonil, B.J. (1999). Identification of low molar mass peptides released during sterilisation of milk. Int. Dairy J. 9, 515–521.Google Scholar
  82. Ginger, M.R. and Grigor, M.R. (1999). Comparative aspects of milk caseins. Comp. Biochem. Physiol, Part B 124, 133–145.Google Scholar
  83. Girardet, J.-M. and Linden, G. (1996). PP 3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res. 63, 333–350.Google Scholar
  84. Gordon, W.G. (1971). α-Lactalbumin, in, Milk Proteins: Chemistry and Molecular Biology, H.A. McKenzie, ed., Academic Press, New York, 33pp. 1–365.Google Scholar
  85. Gordon, W.G. and Semmett, W.F. (1953). Isolation of crystalline α-lactalbumin from milk. J. Am. Chem. Soc. 75, 328–330.Google Scholar
  86. Guo, M.R., Fox, P.F., Flynn, A. and Kindstedt, P.S. (1995). Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 78, 2336–2344.Google Scholar
  87. Hagiwara, K., Kikuchi, T., Endo, Y., Huqun, Usui, K., Takahashi, M., Shibata, N., Kusakabe, T., Xin, H., Hoshi, S., Miki, M., Inooka, N., Tokue, Y. and Nukiwa, T. (2003). Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J. Immunol 170, 1973–1979.Google Scholar
  88. Hajjoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Pivini, F., Chardon, P., Houdebine, L.-M. and Thepot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104–112.Google Scholar
  89. Hambling, S.G., McAlpine, A.S. and Sawyer, L. (1992). β-Lactoglobulin, in, Advanced Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 141–190.Google Scholar
  90. Harland, H.A., Coulter, S.T. and Jenness, R. (1955). Natural variation of the milk serum proteins as a limitation of their use in evaluating the heat treatment of milk. J. Dairy Sci. 38, 858–869.Google Scholar
  91. Havea, P. (2006). Protein interactions in milk protein concentrate powders. Int. Dairy J. 16, 415–422.Google Scholar
  92. Havea, P., Singh, H. and Creamer, L.K. (2000). Formation of new protein structures in heated mixtures of BSA and α-lactalbumin. J. Agr. Food Chem. 48, 1548–1556.Google Scholar
  93. Hennighausen, L.G. and Sippel, A.E. (1982). Mouse whey acidic protein is a novel member of the family of ‘four-disulphide core’ proteins. Nucleic Acids Res. 10, 2677–2684.Google Scholar
  94. Hewedi, M.M., Mulvihill, D.M. and Fox, P.F. (1985). Recovery of milk protein by ethanol precipitation. Irish J. Food Sci. Technol. 9, 11–23.Google Scholar
  95. Hill, R.J. and Wake, R.J. (1969). Amphiphilic nature of α-casein as the basis for its micelle stabilizing property. Nature 221, 635–639.Google Scholar
  96. Hindle, E.J. and Wheelock, J.V. (1970). The release of peptides and glycopeptides by the action of heat on cow’s milk. J. Dairy Res. 37, 397–405.Google Scholar
  97. Hipp, N.J., Groves, M.L., Custer, J.H. and McMeekin, T.L. (1952). Separation of α, β and γ caseins. J. Dairy Sci. 35, 272–281.Google Scholar
  98. Holt, C. (1992). Structure and stability of bovine casein micelles. Adv. Prot. Chem. 43, 63–151.Google Scholar
  99. Holt, C. (1994). The biological function of casein, in, Yearbook 1994, The Hannah Institute, Ayr, Scotland, pp. 60–68.Google Scholar
  100. Holt, C. (1998). Casein micelle substructure and calcium phosphate interactions studied by Sephacryl column chromatography. J. Dairy Sci. 81, 2994–3003.Google Scholar
  101. Holt, C. and Horne, D. (1996). The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth. Milk Dairy J. 50, 85–111.Google Scholar
  102. Holt, C. and Sawyer, L. (1993). Caseins as rheomorphic proteins: interpretation of primary and secondary structures of αs1-, β- and κ-caseins. J. Chem. Soc. Faraday Trans. 89, 2683–2692.Google Scholar
  103. Horne, D.S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177.Google Scholar
  104. Horne, D.S. (2002). Casein structure, self-assembly and gelation. Curr. Opin. Colloid In. 7, 456–461.Google Scholar
  105. Horne, D.S. (2003). Ethanol stability, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 975–999.Google Scholar
  106. Horne, D.S. (2006). Casein micelle structure: models and muddles. Curr. Opin. Colloid In. 11, 148–153.Google Scholar
  107. Horne, D.S. (2011). Casein, micellar structure, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds, Academic Press, San Diego, CA, USA, pp 772–779.Google Scholar
  108. Huppertz, T., Kelly, A.L. and Fox, P.F. (2002). Effects of high pressure on constituents and properties of milk. Int. Dairy J. 12, 561–572.Google Scholar
  109. Huppertz, T., Fox, P.F. and Kelly, A.L. (2004). Properties of casein micelles in high pressure-treated bovine milk. Food Chem. 87, 103–110.Google Scholar
  110. Huppertz, T., Hennebel, J.-B., Considine, T., Ur-Rehman, S. Kelly, A.L. and Fox, P.F. (2006). A method for the large-scale isolation of β-casein. Food Chem. 99, 45–50.Google Scholar
