GPS Based Relative Navigation

  • Oliver Montenbruck
  • Simone D’Amico
Part of the Space Technology Library book series (SPTL, volume 31)


The use of Global Positioning System (GPS) measurements provides the primary technique for determining the relative position of cooperative, formation-flying satellites in low Earth orbit. Similar to terrestrial applications, the relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of double-difference carrier phase ambiguities can be exploited in carrier phase differential GPS (CDGPS). Both aspects enable a substantially higher relative accuracy than can be achieved in single-spacecraft navigation. Following an overview of spaceborne GPS receivers, the dynamical and measurement models for relative navigation using single- or dual-frequency measurements are presented along with a discussion of estimation schemes for real-time and offline applications. Actual flight results from the TanDEM-X and PRISMA missions are presented to demonstrate the feasibility of mm-level post-facto baseline determination and cm-level real-time navigation using CDGPS.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Carrier Phase Orbit Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaplan ED, Hegarty CJ (eds) (2006) Understanding GPS – principles and applications, 2nd edn. Artech House, Boston/LondonGoogle Scholar
  2. 2.
    Bauer FH, Moreau MC, Dahle-Melsaether ME, Petrofski WP, Stanton BJ, Thomason S, Harris GA, Sena RP, Parker Temple L III (2006) The GPS space service volume. ION-GNSS-2006, Fort Worth, 26–29 Sept 2006Google Scholar
  3. 3.
    Corazzini T, Robertson A, Adams JC, Hassibi, A, How JP (1997) GPS sensing for spacecraft formation flying. ION-GPS-1997, Kansas, Sept 1997Google Scholar
  4. 4.
    Fehse W (2003) Automated rendezvous and docking of spacecraft. Cambridge University Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Kelbel D, Lee T, Long A, Carpenter R, Gramling C (2001) Evaluation of relative navigation algorithms for formation-flying satellites using GPS. In: Proceedings of the 2001 flight mechanics symposium. NASA CP-2001-209986, Greenbelt, 19–21 June 2001Google Scholar
  6. 6.
    Space Engineering – Space Environment (2008) ECSS-E-ST-10-04C. European cooperation for space standardization, Noordwijk, 15 Nov 2008Google Scholar
  7. 7.
    Collaboration website of the European cooperation for space standardization. Last accessed 8 July 2012
  8. 8.
    Council Regulation (EC) No. 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items. European Commission, Brussels (2009). Last Accessed 8 July 2012
  9. 9.
    US Department of State, Directorate of Defense Trade Controls (2011) International Traffic in Arms Regulations. Last accessed 8 July 2012
  10. 10.
    Renaudie C, Markgraf M, Montenbruck O, Garcia-Fernandez M (2007) Radiation testing of commercial-off-the-shelf GPS technology for use on low earth orbit satellites. RADECS 2007. In: Proceedings of 9th European conference radiation and its effects on components and systems, Deauville, 10–14 Sept 2007Google Scholar
  11. 11.
    Virtanen A (2006) The use of particle accelerators for space projects. EPS Euroconference XIX nuclear physics divisional conference. J Phys: Conf Ser 41:101–114. DOI:10.1088/1742-6596/41/1/008Google Scholar
  12. 12.
    Zadeh A, Santandrea S, Landstroem S, Markgraf M (2010) DLR Phoenix GPS receiver radiation characterisation campaign proton irradiation testing at PSI – June 2010 test report. TEC-SYV/81/2011/REP/SS, ESA/ESTEC, Noordwijk, 8 Feb 2011Google Scholar
  13. 13.
    Helm A, Hess M-P, Minori M, Gribkov A, Yudanov S, Montenbruck O, Beyerle G, Cacciapuoti L, Nasca R (2009) The ACES GNSS subsystem and its potential for radio-occultation and reflectometry from the International Space Station. In: 2nd international colloquium on scientific and fundamental aspects of the Galileo program, Padua, 14–16 Oct 2009Google Scholar
  14. 14.
