Technology for Enhancing Statistical Reasoning at the School Level

  • Rolf Biehler
  • Dani Ben-Zvi
  • Arthur Bakker
  • Katie Makar
Chapter

Abstract

The purpose of this chapter is to provide an updated overview of digital technologies relevant to statistics education, and to summarize what is currently known about how these new technologies can support the development of students’ statistical reasoning at the school level. A brief literature review of trends in statistics education is followed by a section on the history of technologies in statistics and statistics education. Next, an overview of various types of technological tools highlights their benefits, purposes and limitations for developing students’ statistical reasoning. We further discuss different learning environments that capitalize on these tools with examples from research and practice. Dynamic data analysis software applications for secondary students such as Fathom and TinkerPlots are discussed in detail. Examples are provided to illustrate innovative uses of technology. In the future, these uses may also be supported by a wider range of new tools still to be developed. To summarize some of the findings, the role of digital technologies in statistical reasoning is metaphorically compared with travelling between data and conclusions, where these tools represent fast modes of transport. Finally, we suggest future directions for technology in research and practice of developing students’ statistical reasoning in technology-enhanced learning environments.

References

  1. Agudo, J. E., Sanchez, H., & Rico, M. (2010). Playing games on the screen: Adapting mouse interaction at early ages. Proceedings of the 10th IEEE International Conference on Advanced Learning Technologies (pp. 493–497), Sousse, Tunisia.Google Scholar
  2. Alldredge, J. R., & Som, N. A. (2002). Comparison of multimedia educational materials used in an introductory statistical methods course. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a Statistically Literate Society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/6c4_alld.pdf.
  3. Australian Curriculum, Assessment and Reporting Authority (ACARA). (2010). The Australian curriculum: Mathematics. Sydney, Australia: Author.Google Scholar
  4. Bakker, A. (2002). Route-type and landscape-type software for learning statistical data analysis. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a statistically literate society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/7f1_bakk.pdf.
  5. Bakker, A. (2004). Design research in statistics education: On symbolizing and computer tools. Utrecht, The Netherlands: CD Beta Press. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/dissertations/04.Bakker.Dissertation.pdf.
  6. Bakker, A., Biehler, R., & Konold, C. (2005). Should young students learn about box plots? In G. Burrill & M. Camden (Eds.), Curricular development in statistics education. International Association for Statistical Education (IASE) Roundtable, Lund, Sweden, 28 June–3 July 2004 (pp. 163–173). Voorburg, The Netherlands: International Statistical Institute. http://www.stat.auckland.ac.nz/~iase/publications.php.
  7. Bakker, A., & Derry, J. (2011). Lessons from inferentialism for statistics education. Mathematical Thinking and Learning, 13, 5–26.CrossRefGoogle Scholar
  8. Bakker, A., & Frederickson, A. (2005). Comparing distributions and growing samples by hand and with a computer tool. In W. J. Masalski (Ed.), Technology-supported mathematics learning environments: Sixty-seventh Yearbook of the National Council of Teachers of Mathematics (pp. 75–91). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  9. Bakker, A., & Gravemeijer, K. P. E. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  10. Bakker, A., Gravemeijer, K. P. E., van Velthoven, W. (2001). Statistical Minitools 1 and 2 [revised version based on Cobb, Gravemeijer, Bowers, & Doorman 1997]. Nashville, TN & Utrecht, The Netherlands: Vanderbilt University & Utrecht University.Google Scholar
  11. Bakker, A., Kent, P., Noss, R., & Hoyles, C. (2006). Designing statistical learning opportunities for industry. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  12. Bakker, A., Kent, P., Noss, R., & Hoyles, C. (2009). Alternative representations of statistical measures in computer tools to promote communication between employees in automotive manufacturing. Technology Innovations in Statistics Education, 3(2), Article 1. Retrieved from http://escholarship.org/uc/item/S3b9122r.
  13. Becker, R. (1994). A brief history of S. In P. Dirschedl & R. Osterman (Eds.), Computational statistics (pp. 81–110). Heidelberg, Germany: Physica Verlag.CrossRefGoogle Scholar
  14. Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2, 127–155.CrossRefGoogle Scholar
  15. Ben-Zvi, D. (2006). Scaffolding students’ informal inference and argumentation. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/2D1_BENZ.pdf.