  111. Hurley, W.L. (2003). Immunoglobulins in mammary secretions, in, Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 421–447.Google Scholar
  112. IDF. (1991). Chemical Methods for Evaluation of Proteolysis in Cheese Maturation. Bulletin 261. International Dairy Federation, Brussels.Google Scholar
  113. Ikeda, K., Kato, M., Yamanouchi, K., Naito, K. and Tojo, H. (2002). Novel development of mammary glands in the nursing transgenic mouse ubiquitously expressing WAP gene. Exp Anim. 51, 395–399.Google Scholar
  114. Imafidon, G.F., Farkye, N.Y. and Spanier, A.M. (1997). Isolation, purification and alteration of some functional groups of major milk proteins: a review. CRC Crit. Rev. Food Sci. Nutr. 37, 663-689.Google Scholar
  115. Innocente, N., Corradini, C., Blecker, C. and Paquot, M. (1998). Emulsifying properties of the total fraction and the hydrophobic fraction of bovine milk proteose-peptones. Int. Dairy J. 8, 981-985.Google Scholar
  116. Innocente, N., Comparin, D. and Corradini, C. (2002). Proteose-peptone whey fraction as emulsifier in ice-cream preparation. Int. Dairy J. 12, 69–74.Google Scholar
  117. Innocente, N., Biasutti, M. and Blecker, C. (2011). HPLC profile and dynamic surface properties of the proteose-peptone fraction from bovine milk and from whey protein concentrate. Int. Dairy J. 21, 222–228.Google Scholar
  118. Jenness, R. (1973). Caseins and caseinate micelles of various species. Neth. Milk Dairy J. 27, 251–257.Google Scholar
  119. Jenness, R. (1979). Comparative aspects of milk proteins. J. Dairy Res. 46, 197–210.Google Scholar
  120. Jenness, R. (1982). Inter-species comparison of milk proteins, in, Developments in Dairy Chemistry, Vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 87–114.Google Scholar
  121. Jenness, R. and Holt, C. (1987). Casein and lactose concentrations in milk of 31 species are negatively correlated. Experentia 43, 1015–1018.Google Scholar
  122. Jenness, R. and Patton, S. (1959). Principles of Dairy Chemistry. John Wiley & Sons, Inc., New York.Google Scholar
  123. Jenness, R. and Sloan, R.E. (1970). The composition of milks of various species: a review. Dairy Sci. Abstr. 32, 599–612.Google Scholar
  124. Jenness, R., Larson, B.L., McMeekin, T.L., Swanson, A.M., Whitnay, C.H. and Whitney, R.McL. (1956). Nomenclature of the proteins of bovine milk. J. Dairy Sci. 39, 536–541.Google Scholar
  125. Jensen, R.G. (1995). Handbook of Milk Composition. Academic Press, San Diego, CA.Google Scholar
  126. Johnson, S.W. (1868). How Crops Grow. Orange Judd & Co., New York.Google Scholar
  127. Jolles, P. (1966). Progress in the chemistry of casein. Agnew. Chem. Internat. Edit. 5, 558–566.Google Scholar
  128. Journet, M., Verite, R. and Vignon, B. (1975). L’azote non proteique du lait: factures de variation. Lait 55, 212–223.Google Scholar
  129. Kappler, S., Farah, Z. and Puhan, Z. (1998). Sequence analysis of Camelus dromedarius milk caseins. J. Dairy Sci. 65, 209–222.Google Scholar
  130. Karlsson, A.O., Ipsen, R. and Ardo, Y. (2007). Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT - Food Sci. Technol. 40, 1102–1107.Google Scholar
  131. Kastle, J.H. and Roberts, N. (1909). The chemistry of milk, in, Milk and relation to public health, Washington, DC, USA. Bulletin 56, Hygienic Laboratory, Treasury Department, Government Printing Office, pp. 315–423.Google Scholar
  132. Kawasaki, K. and Weiss, K.M. (2003). Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl. Acad. Sci. USA, 100, 4060–4065.Google Scholar
  133. Kawasaki, K., Suzuki, T. and Weiss, K.M. (2004). Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl. Acad. Sci. USA. 101, 11356–11361.Google Scholar
  134. Kawasaki, K., Lafont, A.-G. and Sire, J.-Y. (2011). The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 28, 2053–2061.Google Scholar
  135. Kehoe, J.J., Morris, E.R. and Brodkorb, A. (2007). The influence of bovine serum albumin on β-lactoglobulin denaturation, aggregation and gelation. Food Hydrocolloids 21, 747–755.Google Scholar
  136. Kelly, A.L. and McSweeney, P.L.H. (2003). Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 495–521.Google Scholar
  137. Kelly, P. M., Kelly, J., Mehra, R., Oldfield, D. J., Raggett, E. and O’Kennedy, T. (2000). Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait 80, 139–153.Google Scholar
  138. Kimura, T., Taneya, S. and Kanaya, K. (1979). Observation of internal structure of casein submicelles by means of ion beam sputtering. Milchwissenschaft 34, 521–524.Google Scholar
  139. Kinekawa, Y.-I. and Kitabatake, N. (1996). Purification of β-lactoglobulin from whey protein concentrate by pepsin treatment. J. Dairy Sci. 79, 350–358.Google Scholar
  140. Kinsella, J.E. (1985). Milk proteins: physicochemical and functional properties. CRC Crit. Rev. Food Sci. Nutr. 21, 197–287.Google Scholar