    Markgraf M, Montenbruck O, Santandrea S, Naudet J (2010) Phoenix-XNS navigation system onboard the PROBA-2 spacecraft – first flight results. Small satellites systems and services – the 4S symposium, Madeira, Portugal, 31 May–4 June 2010Google Scholar
  15. 15.
    Winternitz LMB, Bamford WA, Heckler GW (2009) A GPS receiver for high-altitude satellite navigation. IEEE J Sel Top Signal Process 3(4):541–556. doi: 10.1109/JSTSP.2009.2023352 CrossRefGoogle Scholar
  16. 16.
    Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semi-codeless GPS receivers for LEO satellites. GPS Solutions 10:249–261. doi: 10.1007/s10291-006-0025-9 CrossRefGoogle Scholar
  17. 17.
    Montenbruck O, Garcia-Fernandez M, Yoon Y, Schön S, Jäggi A (2009) Antenna phase center calibration for precise positioning of LEO satellites. GPS Solutions 13(1):23–34. doi: 10.1007/s10291-008-0094-z CrossRefGoogle Scholar
  18. 18.
    Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy 83(12):1145–1162. doi: 10.1007/s00190-009-0333-2 CrossRefGoogle Scholar
  19. 19.
    van Barneveld P, Montenbruck O, Visser P (2008) Differential ionospheric effects in GPS based navigation of formation flying spacecraft. In: Proceedings of 3rd international symposium on formation flying, missions and technology, ESA/ESTEC, Noordwijk, 23–25 Apr 2008Google Scholar
  20. 20.
    Julien O, Cannon ME, Alves P, Lachapelle G (2004) Triple frequency ambiguity resolution using GPS/Galileo. Eur J Navig 2(2):51–57Google Scholar
  21. 21.
    Van der Marel H (2010) Combining GNSS signals – bias and calibration issues. IGS analysis workshop, Newcastle, June 28–July 1, 2010Google Scholar
  22. 22.
    GPS World Receiver Survey. GPS World. Jan 2012, 1–23Google Scholar
  23. 23.
    García-Rodríguez A (2008) Onboard radio navigation receivers. Technical Dossier – European Space Technology Harmonization, TEC-ETN/2007.65, 16 Apr 2008Google Scholar
  24. 24.
    Roselló Guasch J, Silvestrin P, Aguirre M, Massotti L (2010) Navigation needs for ESA’s earth observation missions. In: Sandau R, Röser H-P, Valenzuela A (eds) Small satellite missions for earth observation – new developments and trends. Springer, Berlin, Heidelberg, pp 457–466. doi: 10.1007/978-3-642-03501-2_41 Google Scholar
  25. 25.
    Montenbruck O, Yoon Y, Ardaens J-S, Ulrich D (2008) In-flight performance assessment of the single frequency MosaicGNSS receiver for satellite navigation. In: Proceedings of 7th international ESA conference on guidance, navigation and control systems, ESA WPP-288, Tralee, 2–5 June 2008Google Scholar
  26. 26.
    Föckersperger S, Hollmann R, Dick G, Reigber C (1997) On board MIR: orienting remote images with MOMSNAV. GPS World 8:32–39Google Scholar
  27. 27.
    Ebinuma T, Rooney E, Gleason S, Unwin M (2005) GPS receiver operations on the disaster monitoring constellation satellites. J Navig 58:227–240CrossRefGoogle Scholar
  28. 28.
    Pinard D, Reynaud S, Delpy P, Strandmoe SE (2007) Accurate and autonomous navigation for the ATV. Aerosp Sci Technol 11:490–498CrossRefGoogle Scholar
  29. 29.
    Hwang Y, Lee B-S, Kim J, Jung O-C, Chung D-W, Kim H (2010) KOMPSAT-2 orbit determination status report. AIAA 2010–8260; AIAA guidance, navigation, and control conference, Toronto, 2–5 Aug 2010Google Scholar
  30. 30.
    D’Amico S, Ardaens J-S, De Florio S, Montenbruck O, Persson S, Noteborn R (2010) GPS-based spaceborne autonomous formation flying experiment (SAFE) on PRISMA: initial commissioning. AIAA/AAS astrodynamics specialist conference, Toronto, 2–5 Aug 2010Google Scholar
  31. 31.