  16. Ben-Zvi, D. (2008). Partners in innovation: Helping teachers to integrate technology in the teaching of statistics. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Proceedings of the Joint ICMI/IASE Study on Statistics Education in School Mathematics: Challenges for Teaching and Teacher Education. Monterrey, Mexico: ITESM.Google Scholar
  17. Ben-Zvi, D., & Garfield, J. (Eds.). (2004). The challenge of developing statistical literacy, reasoning, and thinking. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  18. Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden beyond the data? Helping young students to reason and argue about some wider universe. In D. Pratt & J. Ainley (Eds.), Reasoning about informal inferential statistical reasoning: A collection of current research studies. Proceedings of the Fifth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-5). Warwick, UK: University of Warwick.Google Scholar
  19. Ben-Zvi, D., & Sharett-Amir, Y. (2005). How do primary school students begin to reason about distributions? In K. Makar (Ed.), Reasoning about distribution: A collection of current research studies. Proceedings of the Fourth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL–4), [CD-ROM]. Brisbane, Australia: University of Queensland.Google Scholar
  20. Biehler, R. (1993). Software tools and mathematics education: The case of statistics. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (pp. 68–100). Berlin, Germany: Springer.CrossRefGoogle Scholar
  21. Biehler, R. (1994, July). Probabilistic thinking, statistical reasoning, and the search for causes. Do we need a probabilistic revolution after we have taught data analysis? Revised and extended version of a paper presented at the Fourth International Conference on Teaching Statistics (ICOTS 4), Marrakech, Morocco, 25–30 July 1994. Retrieved from http://lama.unipaderborn.de/fileadmin/Mathematik/People/biehler/Homepage/pubs/BiehlerIcots19941.pdf.
  22. Biehler, R. (1997). Software for learning and for doing statistics. International Statistical Review, 65(2), 167–189.CrossRefGoogle Scholar
  23. Biehler, R. (2005). Authentic modelling in stochastics education: The case of the binomial distribution. In G. Kaiser & H.-W. Henn (Eds.), Festschrift für Werner Blum (pp. 19–30). Hildesheim, Germany: Franzbecker.Google Scholar
  24. Biehler, R. (2007a). Skriptum Elementare Stochastik. Kassel, Germany: Universität Kassel.Google Scholar
  25. Biehler, R. (2007b, August). Challenging students’ informal inferential reasoning by means of smoothly introducing p-value based hypothesis testing. Paper presented at the Fifth International Forum for Research on Statistical Reasoning, Thinking and Literacy. University of Warwick, Warwick, UK.Google Scholar
  26. Biehler, R. (2007c). TINKERPLOTS: Eine Software zur Förderung der Datenkompetenz in Primar- und früher Sekundarstufe. Stochastik in der Schule, 27(3), 34–42.Google Scholar
  27. Biehler, R., & Hofmann, T. (2011, August). Designing and evaluating an e-learning environment for supporting students’ problem-oriented use of statistical tool software. Paper presented at the 58th ISI Session, Dublin, Ireland.Google Scholar
  28. Biehler, R., & Prömmel, A. (2010). Developing students’ computer-supported simulation and modelling competencies by means of carefully designed working environments. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_8D3_BIEHLER.pdf.
  29. Burrill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (A joint ICMI/IASE Study) (pp. 57–69). New York, NY: Springer.CrossRefGoogle Scholar
  30. Chambers, J. M. (1980). Statistical computing: History and trends. The American Statistician, 34(4), 238–243.Google Scholar
  31. Chance, B. L., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning. Technology Innovations in Statistics Education,1(1). Article 2. Retrieved from http://escholarship.org/uc/item/8Sd2tyrr.