  141. Kinsella, J.E. and Whitehead, D.M. (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33, 343–438.Google Scholar
  142. Knoop, A.M., Knoop, E. and Wiechen, A. (1979). Sub-structure of synthetic casein micelles. J. Dairy Res. 46, 347–350.Google Scholar
  143. Kolar, C.K. and Brunner, J.R. (1969). Proteose-peptone fraction of bovine milk: distribution in the protein system. J. Dairy Sci. 52, 1541–1546.Google Scholar
  144. Kolar, C.W. and Brunner, J.R. (1970). Proteose-peptone fraction of bovine milk: lacteal serum components 5 and 8—casein-associated glycoproteins. J. Dairy Sci. 53, 997–1008.Google Scholar
  145. Konrad, G., Lieske, B. and Faber, W. (2000). A large-scale isolation of native β-lactoglobulin: characterisation of physicochemical properties and comparison with other methods. Int. Dairy J. 10, 713–721.Google Scholar
  146. Kontopidis, G., Holt, C. and Sawyer, L. (2004). Invited Review: β-Lactoglobulin: Binding properties, structure and function. J. Dairy Sci. 87, 785–796.Google Scholar
  147. Kristiansen, K.R., Otte, J., Ipsin, R. and Qvist, K.B. (1998). Large-scale preparation of β-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int. Dairy J. 8, 113–118.Google Scholar
  148. Kronman, M.J. (1989). Metal-ion binding and the molecular conformational properties of α-lactalbumin. Crit. Rev. Biochem. Mol. Biol. 24, 564–667.Google Scholar
  149. Kunz, C. and Lonnerdal, B. (1992). Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatrica 81, 107–112.Google Scholar
  150. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 196–204.Google Scholar
  151. Laxminarayana, H. and Dastur, N.N. (1968). Buffaloes’ milk and milk products, parts I and II. Dairy Sci. Abstr. 30, 177–186, 231–241.Google Scholar
  152. Le Bars, D. and Gripon, J.-C. (1989). Specificity of plasmin towards bovine αs2-casein. J. Dairy Res. 56, 817–821.Google Scholar
  153. Le Bars, D. and Gripon, J.-C. (1993). Hydrolysis of αs1-casein by bovine plasmin. Lait 74, 337–344.Google Scholar
  154. Le Parc, A., Leonil, J. and Chanat, E. (2010). αs1-Casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly bound membrane-associated form. BMC Cell Biol. 11, 65.Google Scholar
  155. Le Roux, Y., Girardet, J.M., Humbert, G., Laurent, F. and Linden, G. (1995). Proteolysis in samples of quarter milk of varying somatic cell counts. 1. Comparison of some indicators of endogenous proteolysis in milk. J. Dairy Sci. 78, 1289–1297.Google Scholar
  156. Lefebvre-Cases, E., Gastaldi, E. and de la Fuente, B.T. (1998). Influence of chemical agents on interactions in dairy products: Effect of SDS on casein micelles. Colloid Surface B 11, 281–285.Google Scholar
  157. Lefevre, C.M., Sharp, J.A. and Nicholas, K.R. (2009). Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod. Fert. Develop. 21, 1015–1027.Google Scholar
  158. Linderstørm-Lang, K. and Kodama, S. (1929). Studies on casein. III. On the fractionation of casein. Compt. Rend. Trav. Lab. Carlsberg. Ser. Chim. 17, 1–116.Google Scholar
  159. Lindqvist, B. (1963). Casein and the action of rennin, parts I and II. Dairy Sci. Abstr. 25, 257–264; 299–308.Google Scholar
  160. Ling, E.R. (1944). A Textbook of Dairy Chemistry, 2nd edn. Chapman & Hall, London.Google Scholar
  161. Liskova, K., Kelly, A.L., O’Brien, N. and Brodkorb, A. (2010). Effect of denaturation of α-lactalbumin on the formation of BAMLET (bovine α-lactalbumin made lethal to tumor cells). J. Agric. Food Chem. 58, 4421–4427.Google Scholar
  162. Lonnerdal, B. and Forsum, E. (1985). Casein content of human milk. Am. J. Clin. Nutr. 41, 113–120.Google Scholar
  163. Lucey, J.A. (2011). Rennet-induced coagulation of milk, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 1, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, pp. 579–584.Google Scholar
  164. Lyster, R.L. (1972). Review of the progress of dairy science: chemistry of milk proteins. J. Dairy Res. 39, 279–318.Google Scholar
  165. Macy, I.G., Kelley, H. and Sloan, R. (1950). The composition of milks. Bulletin 119, National Research Council, Washington, DC.Google Scholar
  166. Mailliert, P. and Ribadeau-Dumas, B. (1988). Preparation of β-lactoglobulin and β-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH. J. Food Sci. 53, 743–745, 852.Google Scholar
  167. Mann, M., Hendrickson, R.C. and Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Ann. Rev. Biochem. 70, 437–473.Google Scholar
  168. Manso, M.A., Leonil, J., Jan, G. and Gagnaire, V. (2005). Application of proteomics to the characterisation of milk and dairy products. Int. Dairy J. 15, 845–855.Google Scholar
  169. Marella, C., Muthukumarappan, K. and Metzger, L.E. (2011). Evaluation of commercially available, wide-pore ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate. J. Dairy Sci. 94, 1165–1175.Google Scholar