    Spangelo S, Kleshy A, Cutler J (2010) Position and time system for the RAX small satellite mission. AIAA-2010-7980, AIAA/AAS astrodynamics specialist conference, Toronto, 2–5 Aug 2010Google Scholar
  32. 32.
    Sust M, Carlström A, Garcia-Rodriguez A (2009) European spaceborne dual frequency GPS receiver for science and earth observation. ION-GNSS-2009, Savannah, GA, 22–25 Sept 2009Google Scholar
  33. 33.
    Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solutions 12(4):289–299. doi: 10.1007/s10291-008-0091-2 CrossRefGoogle Scholar
  34. 34.
    Zin A, Landenna S, Conti A, Marradi L, Di Raimondo MS (2006) L1/L2 Integrated GPS/WAAS/EGNOS Receiver. ENC-GNSS- 2006 - The European Navigation Conference, 8-10 May 2006, Manchester, UK.Google Scholar
  35. 35.
    Serre S, Mercier F, Garcia A, Grondin M, Boyer C, Favaro H, Gerner J-L, Issler J-L (2010) First In-orbit Results of the L2C-L1C/A GPS receiver on board the PROBA-2 microsatellite. ION-GNSS-2010, Portland, Oregon, 22–24 Sept 2010Google Scholar
  36. 36.
    Langley RB, Montenbruck O, Markgraf M, Kang CS, Kim D (2004) Qualification of a commercial dual-frequency GPS receiver for the e-POP platform onboard the Canadian CASSIOPE spacecraft. NAVITEC’2004, Noordwijk, The Netherlands, 8–10 Dec 2004Google Scholar
  37. 37.
    Markgraf M, Renaudie C, Montenbruck O (2008) The NOX payload – flight validation of a low-cost dual-frequency GPS receiver for micro- and nano-satellites. Small satellites systems and services – the 4S symposium, Rhodes, Greece, 26–30 May 2008Google Scholar
  38. 38.
    Misra P, Enge P (2006) Global positioning system (GPS): signals, measurements and performance, 2nd edn. Ganga-Jamuna, LincolnGoogle Scholar
  39. 39.
    Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geodaet 18:91–98Google Scholar
  40. 40.
    Yunck TP (1993) Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Valance-Jones A (ed) Environmental effects on spacecraft trajectories and positioning. AGU Monograph, Washington, DCGoogle Scholar
  41. 41.
    Lear WM (1987) GPS navigation for low-Earth orbiting vehicles. NASA 87-FM-2, Rev. 1, JSC-32031, Lyndon B. Johnson Space Center, Houston, TXGoogle Scholar
  42. 42.
    Tancredi U, Renga A, Grassi M (2010) GPS-based relative navigation of LEO formations with varying baselines. AIAA/AAS astrodynamics specialist conference, Toronto, 2–5 Aug 2010Google Scholar
  43. 43.
    Psiaki ML, Mohiuddin S (2007) Modeling, analysis, and simulation of GPS carrier phase for spacecraft relative navigation. J Guid Contr Dyn 30(6):1628–1639. doi: 10.2514/1.29534 CrossRefGoogle Scholar
  44. 44.
    Hofmann-Wellenhoff B, Lichtenegger H, Collins J (2001) GPS: theory and practice, 5th edn. Springer, New YorkGoogle Scholar
  45. 45.
    Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70(1–2):65–82. doi: 10.1007/BF00863419 CrossRefGoogle Scholar
  46. 46.
    Cox DB, Brading JDW (2000) Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft. Navig: J ION 47(3):205–210Google Scholar
  47. 47.
    Mohiuddin S, Psiaki ML (2005) Satellite relative navigation using carrier-phase differential GPS with integer ambiguities. AIAA guidance, navigation, and control conference, San Francisco, 15–18 Aug 2005Google Scholar
  48. 48.
    Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise GRACE baseline determination using GPS. GPS Solutions 9:21–31. doi: 10.1007/s10291-004-0123-5 CrossRefGoogle Scholar
  49. 49.
