Anomalous Diffusion in Polymers: Long-Time Behaviour

  • Dmitry A. VorotnikovEmail author
Part of the Fields Institute Communications book series (FIC, volume 64)


We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.



The work was partially supported by RFBR.

Received 9/8/2009; Accepted 6/3/2010


  1. 1.
    H. Amann, Global existence for a class of highly degenerate parabolic systems. Japan J. Indust. Appl. Math. 8, 143–151 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Amann, Highly degenerate quasilinear parabolic systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 135–166 (1991)MathSciNetzbMATHGoogle Scholar
  3. 3.
    A.V. Babin, M.I. Vishik, Attractors of Evolution Equations (Nauka, Moscow, 1989) (Eng. transl.: North-Holland, 1992)Google Scholar
  4. 4.
    J.M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci. 7, 475–502 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors. J. Math Pures Appl. 76, 913–964 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 (AMS Colloquium Publications, Providence, 2002)zbMATHGoogle Scholar
  7. 7.
    D.S. Cohen, A.B. White Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers. SIAM J. Appl. Math. 51, 472–483 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D.S. Cohen, A.B. White Jr., T.P. Witelski, Shock formation in a multidimensional viscoelastic diffusive system. SIAM J. Appl. Math. 55, 348–368 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. J. Durning, Differential sorption in viscoelastic fluids. J. Polymer Sci., Polymer Phys. Ed. 23, 1831–1855 (1985)Google Scholar
  10. 10.
    D.A. Edwards, A mathematical model for trapping skinning in polymers. Stud. Appl. Math. 99, 49–80 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D.A. Edwards, A spatially nonlocal model for polymer desorption. J. Eng. Math. 53, 221–238 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.A. Edwards, R.A. Cairncross, Desorption overshoot in polymer-penetrant systems: Asymptotic and computational results. SIAM J. Appl. Math. 63, 98–115 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.A. Edwards, D.S. Cohen, A mathematical model for a dissolving polymer. AIChE J. 18, 2345–2355 (1995)CrossRefGoogle Scholar
  14. 14.
    B. Hu, Diffusion of penetrant in a polymer: a free boundary problem. SIAM J. Math. Anal. 22, 934–956 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Hu, J. Zhang, Global existence for a class of non-Fickian polymer-penetrant systems. J. Partial Diff. Eqs. 9, 193–208 (1996)MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostehizdat, Russian, 1956) (Engl. transl., Macmillan, 1964)Google Scholar
  17. 17.
    S.-W. Lee, Relaxation Characteristics of Poly(vinylidene fluoride) and Ethylene-chlorotrifluoroethylene in the Transient Uptake of Aromatic Solvents. Korean J. Chem. Eng. 21, 1119–1125 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    I. Moise, R. Rosa, X.M. Wang, Attractors for noncompact semigroups via energy equations. Nonlinearity 11, 1369–1393 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Riviere, S. Shaw, Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM. J. Numer. Anal. 44, 2650–2670 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Sell, Global attractors for the three-dimensional Navier-Stokes equations. J. Dyn. Diff. Eq. 8, 1–33 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    I.V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems. Translations of Mathematical Monographs, vol. 139. (Amer. Math. Soc., Providence, 1994)Google Scholar
  23. 23.
    N. Thomas, A.H. Windle, Transport of methanol in poly-(methyl-methocry-late). Polymer 19, 255–265 (1978)CrossRefGoogle Scholar
  24. 24.
    N. Thomas, A.H. Windle, A theory of Case II diffusion. Polymer 23, 529–542 (1982)CrossRefGoogle Scholar
  25. 25.
    D.A. Vorotnikov, Dissipative solutions for equations of viscoelastic diffusion in polymers. J. Math. Anal. Appl. 339, 876–888 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D.A. Vorotnikov, Weak solvability for equations of viscoelastic diffusion in polymers with variable coefficients. J. Differ. Equat. 246, 1038–1056 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D.A. Vorotnikov, On repeated concentration and periodic regimes with anomalous diffusion in polymers. (Russian) Mat. Sb. 201(1), 59–80 (2010) [translation in Sb. Math. 201(1–2), 57–77 (2010)]MathSciNetCrossRefGoogle Scholar
  28. 28.
    D.A. Vorotnikov, The second boundary value problem for equations of viscoelastic diffusion in polymers, in Advances in Mathematics Research, ed. by R. Albert Baswell, vol. 10 (Nov. Sc. Publ., New York, 2010) pp. 249–271Google Scholar
  29. 29.
    D.A. Vorotnikov, V.G. Zvyagin, Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium. J. Math. Fluid Mech. 10, 19–44 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    T.P. Witelski, Traveling wave solutions for case II diffusion in polymers. J. Polymer Sci. Part B: Polymer Phys. 34, 141–150 (1996)CrossRefGoogle Scholar
  31. 31.
    V.G. Zvyagin, D.A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, de Gruyter Series in Nonlinear Analysis and Applications, vol. 12 (Walter de Gruyter, Berlin, 2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of MathematicsVoronezh State UniversityVoronezhRussia

Personalised recommendations