  32. Chance, B. L., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 295–323). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  33. Cobb, P., Gravemeijer, K. P. E., Bowers, J., & Doorman, L. M. (1997). Statistical Minitools [applets and applications]. Nashville & Utrecht: Vanderbilt University, Freudenthal Institute, & Utrecht University.Google Scholar
  34. Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. American Mathematical Monthly, 104(9), 801–823.CrossRefGoogle Scholar
  35. Cryer, J. (2001, August). Problems with using Microsoft Excel for statistics. Presented at the American Statistical Association (ASA) Joint Statistical Meeting, Atlanta, GA.Google Scholar
  36. cTWO (2007). Rich in meaning. A vision on innovative mathematics education. Utrecht, The Netherlands: Commissie Toekomst WiskundeOnderwijs.Google Scholar
  37. delMas, R. (2004). A comparison of mathematical and statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 79–95). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  38. delMas, R. (2002). Statistical literacy, reasoning and learning. Journal of Statistics Education, 10(3). Online.Google Scholar
  39. Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. Scientific American, 248, 96–110.CrossRefGoogle Scholar
  40. DiSessa, A. A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117–160.Google Scholar
  41. Ernie, K. (1996). Technology reviews: DataScope and ProbSim. Mathematics Teacher, 89, 359–360.Google Scholar
  42. Everson, M. G., & Garfield, J. (2008). An innovative approach to teaching online statistics courses. Technology Innovations in Statistics Education, 2(1), Article 3. Retrieved from http://escholarship.org/uc/item/2v6124xr.
  43. Finzer, W. (2001). Fathom Dynamic Statistics (v1.0) [Current version is 2.1]. Key Curriculum Press.Google Scholar
  44. Finzer, W. (2006). What does dragging this do? The role of dynamically changing data and parameters in building a foundation for statistical understanding. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7D4_FINZ.pdf.
  45. Finzer, W., & Jackiw, N. (1998). Dynamic manipulation of mathematical objects. White paper presented to the NCTM 2000 Electronic Format Group. http://www.dynamicgeometry.com/documents/recentTalks/s2k/DynamicManipulation.doc.
  46. Fitzallen, N., & Watson, J. (2010, July). Developing statistical reasoning facilitated by TinkerPlots. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics, Ljubljana, Slovenia. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  47. Flores, A. (2006). Using graphing calculators to redress beliefs in the “law of small numbers”. In G. F. Burrill (Ed.), Thinking and reasoning with data and chance: Sixty-eighth Yearbook (pp. 291–304). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  48. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  49. Friel, S. N. (2002). Wooden or steel roller coasters: What’s the choice? New England Mathematics Journal, 34, 40–54.Google Scholar
  50. Gal, I. (2002). Developing statistical literacy: Towards implementing change. International Statistical Review, 70(1), 46–51.CrossRefGoogle Scholar
  51. Gal, I., & Ograjenšek, I. (2010). Qualitative research in the service of understanding learners and users of statistics. International Statistical Review, 78, 287–296.CrossRefGoogle Scholar
  52. Garfield, J. (2003). Assessing statistical reasoning. Statistics Education Research Journal, 2(1), 22–38. http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(1).
  53. Garfield, J., & Ben-Zvi, D. (2007). How students learn statistics revisited: A current review research on teaching and learning statistics. International Statistical Review, 75, 372–396.CrossRefGoogle Scholar
  54. Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching practice. New York, NY: Springer.Google Scholar
  55. Garfield, J., & Ben-Zvi, D. (2009). Helping students develop statistical reasoning: Implementing a statistical reasoning learning environment. Teaching Statistics, 31(3), 72–77.CrossRefGoogle Scholar
  56. Garfield, J., Chance, B., & Snell, J. L. (2000). Technology in college statistics courses. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 357–370). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  57. Garfield, J., Zieffler, A., Kaplan, D., Cobb, G. W., Chance, B. L., & Holcomb, J. P. (2011). Rethinking assessment of student learning in statistics courses. The American Statistician, 65(1), 1–10.CrossRefGoogle Scholar
  58. Gil, E., & Ben-Zvi, D. (2011). Explanations and context in the emergence of students’ informal inferential reasoning. Mathematical Thinking and Learning, 13, 87–108.CrossRefGoogle Scholar
  59. Gould, R. (2010). Statistics and the modern student. International Statistical Review, 78, 297–315.CrossRefGoogle Scholar
  60. Hall, J. (2011). Engaging teachers and students with real data: Benefits and challenges. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (pp. 335–346). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  61. Hancock, C. (1995). Tabletop. Cambridge, MA: TERC.Google Scholar
  62. Harradine, A., & Konold, C. (2006). How representational medium affects the data displays students make. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7C4_HARR.pdf.