  170. Martin, P., Ferranti, P., Leroux, C. and Addeo, F. (2003). Non-bovine caseins: quantitative variability and molecular diversity, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 277–317.Google Scholar
  171. Martin, G.J.O., Williams, R.P.W. and Dunstan, D.E. (2007). Comparison of casein micelles in raw and reconstituted skim milk. J. Dairy Sci. 90, 4543–4551.Google Scholar
  172. Mather, I.H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83, 203–247.Google Scholar
  173. McConnell, M.A., Buchan, G., Borissenko, M.V. and Brooks, H.J.L. (2001). A comparison of IgG and IgG1 activity in an early milk concentrate from non-immunised cows and a milk from hyperimmunised animals. Food Res. Int. 34, 255–261.Google Scholar
  174. McGann, T.C.A. and Fox, P.F. (1974). Physicochemical properties of casein micelles reformed from urea-treated milk. J. Dairy Res. 41, 45–53.Google Scholar
  175. McKenzie, H.A. (1967). Milk proteins. Adv. Prot. Chem. 22, 55–234.Google Scholar
  176. McKenzie, H.A., ed. (1970). Milk Proteins: Chemistry and Molecular Biology, Vol. 1. Academic Press, New York.Google Scholar
  177. McKenzie, H.A., ed. (1971a). Milk Proteins: Chemistry and Molecular Biology, Vol. 2. Academic Press, New York.Google Scholar
  178. McKenzie, H.A. (1971b). Whole casein: isolation, properties, and zone electrophoresis, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 87–116.Google Scholar
  179. McKenzie, H.A. (1971c). β-Lactoglobulins, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 257–330.Google Scholar
  180. McKenzie, H.A. (1971d). β-lactoglobulin, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2., Academic Press, New York, pp. 257–330.Google Scholar
  181. McKenzie, A.H. and White, F.H. (1991). Lysozyme and α-lactalbumin: structure, function, and interrelationships. Adv. Prot. Chem. 41, 173–315.Google Scholar
  182. McMahon, D.J. and Brown, R.J. (1984). Composition, structure, and integrity of casein micelles: a review. J. Dairy Sci. 67, 499–512.Google Scholar
  183. McMahon, D.J. and McManus, W.R. (1998). Rethinking casein micelle structure using electron microscopy. J. Dairy Sci. 81, 2985–2993.Google Scholar
  184. McMahon, D.J. and Oommen, B.S. (2008). Supramolecular structure of the casein micelle. J. Dairy Sci. 91, 1709–1721.Google Scholar
  185. McMeekin, T.L. (1970). Milk proteins in retrospect, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 1, H.A. McKenzie ed., Academic Press, New York, pp. 3–15.Google Scholar
  186. McMeekin, T.L. and Polis, B.D. (1949). Milk proteins. Adv. Prot. Chem. 5, 201–228.Google Scholar
  187. McSweeney, P.L.H., Olson, N.F., Fox, P.F., Healy, A. and Højrup, P. (1993). Proteolytic specificity of plasmin on bovine αs1-casein. Food Biotechnol. 7, 143–158.Google Scholar
  188. Mellander, O. (1939). Elektrophophoretische Unterschung von Casein. Biochemische Z. 300, 240–245.Google Scholar
  189. Mills, S., Ross, R.P., Hill, C., Fitzgerald, G.F. and Stanton, C. (2011). Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401.Google Scholar
  190. Moon, T.W., Peng, I.C. and Lonergan, D.A. (1988). Chemical properties of cryocasein. J. Food Sci. 53, 1687–1693.Google Scholar
  191. Moon, T.W., Peng, I.C. and Lonergan, D.A. (1989). Functional properties of cryocasein. J. Dairy Sci. 72, 815–828.Google Scholar
  192. Morr, C.V. (1967). Effect of oxalate and urea upon ultracentrifugation properties of raw and heated skim milk casein micelles. J. Dairy Sci. 50, 1744–1751.Google Scholar
  193. Muir, D.D. and Sweetsur, A.W.M. (1976). The influence of naturally occurring levels of urea on the heat stability of bulk milk. J. Dairy Res. 43, 495–499.Google Scholar
  194. Mulvihill, D.M. and Ennis, M.P. (2003). Functional milk proteins: production and utilisation, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 1175–1228.Google Scholar
  195. Mulvihill, D.M. and Fox, P.F. (1989). Physico-chemical and functional properties of milk proteins, in, Developments in Dairy Chemistry, vol. 4 Functional Milk Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 131–172.Google Scholar
  196. Murphy, J.M. and Fox, P.F. (1991). Fractionation of sodium caseinate by ultrafiltration. Food Chem. 39, 27–38.Google Scholar
  197. Needs, E.C., Stenning, R.A., Gill, A.L., Ferragut, V. and Rich, G.T. (2000). High-pressure treatment of milk: Effects on casein micelle structure and on enzymic coagulation. J. Dairy Res. 67, 31–42.Google Scholar
  198. Neelin, J.M. (1964). Variants of κ-casein revealed by improved starch gel electrophoresis. J. Dairy Sci. 47, 506–509.Google Scholar
  199. Ng, W.C., Brunner, J.R. and Rhee, K.C. (1970). Proteose-peptone fraction of bovine milk: lacteum serum component 3—a whey glycoprotein. J. Dairy Sci. 53, 987–996.Google Scholar
  200. O’Connell, J.E. and Fox, P.F. (2003). Heat-induced coagulation of milk, in, Advanced Dairy Chemistry —Volume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 879–945.Google Scholar