    Wu S-Ch, Bar-Sever Y.E (2006) Real-time sub-cm differential orbit determination of two low-Earth orbiters with GPS bias fixing. ION GNSS 2006, Fort Worth, TX, 26–29 Sep 2006Google Scholar
  50. 50.
    Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39:1612–1619. doi: 10.1016/j.asr.2007.03.012 CrossRefGoogle Scholar
  51. 51.
    Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig: J ION 56(2):135–149Google Scholar
  52. 52.
    de Ruiter A, Lee J, Ng A, Kim Y (2008) Orbit determination and relative positioning techniques for JC2Sat-FF. In: Proceedings of the 3rd international symposium on formation flying, missions and technology, ESA/ESTEC, ESA SP-654, Noordwijk, The Netherlands, 23–25 Apr 2008Google Scholar
  53. 53.
    Psiaki ML (2010) Kalman filtering and smoothing to estimate real-valued states and integer constants. J Guid Contr Dyn 33(5):1404–1417CrossRefGoogle Scholar
  54. 54.
    Clohessy WH, Wiltshire RS (1960) Terminal guidance system for satellite rendezvous. J Aerosp Sci 270:653Google Scholar
  55. 55.
    Vallado DA (1997) Fundamentals of astrodynamics and applications. McGraw-Hill, New YorkGoogle Scholar
  56. 56.
    Schaub H-P (2002) Spacecraft relative orbit geometry description through orbit element differences. In: 14th US national congress of theoretical and applied mechanics, Blacksburg, 23–28 June, 2002Google Scholar
  57. 57.
    Montenbruck O, Kirschner M, D’Amico S, Bettadpur S (2006) E/I-vector separation for safe switching of the GRACE formation. Aerosp Sci Technol 10(7):628–635zbMATHCrossRefGoogle Scholar
  58. 58.
    Tschauner J, Hempel P (1965) Rendezvous zu einem in Elliptischer Bahn Umlaufenden Ziel. Astronaut Acta 11:104–109zbMATHGoogle Scholar
  59. 59.
    Yamanaka K, Ankersen F (2002) New state transition matrix for relative motion on an arbitrary elliptical orbit. J Guid Contr Dyn 25(1):60–66. doi: 10.2514/2.4875 CrossRefGoogle Scholar
  60. 60.
    Gim D-W, Alfriend KT (2001) The state transition matrix of relative motion for the perturbed non-circular reference orbit. Paper no. 01–222, AAS/AIAA space flight mechanics meeting, Santa Barbara, Feb 2001Google Scholar
  61. 61.
    Carter T, Humi M (2002) Clohessy–Wiltshire equations modified to include quadratic drag. J Guid Contr Dyn 25(6):1058–1063CrossRefGoogle Scholar
  62. 62.
    Schweighart SA, Sedwick RJ (2002) High-fidelity linearized J2 model for satellite formation flight. J Guid Contr Dyn 25(6):1073–1080CrossRefGoogle Scholar
  63. 63.
    Hamel JF, De LaFontaine J (2007) Linearized dynamics of formation flying spacecraft on a J2-perturbed elliptical orbit. J Guid Contr Dyn 30(6):1649–1658. doi: 10.2514/1.29438 CrossRefGoogle Scholar
  64. 64.
    Montenbruck O, Gill E (2000) Satellite orbits – models, methods and applications. Springer Verlag, HeidelbergzbMATHGoogle Scholar
  65. 65.
    Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0 – user manual. University of Bern, Jan 2007Google Scholar
  66. 66.
    Rowlands D, Marshall JA, McCarthy J et al (1995) GEODYN system description II, vol 1–5. Hughes STX, GreenbeltGoogle Scholar
  67. 67.
    Montenbruck O, van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271. doi: 10.1016/j.ast.2005.01.003 CrossRefGoogle Scholar
  68. 68.
    Springer T (2009), NAPEOS Mathematical Models and Algorithms. DOPS-SYS-TN-0100-OPS-GN, Issue 1.0, Nov. 2009, ESA/ESOC, DarmstadtGoogle Scholar
  69. 69.