  63. Heiberger, R. M., & Neuwirth, E. (2009). R through Excel: A spreadsheet interface for statistics, data analysis, and graphics. New York, NY: Springer.Google Scholar
  64. Hoyles, C., Bakker, A., Kent, P., & Noss, R. (2007). Attributing meanings to representations of data: The case of statistical process control. Mathematical Thinking and Learning, 9, 331–360.CrossRefGoogle Scholar
  65. Hoyles, C., Noss, R., Kent, P., & Bakker, A. (2010). Improving mathematics at work: The need for techno-mathematical literacies. London, UK: Routledge.Google Scholar
  66. Hunt, D. N. (1996). Teaching statistics with Excel 5.0. Maths & Stats, 7(2), 11–14.Google Scholar
  67. Ireland, S., & Watson, J. (2009). Building an understanding of the connection between experimental and theoretical aspects of probability. International Electronic Journal of Mathematics Education, 4, 339–370.Google Scholar
  68. Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. New York, NY: Cambridge University Press.Google Scholar
  69. KMK (Eds.). (2004). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss - Beschluss der Kultusministerkonferenz vom 4. 12. 2003 [National standards for mathematics in Germany]. München, Germany: Wolters Kluwer.Google Scholar
  70. Koehler, M. H. (2006). Using graphing calculator simulations in teaching statistics. In G. F. Burrill (Ed.), Thinking and reasoning with data and chance: Sixty-eighth Yearbook (pp. 257–272). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  71. Konold, C. (2002). Teaching concepts rather than conventions. New England Journal of Mathematics, 34(2), 69–81.Google Scholar
  72. Konold, C. (2010, July). The virtues of building on sand. Paper presented at the Eighth International Conference on Teaching Statistics, Ljubljana, Slovenia. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_PL6_KONOLD.html.
  73. Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12, 217–230.CrossRefGoogle Scholar
  74. Konold, C., & Higgins, T. L. (2002). Working with data: Highlights of related research. In S. J. Russell, D. Schifter, & V. Bastable (Eds.), Developing mathematical ideas: Collecting, representing, and analyzing data (pp. 165–201). Parsippany, NJ: Dale Seymour Publications.Google Scholar
  75. Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2003). Data seen through different lenses (Unpublished Manuscript). University of Massachusetts, Amherst, MA.Google Scholar
  76. Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations In Statistics Education, 2(1), Article 1. Retrieved from http://escholarship.org/uc/item/38p7c94r.
  77. Konold, C., & Lehrer, R. (2008). Technology and mathematics education: An essay in honor of Jim Kaput. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 49–72). New York, NY: Routledge.Google Scholar
  78. Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic Data Exploration™ (Version 1.0) [Computer software]. Emeryville, CA: Key Curriculum Press. Retrieved from http://www.keypress.com/x5715.xml.
  79. Konold, C., & Miller, C. (2011). TinkerPlots (Version v2.0) [Computer software]. Emeryville, CA: Key Curriculum Press.Google Scholar
  80. Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259–289.CrossRefGoogle Scholar
  81. Kuhn, J. R. D. (2003). Graphing calculator programs for instructional data diagnostics and statistical inference. Journal of Statistics Education, 11(2). http://www.amstat.org/publications/jse/v11n2/kuhn.html.
  82. Lee, H. S., & Hollebrands, K. (2008). Preparing to teach data analysis and probability with technology. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Proceedings of the Joint ICMI/IASE Study on Statistics Education in School Mathematics: Challenges for teaching and teacher education. Monterrey, Mexico: ITESM.Google Scholar
  83. Lehrer, R., Kim, M., & Schauble, L. (2007). Supporting the development of conceptions of statistics by engaging students in modeling and measuring variability. International Journal of Computers for Mathematics Learning, 12, 195–216.CrossRefGoogle Scholar
  84. Lesser, L. (2007). Using graphing calculators to do statistics: A pair of problematic pitfalls. Mathematics Teacher, 100, 375–378.Google Scholar
  85. Madden, S. R. (2011). Statistically, technologically, and contextually provocative tasks: Supporting teachers’ informal inferential reasoning. Mathematical Thinking and Learning, 13, 109–131.CrossRefGoogle Scholar
  86. Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13, 152–173.CrossRefGoogle Scholar
  87. Makar, K., & Fielding-Wells, J. (2011). Teaching teachers to teach statistical investigations. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (pp. 347–358). New York, NY: Springer.CrossRefGoogle Scholar
  88. Maxara, C. (2009). Stochastische Simulation von Zufallsexperimenten mit Fathom—Eine theoretische Werkzeuganalyse und explorative Fallstudie. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 7. Kassel: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis:34-2006110215452.