  201. O’Connor, P. and Fox, P.F. (1970). Temperature-dependent dissociation of casein micelles from milk of various species. Neth. Milk Dairy J. 27, 199–217.Google Scholar
  202. O’Donnell, R., Holland, J.W., Deeth, H.C. and Alewood, P. (2004). Milk proteomics. Int. Dairy J. 14, 1013–1023.Google Scholar
  203. O’Flaherty, F. (1997). Characterization of Some Minor Caseins and Proteose Peptones of Bovine Milk. Master’s Thesis, National University of Ireland, Cork.Google Scholar
  204. O’Mahony, J.A., Lucey, J.A. and Smith, K.E. (2007). Purification of β-casein from milk. United States Patent Application US 2007/0104847A1.Google Scholar
  205. O’Sullivan, M.M. and Mulvihill, D.M. (2001). Influence of some physico-chemical characteristics of commercial rennet caseins on the performance of the casein in Mozzarella cheese analogue manufacture. Int. Dairy J. 11, 153–163.Google Scholar
  206. Ochirkuyag, B., Chobert, J.-M., Dalgalarrondo, M. and Haertle, T. (2000). Characterization of mare casein: identification of αs1- and αs2-caseins. Lait 80, 223–235.Google Scholar
  207. Oftedal, O.T. and Jenness, R. (1988). Interspecies variation in milk composition among horses, zebras and asses (Perissodactyla: Equidae). J. Dairy Res. 55, 57–66.Google Scholar
  208. Oldfield, D.J., Taylor, M.W. and Singh, H. (2005). Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. Int. Dairy J. 15, 501–511.Google Scholar
  209. Ono, T. and Creamer, L.K. (1986). Structure of goat casein micelles. N.Z. J. Dairy Sci. Technol. 21, 57–64.Google Scholar
  210. Ono, T. and Obata, T. (1989). A model for the assembly of bovine casein micelles from F2 and F3 subunits. J. Dairy Res. 56, 453–461.Google Scholar
  211. Palmer, A.H. (1934). The preparation of a crystalline globulin from the albumin fraction of cow’s milk. J. Biol. Chem. 104, 359–372.Google Scholar
  212. Park, Y.W., Juarez, M., Ramos, M. and Haenlein, G.F.W. (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res. 68, 88–113.Google Scholar
  213. Parquet, D. (1989). Revue bibliographique: la fraction proteose-peptones du lait. Lait 69, 1–21.Google Scholar
  214. Parry, R.M., Jr. and Carroll, R.J. (1969). Location of κ-casein on milk micelles. Biochim. Biophys. Acta 194, 138–150.Google Scholar
  215. Patel, R.S. and Mistry, V.V. (1997). Physicochemical and structural properties of ultrafiltered buffalo milk and milk powder. J. Dairy Sci. 80, 812–817.Google Scholar
  216. Payens, T.A.J. (1966). Association of caseins and their possible relation to structure of the casein micelle. J. Dairy Sci. 49, 1317–1324.Google Scholar
  217. Payens, T.A.J. (1979). Casein micelles: the colloid-chemical approach. J. Dairy Res. 46, 291–306.Google Scholar
  218. Payens, T.A.J. (1982). Stable and unstable casein micelles. J. Dairy Sci. 65, 1863–1873.Google Scholar
  219. Peaker, M. (2002). The mammary gland in mammalian evolution: A brief commentary on some of the concepts. J. Mammary Gland Biol. Neoplasia 7, 347–353.Google Scholar
  220. Pearce, J. (1983). Thermal separation of β-lactoglobulin and α-lactalbumin in bovine Cheddar cheese whey. Aust. J. Dairy Technol. 38, 144–149.Google Scholar
  221. Pedersen, K.O. (1936). Ultracentrifugal and electrophoretic studies on the milk proteins. I. Introduction and preliminary results with fractions from skim milk. Biochem. J. 30, 948–960.Google Scholar
  222. Pepper, L. (1972). Casein interactions as studied by gel chromatography and ultracentrifugation. Biochim. Biophys. Acta 278, 147–154.Google Scholar
  223. Pepper, L. and Farrell, H.M., Jr. (1982). Interactions leading to formation of casein submicelles. J. Dairy Sci. 65, 2259–2266.Google Scholar
  224. Peters, T. (1985). Serum albumin. Adv. Prot. Chem. 37, 161–245.Google Scholar
  225. Peterson, R.F. (1963). High resolution of milk proteins obtained by gel electrophoresis. J. Dairy Sci. 46, 1136–1139.Google Scholar
  226. Pettersson, J., Mossberg, A.K. and Svanborg, C. (2006). α-Lactalbumin species variation, HAMLET formation and tumor cell death. Biochem. Biophys. Res. Commun. 345, 260–270.Google Scholar
  227. Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009). Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643–654.Google Scholar
  228. Pierre, A., Fauquant, J., Le Graet, Y., Piot, M. and Maubois, J.-L. (1992). Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72, 461–474.Google Scholar
  229. Polis, G.A., Shmukler, H.W., Custer, J.H. and McMeekin, T.L. (1950). Isolation of an electrophoretically homogeneous crystalline component of β-lactoglobulin. J. Am. Chem. Soc. 72, 4965–4968.Google Scholar
  230. Poulik, M.D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180, 1477–1479.Google Scholar