    Goldstein DB, Born GH, Axelrad P (2001) Real-time, autonomous precise orbit determination using GPS. Navig: J ION 48(3):155–168Google Scholar
  70. 70.
    Montenbruck O, Ramos-Bosch P (2008) Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solutions 12(3):187–198. doi: 10.1007/s10291-007-0080-x CrossRefGoogle Scholar
  71. 71.
    Vallado DA, Finkleman D (2008) A critical assessment of satellite drag and atmospheric density modeling. AIAA-2008-6442, AIAA/AAS astrodynamics specialist conference, Honolulu, Hawaii, 18–21 Aug 2008Google Scholar
  72. 72.
    Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low Earth satellites. J Guid Contr Dyn 14(1):24–30CrossRefGoogle Scholar
  73. 73.
    Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geodesy 80(1):47–60. doi: 10.1007/s00190-006-0029-9 CrossRefGoogle Scholar
  74. 74.
    Montenbruck O, Hauschild A, Zangerl F, Zsalcsik W, Ramos-Bosch P, Klein U (2009) Onboard real-time navigation for the sentinel-3 mission. ION-GNSS-2009, Savannah, USA, 22–25 Sept 2009Google Scholar
  75. 75.
    Montenbruck O, Wermuth M, Kahle R (2010) GPS based relative navigation for the TanDEM-X mission – first flight results. ION-GNSS-2010 conference, Portland, Oregon, 21–24 Sept 2010Google Scholar
  76. 76.
    D’Amico S, Gill E, Garcia-Fernandez M, Montenbruck O (2006) GPS-based real-time navigation for the PRISMA formation flying mission. 3rd ESA workshop on satellite navigation user equipment technologies, NAVITEC’2006, Noordwijk, 11–13 Dec 2006Google Scholar
  77. 77.
    D’Amico S, Ardaens J-S, Montenbruck O (2009) Navigation of formation flying spacecraft using GPS: the PRISMA technology demonstration. ION-GNSS-2009, Savannah, USA, 22–25 Sept 2009Google Scholar
  78. 78.
    Montenbruck O, Gill E (2001) State interpolation for on-board navigation systems. Aerosp Sci Technol 5:209–220. doi: 10.1016/S1270-9638(01)01096-3 zbMATHCrossRefGoogle Scholar
  79. 79.
    Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equations. Freeman and Comp., San FranciscozbMATHGoogle Scholar
  80. 80.
    Wermuth M, Montenbruck O, van Helleputte T (2010) GPS High precision Orbit determination software tools (GHOST). 4th international conference on astrodynamics tools and techniques, Madrid, 3–6 May 2010Google Scholar
  81. 81.
    Hairer E, Nørsett SP, Wanner G (1987) Solving ordinary differential equations I. Springer, Berlin-Heidelberg/New YorkzbMATHGoogle Scholar
  82. 82.
    Gill E, Montenbruck O, Kayal H (2001) The BIRD Satellite Mission as a milestone towards GPS-based autonomous navigation. Navig: J ION 48(2):69–75Google Scholar
  83. 83.
    Montenbruck O, Markgraf M, Santandrea S, Naudet J, Gantois K, Vuilleumier P (2008) Autonomous and precise navigation of the PROBA-2 spacecraft. AIAA 2008–7086, AIAA astrodynamics specialist conference, Honolulu, Hawaii, 18–21 Aug 2008Google Scholar
  84. 84.
    Kroes R (2006) Precise relative positioning of formation flying spacecraft using GPS. Ph.D. thesis, TU DelftGoogle Scholar
  85. 85.
    Zhu S, Reigber Ch, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geodesy 78:103–108. doi: 10.1007/s00190-004-0379-0 CrossRefGoogle Scholar
  86. 86.
    Brown RG, Hwang PYC (1992) Introduction to random signals and applied Kalman filtering, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  87. 87.
    Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. IEEE Trans Autom Contr 92(3):401–422. doi: 10.1109/JPROC.2003.823141 MathSciNetGoogle Scholar
  88. 88.