  89. Maxara, C., & Biehler, R. (2006). Students’ probabilistic simulation and modeling competence after a computer-intensive elementary course in statistics and probability In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD-ROM]. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/17/7C1_MAXA.pdf.
  90. Maxara, C., & Biehler, R. (2007). Constructing stochastic simulations with a computer tool—students’ competencies and difficulties. Proceedings of CERME 5. http://www.erme.unito.it/CERME5b/WG5.pdf#page=79.
  91. Maxara, C., & Biehler, R. (2010). Students’ understanding and reasoning about sample size and the law of large numbers after a computer-intensive introductory course on stochastics. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute. http://www.stat.auckland.ac.nz/~iase/publications/icots8/ICOTS8_3C2_MAXARA.pdf.
  92. McCullough, B. D., & Wilson, B. (1999). On the accuracy of statistical procedures in Microsoft Excel 97. Computational Statistics and Data Analysis, 31, 27–37.CrossRefGoogle Scholar
  93. Meyfarth, T. (2006). Ein computergestütztes Kurskonzept für den Stochastik-Leistungskurs mit kontinuierlicher Verwendung der Software Fathom—Didaktisch kommentierte Unterrichtsmaterialien. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 2. Kassel, Germany: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis34-2006092214683.
  94. Meyfarth, T. (2008). Die Konzeption, Durchführung und Analyse eines simulationsintensiven Einstiegs in das Kurshalbjahr Stochastik der gymnasialen Oberstufe—Eine explorative Entwicklungsstudie. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 6. Kassel, Germany: Universität Kassel. Retrieved from http://nbn-resolving.org/urn:nbn:de:hebis:34-2006100414792.
  95. Mittag, H. J. (2002). Java applets and multimedia catalogues for statistics education. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a statistically literate society. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://www.stat.auckland.ac.nz/~iase/publications/1/7a1_mitt.pdf.
  96. Moore, D. (1997). New pedagogy and new content: The case of statistics. International Statistical Review, 65, 123–137.CrossRefGoogle Scholar
  97. Moore, D. (1998). Statistics among the liberal arts. Journal of the American Statistical Association, 93(444), 1253–1259.CrossRefGoogle Scholar
  98. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.Google Scholar
  99. New Zealand Ministry of Education. (2007). The New Zealand curriculum. Wellington, New Zealand: Learning Media Ltd.Google Scholar
  100. Noss, R., Bakker, A., Hoyles, C., & Kent, P. (2007). Situating graphs as workplace knowledge. Educational Studies in Mathematics, 65, 367–384.CrossRefGoogle Scholar
  101. Ogborn, J., & Boohan, D. (1991). Making sense of data: Nuffield Exploratory Data Skills Project. Mini-Course 5: Scatterplots. Student book. London, UK: Longman.Google Scholar
  102. Olive, J., & Makar, K. (2010). Mathematical knowledge and practices resulting from access to digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology revisited: Rethinking the terrain (pp. 133–177). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_8.Google Scholar
  103. Paparistodemou, E., & Meletiou-Mavrotheris, M. (2008). Enhancing reasoning about statistical inference in 8 year-old students. Statistics Education Research Journal, 7(2), 83–106.Google Scholar
  104. Pfannkuch, M., & Ben-Zvi, D. (2011). Developing teachers’ statistical thinking. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (A joint ICMI/IASE Study) (pp. 323–333). New York, NY: Springer.CrossRefGoogle Scholar
  105. Podworny, S. (2007). Hypothesentesten mit P-Werten im Stochastikunterricht der gymnasialen Oberstufe—Eine didaktische Analyse konkreten Unterrichts. Master’s thesis: Universität Kassel.Google Scholar
  106. Pratt, D. (1998). The construction of meanings in and for a stochastic domain of abstraction (Unpublished Ph.D. thesis). University of Warwick, Warwick. Retrieved from http://fcis1.wie.warwick.ac.uk/~dave_pratt/papers/thesis.rtf.