  231. Pyne, G.T. (1955). The chemistry of casein. Dairy Sci. Abstr. 17, 531–554.Google Scholar
  232. Pyne, G.T. and McGann, T.C.A. (1960). The colloidal phosphate of milk. J. Dairy Res. 27, 9–17.Google Scholar
  233. Rao, M.B., Gupta, R.C. and Dastur, N. (1970). Camels’ milk and milk products. Indian J. Dairy Sci. 23, 71–78.Google Scholar
  234. Raynal-Ljutovac, K., Park, Y.W., Gaucheron, F. and Bouhallab, S. (2007). Heat stability and enzymatic modifications of goat and sheep milk. Small Ruminant Res. 68, 207–220.Google Scholar
  235. Rijnkels, M. (2002). Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mammary Gland Biol. 7, 327–345.Google Scholar
  236. Rival-Gervier, S., Thepot, D., Jolivet, G. and Houdebine, L.-M. (2003). Pig whey acidic protein gene is ­surrounded by two ubiquitously expressed genes. Biochim. Biophys. Acta 1627, 7–14.Google Scholar
  237. Rizvi, S.S.H. and Brandsma, R.L. (2002). Microfiltration of skim milk for cheese making and whey proteins. US Patent 6,485,762 B1.Google Scholar
  238. Roach, A. and Harte, F. (2008). Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenisation. Innovative Food Sci. Emerging Technol. 9, 1–8.Google Scholar
  239. Rollema, H.S. (1992). Casein association and micelle formation, in, Advanced Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Elsevier Applied Science, London, pp. 111–140.Google Scholar
  240. Rose, D. (1968). Relation between micellar and serum casein in bovine milk. J. Dairy Sci. 51, 1897–1902.Google Scholar
  241. Rose, D. (1969). A proposed model of micelle structure in bovine milk. Dairy Sci. Abstr. 31, 171–175.Google Scholar
  242. Rose, D., Brunner, R.J., Kalan, E.B., Larson, B.L., Melnychyn, P., Swaisgood, H.E. and Waugh, D.F. (1970). Nomenclature of the proteins of cow’s milk: third revision. J. Dairy Sci. 53, 1–17.Google Scholar
  243. Roufik, S., Paquin, P. and Britten, M. (2005). Use of high-performance size exclusion chromatography to characterise protein aggregation in commercial whey protein concentrates. Int. Dairy J. 15, 231–241.Google Scholar
  244. Rowland, S.J. (1938). The determination of the nitrogen distribution in milk. J. Dairy Res. 9, 42–46.Google Scholar
  245. Rudloff, S. and Kunz, C. (1997). Protein and non-protein nitrogen components in human milk, bovine milk and infant formula: Quantitative and qualitative aspects in infant nutrition. J. Pediatric Gastroenterol. Nutr. 24, 328–344.Google Scholar
  246. Ruettimann, K.W. and Ladisch, M.R. (1987). Casein micelles: structure, properties and enzymatic coagulation. Enz. Microbiol. Technol. 9, 578–589.Google Scholar
  247. Salimei, E., Fantuz, F., Coppola, R., Chiolfalo, B., Polidori, P. and Varisco, G. (2004). Composition and characteristics of ass’ milk. Animal Res. 53, 67–78.Google Scholar
  248. Sandra, S. and Dalgleish, D.G. (2005). Effects of ultra-high-pressure homogenisation and heating on structural properties of casein micelles in reconstituted skim milk powder. Int. Dairy J. 15, 1095–1104.Google Scholar
  249. Sawyer, L. (2003). β-Lactoglobulin, in, Advanced Dairy ChemistryVolume 1: Proteins, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 319–386.Google Scholar
  250. Schmidt, D.G. (1980). Colloidal aspects of casein. Neth. Milk Dairy J. 34, 42–64.Google Scholar
  251. Schmidt, D.G. (1982). Association of caseins and casein micelle structure, in, Developments in Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 63–110.Google Scholar
  252. Scollard, P.G., Beresford, T.P., Needs, E.C., Murphy, P.M. and Kelly, A.L. (2000). Plasmin activity, β-lactoglobulin denaturation and proteolysis in high pressure treated milk. Int. Dairy J. 10, 835–310.Google Scholar
  253. Shalabi, S.I. and Fox, P.F. (1987). Electrophoretic analysis of cheese: comparison of methods. Irish J. Food Sci. Technol. 11, 135–151.Google Scholar
  254. Shida, K., Takamizawa, K., Nagaoka, M., Kusiko, T., Osawa, T. and Tsiji, T. (1994). Enterotoxin-binding glycoproteins in a proteose-peptone fraction of heated bovine milk. J. Dairy Sci. 77, 930–939.Google Scholar
  255. Silanikove, N., Leitner, G., Merin, U. and Prosser, C.G. (2010). Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Ruminant Res. 89, 110–124.Google Scholar
  256. Simpson, K.J. and Nicholas, K.R. (2002). Comparative biology of whey proteins. J. Mammary Gland Biol. Neoplasia. 7, 313–326.Google Scholar
  257. Simpson, K.J., Bird, P., Shaw, D. and Nicholas, K. (1998). Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene. J. Mol. Endocrinol. 20, 27–34.Google Scholar
  258. Simpson, K.J., Ranganathan, S., Fisher, J.A., Janssens, P.A., Shaw, D.C. and Nicholas, K.R. (2000). The gene for a novel member of the whey acidic protein family encodes three four-disulphide core domains and is asynchronously expressed during lactation. J. Biol. Chem. 275, 23074–23081.Google Scholar