    Ilyas M, Lim J, Lee JG, Park CG (2008) Federated unscented Kalman filter design for multiple satellites formation flying in LEO. International conference on control, automation and systems, Seoul, Korea, 14–17 Oct 2008Google Scholar
  89. 89.
    Pardal PCPM, Kuga HK, Vilhena de Moraes R (2011) Robustness assessment between sigma point and extended Kalman filter for orbit determination. In: 22nd international symposium on spaceflight dynamics, Sao Jose dos Campos, Brazil, 28 Feb–4 Mar 2011Google Scholar
  90. 90.
    Bierman GJ (1977) Factorization methods for discrete sequential estimation. Academic, New YorkzbMATHGoogle Scholar
  91. 91.
    Busse FD, How JP, Simpson J (2002) Demonstration of adaptive extended Kalman filter for low earth orbit formation estimation using CDGPS. In: Proceedings of ION-GPS-2002, Portland, OR, 24–27 Sept 2002Google Scholar
  92. 92.
    Leung S, Montenbruck O (2005) Real-time navigation of formation-flying spacecraft using global positioning system measurements. J Guid Contr Dyn 28(2):226–235CrossRefGoogle Scholar
  93. 93.
    Roth N, Urbanek J, Johnston-Lemke B, Bradbury L, Armitage S, Leonard M, Ligori M, Grant C, Damaren C, Zee R (2011) System-level overview of CanX-4 and CanX-5 formation flying satellites. 4th international conference on spacecraft formation flying missions and technologies, St-Hubert, Quebec, 18–20 May 2011Google Scholar
  94. 94.
    Ebinuma T, Bishop RH, Lightsey G (2001) Spacecraft rendezvous using GPS relative navigation. In: AAS 01–152, 11th annual AAS/AIAA space flight mechanics meeting, Santa Barbara, CAGoogle Scholar
  95. 95.
    Park YW, Brazzel JP Jr, Carpenter JR, Hinkel HD, Newman JH (1996) Flight test results from real-time relative global positioning system flight experiment on STS-69, vol 104824, NASA technical memorandum. National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  96. 96.
    Moreau G, Marcille H(1997) RGPS postflight analysis of ARP-K flight demonstration. 12th international symposium on spaceflight dynamics, Darmstadt, Germany, ESA SP-403, 2–6 June 1997, pp 97–102Google Scholar
  97. 97.
    Highsmith D, Axelrad P (1999) Relative state estimation using GPS flight data from co-orbiting spacecraft. ION-GPS-1999, Nashville TN, 14–17 Sept 1999Google Scholar
  98. 98.
    Moreau G, Marcille H (1998) On-board precise relative orbit determination. 2nd European symposium on global navigation satellite systems, Toulouse, France, 20–23 Oct 1998Google Scholar
  99. 99.
    Cavrois B, Personne G, Stramdmoe S, Reynuad S, Narmada Zink M (2008) Two different implemented relative position/velocity estimations using GPS sensors on-board-ATV. 7th ESA conference on guidance, navigation and control systems, Tralee, Ireland, 2–5 June 2008Google Scholar
  100. 100.
    Kawano I, Mokuno M, Kasai T, Suzuki T (1999) First autonomous rendezvous using relative GPS navigation by ETS-VII. ION-GPS-1999, Nashville TN, 14–17 Sept 1999Google Scholar
  101. 101.
    Kawano I, Mokuno M, Miyano T, Suzuki T (2000) Analysis and evaluation of GPS relative navigation using carrier phase for RVD experiment satellite of ETS-VII. ION-GPS-2000, Salt Lake City, Utah, 19–22 Sept 2000Google Scholar
  102. 102.
    Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high resolution SAR interferometry. IEEE Trans Geosci Rem Sens 45(11):3317–3341. doi: 10.1109/TGRS.2007.900693 CrossRefGoogle Scholar
  103. 103.
    Wermuth M, Montenbruck O, Wendleder A (2011) Relative navigation for the TanDEM-X mission and evaluation with DEM calibration results. 22nd international symposium on spaceflight dynamics, Sao Jose dos Campos, Brazil, 28 Feb–4 Mar 2011Google Scholar
  104. 104.
    Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607CrossRefGoogle Scholar
  105. 105.
    Bertiger W, Bar-Sever Y, Desai S, Dunn C, Haines B, Kruizinga G, Kuang D, Nandi S, Romans L, Watkins M, Wu S, Bettadpur S (2002) GRACE: millimeters and microns in orbit. In: Proceedings of ION-GPS-2002, Portland, Oregon, pp 2022–2029, 24–27 Sept 2002Google Scholar
  106. 106.
    Svehla D, Rothacher M (2004) Formation flying of LEO satellites using GPS. EOS Trans. AGU, 85(47), Fall Meeting Supplement Abstract SF53A-0735. American Geosciences Union 2004, San Francisco, 13–17 Dec 2004Google Scholar
  107. 107.
    Wickert J, Arras Ch, Beyerle G, Heise S, Jakowski N, Rothacher M, Schmidt Th, Stosius R (2009) Scientifc use of GPS signals in space. 7th IAA symposium on small satellite for earth observation, Berlin, 4–8 May 2009Google Scholar
  108. 108.
    Montenbruck O, Wermuth M, Kahle R (2010) GPS based relative navigation for the TanDEM-X mission – first flight results. ION-GNSS-2010 conference, Portland, Oregon, 21–24 Sep 2010Google Scholar
  109. 109.
    Jäggi A, Montenbruck O, König R, Wermuth M, Moon Y, Bock H, Bodenmann D(2012)Inter-agency comparison of TerraSAR-X and TanDEM-X baseline solutions; Advances in Space Research 50(2):260–271. doi: 10.1016/j.asr.2012.03.027
  110. 110.
    Ardaens JS, D’Amico S, Montenbruck O (2011) Final commissioning of the PRISMA GPS navigation system. 22nd international symposium on spaceflight dynamics, Sao Jose dos Campos, Brazil, 28 Feb–4 Mar 2011Google Scholar
  111. 111.
    Montenbruck O, Delpech M, Ardaens J-S, Delong N, D’Amico S, Harr J (2008) Cross-validation of GPS and FFRF-based relative navigation for the PRISMA mission. 4th ESA workshop on satellite navigation user equipment technologies. NAVITEC’2008, ESA/ESTEC, Noordwijk, ESA WPP-297, 10–12 Dec 2008Google Scholar
  112. 112.
    Grelier T, Guidotti P-Y, Delpech M, Harr J, Thevenet J-B, Leyre X (2010) Formation flying radio frequency instrument: first flight results from the PRISMA mission. NAVITEC’2010, Noordwijk, The Netherlands, 8–10 Dec 2010Google Scholar
  113. 113.
    D’Amico S, De Florio S, Ardaens J-S, Yamamoto T (2008) Offline and hardware-in-the-loop validation of the GPS-based real-time navigation system for the PRISMA formation flying mission. 3rd international symposium on formation flying, missions and technology, ESA/ESTEC, Noordwijk, 23–25 Apr 2008Google Scholar
  114. 114.
    D’Amico S, Ardaens J-S, Larsson R (2011) In-flight demonstration of formation control based on relative orbital elements. 4th international conference on spacecraft formation flying missions and technologies, St-Hubert, Quebec, 18–20 May 2011Google Scholar
  115. 115.
    Larsson R, Noteborn R, Bodin P, D’Amico S, Karlsson T, Carlsson A (2011) Autonomous formation flying in LEO – seven months of routine formation flying with frequent reconfigurations. 4th international conference on spacecraft formation flying missions and technologies, St-Hubert, Quebec, 18–20 May 2011Google Scholar
  116. 116.
    Larsson R, D’Amico S, Noteborn R, Bodin P (2011) GPS navigation based proximity operations by the PRISMA satellites – flight results. 4th international conference on spacecraft formation flying missions and technologies, St-Hubert, Quebec, 18–20 May 2011Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.German Aerospace Center (DLR), German Space Operations CenterWesslingGermany

Personalised recommendations