  107. Pratt, D., & Ainley, J. (Eds.) (2008). Introducing the special issue on informal inference. Statistical Education Research Journal, 7(2), 3–4Google Scholar
  108. Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega: The International Journal of Management Science, 36, 64–75.CrossRefGoogle Scholar
  109. Qualifications and Curriculum Authority. (2007). The national curriculum. London, UK: Author.Google Scholar
  110. Ridgway, J., Nicholson, J., & McCusker, S. (2007). Reasoning with multivariate evidence. International Electronic Journal of Mathematics Education, 2, 245–269.Google Scholar
  111. Rosa, M., & Lerman, S. (2011). Researching online mathematics education: Opening a space for virtual learner identities. Educational Studies in Mathematics, 78, 69–90.Google Scholar
  112. Rossman, A. J., & Chance, B. L. (2008). Workshop statistics: Discovery with data (3rd ed.). Emeryville, CA: Key College Publishing.Google Scholar
  113. Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth century. New York, NY: W.H. Freeman.Google Scholar
  114. Sandlin, J. A. (2007). Netnography as a consumer education research tool. International Journal of Consumer Studies, 31, 288–294.CrossRefGoogle Scholar
  115. Schafer, D. W., & Ramsey, F. L. (2003). Teaching the craft of data analysis. Journal of Statistics Education, 11(1). Retrieved from http://www.amstat.org/publications/jse/v11n1/schafer.html.
  116. Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical implications. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  117. Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York, NY: Macmillan.Google Scholar
  118. Sklar, J. C., & Zwick R. (2009). Multimedia presentations in educational measurement and statistics: Design considerations and instructional approaches. Journal of Statistics Education, 17(3). Retrieved from http://www.amstat.org/publications/jse/v17n3/sklar.html.
  119. Symanzik, J., & Vukasinovic, N. (2006). Teaching an introductory statistics course with CyberStats, an electronic textbook. Journal of Statistics Education, 14(1). Retrieved from http://www.amstat.org/publications/jse/v14n1/symanzik.html.
  120. Trewin, D. (2007). The evolution of national statistical systems: Trends and implications. Statistical Journal of the International Association for Official Statistics, 24, 5–33.Google Scholar
  121. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar
  122. Tukey, J. W. (1965). The technical tools of statistics. The American Statistician, 19(2), 23–28.Google Scholar
  123. Tukey, J. W. (1972). Data analysis, computation and mathematics. Quarterly of Applied Mathematics, 30, 51–65.Google Scholar
  124. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.Google Scholar
  125. Velleman, P. (1998). Learning data analysis with Data Desk. Reading, MA: Addison-Wesley.Google Scholar
  126. Verzani, J. (2005). Using R for introductory statistics [Online]. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  127. Watson, J. M. (2002). Doing research in statistics education: More than just data. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics: Developing a Statistically Literate Society. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  128. Watson, J. M. (2006). Statistical literacy at school: Growth and goals. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  129. Watson, J. M., & Callingham, R. A. (1997). Data cards: An introduction to higher order processes in data handling. Teaching Statistics, 19, 12–16.CrossRefGoogle Scholar
  130. Watson, J. M., & Donne, J. (2009). TinkerPlots as a research tool to explore student understanding. Technology Innovations in Statistics Education, 3(1), Article 1. Retrieved from http://escholarship.org/uc/item/8dp5t34t.
  131. West, W. (2009). Social data analysis with StatCrunch: Potential benefits to statistical education. Technology Innovations in Statistics Education, 3(1). Retrieved from http://escholarship.org/uc/item/8dp5t34t.
  132. Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67, 223–265.CrossRefGoogle Scholar
  133. Wild, C. J., Pfannkuch, M., Regan, M., & Horton, N. J. (2011). Towards more accessible conceptions of statistical inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(2), 247–295.CrossRefGoogle Scholar
  134. Yates, F. (1971). The use of computers for statistical analysis: A review of aims and achievements. Proceedings of the ISI, Session 36, 39–53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rolf Biehler
    • 1
  • Dani Ben-Zvi
    • 2
  • Arthur Bakker
    • 3
  • Katie Makar
    • 4
  1. 1.University of PaderbornPaderbornGermany
  2. 2.The University of HaifaHaifaIsrael
  3. 3.Utrecht UniversityUtrechtThe Netherlands
  4. 4.The University of QueenslandSt. LuciaAustralia

Personalised recommendations