  259. Slatter, W.L. and van Winkle, Q. (1952). An electrophoretic study of the protein in skim milk. J. Dairy Sci. 35, 1083–1093.Google Scholar
  260. Slattery, C.W. (1976). Review: casein micelle structure; an examination of models. J. Dairy Sci. 59, 1547–1556.Google Scholar
  261. Slattery, C.W. and Evard, R. (1973). A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta 317, 529–538.Google Scholar
  262. Smithies, O. (1955). Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem. J. 61, 629–641.Google Scholar
  263. Solaroli, G., Pagliarini, E. and Peri, C. (1993). Composition and nutritional quality of mare’s milk. Ital. J. Food Sci. V, 3–10.Google Scholar
  264. Sorensen, E.S. and Petersen, T.E. (1993). Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 189–1297.Google Scholar
  265. Sorensen, E.S. and Petersen, T.E. (1994). Identification of two phosphorylation motifs in bovine osteopontin. Biochem. Biophys. Res. Commun. 198, 200–205.Google Scholar
  266. Sorensen, M. and Sorensen, S.P.L. (1939). The proteins of whey. Compt. Rend. Trav. Lab. Carlsberg. Ser. Chim. 23, 35–99.Google Scholar
  267. Sorensen, E.S., Ostersen, S., Chatterton, D., Holst, H.H. and Albertsen, K. (2001). Process for isolation of osteopontin from milk. US Patent US 07259243.Google Scholar
  268. Stack, F.M., Hennessy, M., Mulvihill, D. and O’Kennedy, B.T. (1998). Process for the fractionation of whey constituents. United States Patent US5747647.Google Scholar
  269. Strange, E.D., Malin, E.L., van Hekken, D.L. and Basch, J.J. (1992). Chromatographic and electrophoretic methods used for analysis of milk proteins. J. Chromatogr. 624, 81–102.Google Scholar
  270. Sun, J., Yin, G. and Liu, N. (2010). Purification and identification of osteopontin from bovine milk. Milchwissenschaft 65, 131–134.Google Scholar
  271. Svensson, M., Hakansson, A., Mossberg, A.K., Linse, S. and Svanborg, C. (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc. National Acad. Sci. USA. 97, 4221–4226.Google Scholar
  272. Swaisgood, H.E. (1973). The caseins. CRC Crit. Rev. Food Technol. 3, 375–414.Google Scholar
  273. Swaisgood, H.E. (1975). Methods of Gel Electrophoresis of Milk Proteins. American Dairy Science Association, Champaign, IL, pp. 1–33.Google Scholar
  274. Swaisgood, H.E. (1982). Chemistry of milk proteins, in, Developments in Dairy Chemistry, vol. 1, Proteins, P.F. Fox, ed., Applied Science Publishers, London, pp. 1–59.Google Scholar
  275. Swaisgood, H.E. (2003). Chemistry of the caseins, in, Advanced Dairy Chemistry, 3rd edn., Vol. 1, P. F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum Publishers, New York, pp. 139–201.Google Scholar
  276. Swaisgood, H.E. and Brunner, J.R. (1962). Characterization of κ-casein obtained by fractionation with trichloro­acetic acid in a concentrated urea solution. J. Dairy Sci. 45, 1–11.Google Scholar
  277. Thomas, T.D. and Pritchard, G.G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiol. Lett. 46, 245–268.Google Scholar
  278. Thompson, M.P., Tarassuk, N.P., Jenness, R., Lillevik, H.A., Ashworth, U.S. and Rose, D. (1965). Nomenclature of the proteins of cow’s milk—second revision. J. Dairy Sci. 48, 159–169.Google Scholar
  279. Timasheff, S.N. and Townend, R. (1962). Structural and genetic implications of the physical and chemical differences between β-lactoglobulin A and B. J. Dairy Sci. 45, 259–266.Google Scholar
  280. Tobias, J., Whitney, R.McL. and Tracy, P.H. (1952). Electrophoretic properties of milk proteins. II. Effect of heating at 300ºF by means of the Mallory small tube heat exchanger. J. Dairy Sci. 35, 1036–1045.Google Scholar
  281. Tomee, J.F., Hiemstra, P.S., Heinzel-Wieland, R. and Kauffman, H.F. (1997). Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J. Infect. Dis. 176, 740–747.Google Scholar
  282. Uniacke, T. and Fox, P.F. (2011). Milk of primates, in, Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA, pp. 613–631.Google Scholar
  283. Uniacke-Lowe, T. and Fox, P.F. (2011). Equid milk. Encyclopedia of Dairy Sciences, 2nd edn., Vol. 3, J.W. Fuquay, P.F. Fox and P.L.H. McSweeney, eds., Academic Press, San Diego, CA, USA. pp. 518–529.Google Scholar
  284. Uniacke-Lowe, T., Huppertz, T. and Fox, P.F. (2010). Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 20, 609–629.Google Scholar
  285. Urashima, T., Kitaoka, M., Asakuma, S. and Messer, M. (2009). Milk oligosaccharides, in, Advanced Dairy Chemistry, Vol. 3: Lactose, Water, Salts and Minor Constituents, P.L.H. McSweeney and P.F. Fox, eds., Springer, New York, pp. 295–349.Google Scholar
  286. Van Hekken, D.L. and Thompson, M.P. (1992). Application of PhastSystem to the resolution of bovine milk proteins on urea-polyacrylamide gel electrophoresis. J. Dairy Sci. 75, 1204–1210.Google Scholar
  287. Vanderghem, D., Danthine, S., Blecker, C. and Deroanne, C. (2007). Effect of proteose-peptone addition on some physico-chemical characteristics of recombined dairy creams. Int. Dairy J. 17, 889–895.Google Scholar
  288. Verstegen, M.W.A., Moughan, J. and Schrama, J.W. (1998). The Lactating Sow. Wageningen Press, Wageningen, The Netherlands.Google Scholar
  289. Visser, H. (1992). A new casein micelle model and its consequences for pH and temperature effects on the properties of milk, in, Protein Interactions, H. Visser, ed., VCH, Weinheim, Germany, pp. 135–165.Google Scholar
  290. Visser, S., Noorman, H.J., Slangen, C.J. and Rollema, H.S. (1989a). Action of plasmin on bovine β-casein in a membrane reactor. J. Dairy Res. 56, 323–333.Google Scholar
  291. Visser, S., Slangen, C.J., Alting, A.C. and Vreeman, H.J. (1989b). Specificity of bovine plasmin in its action on αs2-casein. Milchwissenschaft 44, 335–339.Google Scholar
  292. Wake, R.G. and Baldwin, R.L. (1961). Analysis of casein fractions by zone electrophoresis in concentrated urea. Biochim. Biophys. Acta 47, 225–239.Google Scholar
  293. Walstra, P. (1990). On the stability of casein micelles. J. Dairy Sci. 73, 1965–1979.Google Scholar
  294. Walstra, P. (1999). Casein sub-micelles: do they exist? Int. Dairy J. 9, 189–192.Google Scholar
  295. Walstra, P. and Jenness, R. (1984). Dairy Chemistry and Physics. John Wiley & Sons, New York.Google Scholar
  296. Walstra, P., Geurts, T.J., Noomen, A., Jellema, A. and van Boekel, M.A.J.S. (1999). Dairy Technology: Principles of Milk Properties and Processes. Marcel Dekker, Inc., New York.Google Scholar
  297. Walstra, P., Wouters, J.T.M. and Geurts, T.J. (2005). Dairy Science and Technology. CRC/Taylor and Francis, Oxford, UK.Google Scholar
  298. Wang, T. and Lucey, J.A. (2003). Use of multi-angle laser light scattering and size-exclusion chromatography to characterise the molecular weight and types of aggregates present in commercial whey protein products. J. Dairy Sci. 86, 3090–3101.Google Scholar
  299. Warner, R.C. (1944). Separation of α- and β-casein. J. Am. Chem. Soc. 66, 1725–1731.Google Scholar
  300. Waugh, D.F. (1958). The interactions of αs-, β-, and κ-caseins in micelle formation. Far. Soc. Disc. 25, 186–192.Google Scholar
  301. Waugh, D.F. (1971). Formation and structure of casein micelles, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic Press, New York, pp. 3–85.Google Scholar
  302. Waugh, D.F. and von Hipple, P.H. (1956). κ-Casein and the stabilization of casein micelles. J. Am. Chem. Soc. 78, 4576–4582.Google Scholar
  303. Waugh, D.F., Creamer, L.K., Slattery, C.W. and Dresdner, G.W. (1970). Core polymers of casein micelles. Biochemistry 9, 786–795.Google Scholar
  304. Webb, B.H. and Johnson, A.H. (1965). Fundamentals of Dairy Chemistry. AVI Publishing Co., Inc., Westport, CT.Google Scholar
  305. Webb, B.H., Johnson, A.H. and Alford, J.A. (1974). Fundamentals of Dairy Chemistry, 2nd edn. AVI Publishing Co., Westport, CT.Google Scholar
  306. White, J.C.D. and Davies, D.T. (1966). The stability of milk protein to heat: III. Objective measurement of heat stability of milk. J. Dairy Res. 33, 93–102.Google Scholar
  307. Whitney, R.McL., Brunner, J.R., Ebner, K.E., Farrell, H.M., Jr., Josephson, R.V., Morr, C.V. and Swaisgood, H.E. (1976). Nomenclature of the proteins of cow’s milk—fourth revision. J. Dairy Sci. 59, 795–815.Google Scholar
  308. Wong, N.P., Jenness, R., Keeney, M. and Marth, E.H. (1988). Fundamentals of Dairy Chemistry, 3rd edn. AVI Publishing Co., Westport, CT.Google Scholar
  309. Wong, D.W.S., Camirand, W.M. and Pavlath, A.E. (1996). Structure and functionalities of milk proteins. CRC Crit. Rev. Food Sci. Nutr. 36, 807–844.Google Scholar
  310. Woodward, D.R. (1976). The chemistry of mammalian caseins. Dairy Sci. Abstr. 38, 137–150.Google Scholar
  311. Yamada, M., Murakami, K., Wallingford, J.C. and Yuki, Y. (2002). Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and mass spectrometry. Electrophoresis 23, 1153–1160.Google Scholar
  312. Yenugu, S., Richardson, R.T., Sivashanmugam, P., Wang, Z., O’Rand, M.G., French, F.S. and Hall, S.H. (2004). Antimicrobial activity of human EPPIN, an androgen-regulated, sperm-bound protein with a whey acidic protein motif. Biol. Reprod. 71, 1484–1490.Google Scholar
  313. Zappacosta, F., Diluccia, A., Ledda, L. and Addeo, F. (1998). Identification of C-terminally truncated forms of b-lactoglobulin in whey from Romagnola cows’ milk by two dimensional electrophoresis coupled to mass spectrometry. J. Dairy Res. 65, 243–252.Google Scholar
  314. Zittle, C.A. and Custer, J.H. (1963). Fractionation and some properties of αs-casein and κ-casein. J. Dairy Sci. 46, 1183–1188.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Food and Nutritional SciencesUniversity CollegeCorkIreland

Personalised recommendations