HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells

  • Maura Rossetti
  • Mariangela Cavarelli
  • Silvia Gregori
  • Gabriella Scarlatti
Part of the Advances in Experimental Medicine and Biology book series (volume 762)


Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.


Dendritic Cell Human Dendritic Cell Gene Therapy Approach Therapeutic Gene Transfer Transfer Vector Construct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296(5577):2410–2413PubMedGoogle Scholar
  2. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360(5):447–458PubMedGoogle Scholar
  3. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23(1):108–116PubMedGoogle Scholar
  4. Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L (2009) Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther 17(6):1039–1052PubMedGoogle Scholar
  5. Andolfi G, Fousteri G, Rossetti M, Magnani C, Jofra T, Locafaro G, Bondanza A, Silvia Gregori S, Roncarolo MG (2012) Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells. Mol Ther. 2012 Jun 12 [ePub ahead of print].PubMedGoogle Scholar
  6. Annoni A, Battaglia M, Follenzi A, Lombardo A, Sergi-Sergi L, Naldini L et al (2007) The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+ CD25+ regulatory T cells. Blood 110(6):1788–1796PubMedGoogle Scholar
  7. Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG (2009) In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 114(25):5152–5161PubMedGoogle Scholar
  8. Arce F, Rowe HM, Chain B, Lopes L, Collins MK (2009) Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol Ther 17(9):1643–1650PubMedGoogle Scholar
  9. Arruda VR, Favaro P, Finn JD (2009) Strategies to modulate immune responses: a new frontier for gene therapy. Mol Ther 17(9):1492–1503PubMedGoogle Scholar
  10. Bahner I, Sumiyoshi T, Kagoda M, Swartout R, Peterson D, Pepper K et al (2007) Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 15(1):76–85PubMedGoogle Scholar
  11. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMedGoogle Scholar
  12. Banasik MB, McCray PB Jr (2010) Integrase-defective lentiviral vectors: progress and applications. Gene Ther 17(2): 150–157Google Scholar
  13. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202(8):1131–1139PubMedGoogle Scholar
  14. Barron MA, Blyveis N, Palmer BE, MaWhinney S, Wilson CC (2003) Influence of plasma viremia on defects in number and immunophenotype of blood dendritic cell subsets in human immunodeficiency virus 1-infected individuals. J Infect Dis 187(1):26–37PubMedGoogle Scholar
  15. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG et al (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275PubMedGoogle Scholar
  16. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al (2011) Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117(20):5332–5339PubMedGoogle Scholar
  17. Breckpot K, Corthals J, Heirman C, Bonehill A, Michiels A, Tuyaerts S et al (2004) Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 15(6):562–573PubMedGoogle Scholar
  18. Breckpot K, Emeagi PU, Thielemans K (2008) Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther 8(6):438–448PubMedGoogle Scholar
  19. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12(5):585–591PubMedGoogle Scholar
  20. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P et al (2007a) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13):4144–4152PubMedGoogle Scholar
  21. Brown BD, Sitia G, Annoni A, Hauben E, Sergi LS, Zingale A et al (2007b) In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 109(7):2797–2805PubMedGoogle Scholar
  22. Browning MT, Schmidt RD, Lew KA, Rizvi TA (2001) Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 75(11):5129–5140PubMedGoogle Scholar
  23. Brussel A, Sonigo P (2004) Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J Virol 78(20):11263–11271PubMedGoogle Scholar
  24. Bukovsky AA, Song JP, Naldini L (1999) Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73(8):7087–7092PubMedGoogle Scholar
  25. Carbonneil C, Donkova-Petrini V, Aouba A, Weiss L (2004) Defective dendritic cell function in HIV-infected patients receiving effective highly active antiretroviral therapy: neutralization of IL-10 production and depletion of CD4+ CD25+ T cells restore high levels of HIV-specific CD4+ T cell responses induced by dendritic cells generated in the presence of IFN-alpha. J Immunol 172(12):7832–7840PubMedGoogle Scholar
  26. Chen X, He J, Chang LJ (2004) Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells. Retrovirology 1:37PubMedGoogle Scholar
  27. Di Domizio J, Blum A, Gallagher-Gambarelli M, Molens JP, Chaperot L, Plumas J (2009) TLR7 stimulation in human plasmacytoid dendritic cells leads to the induction of early IFN-inducible genes in the absence of type I IFN. Blood 114(9):1794–1802PubMedGoogle Scholar
  28. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A et al (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43PubMedGoogle Scholar
  29. Dillon SM, Robertson KB, Pan SC, Mawhinney S, Meditz AL, Folkvord JM et al (2008) Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J Acquir Immune Defic Syndr 48(1):1–12PubMedGoogle Scholar
  30. Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F et al (2001) Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98(8):2574–2576PubMedGoogle Scholar
  31. Donaghy H, Gazzard B, Gotch F, Patterson S (2003) Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 101(11):4505–4511PubMedGoogle Scholar
  32. Dropulic B, Lin NH, Martin MA, Jeang KT (1992) Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol 66(3):1432–1441PubMedGoogle Scholar
  33. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471PubMedGoogle Scholar
  34. Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL et al (2006) Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13(7):630–640PubMedGoogle Scholar
  35. Duzgunes N, Simoes S, Konopka K, Rossi JJ, Pedroso de Lima MC (2001) Delivery of novel macromolecular drugs against HIV-1. Expert Opin Biol Ther 1(6):949–970PubMedGoogle Scholar
  36. Dyall J, Latouche JB, Schnell S, Sadelain M (2001) Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 97(1):114–121PubMedGoogle Scholar
  37. Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16(11):1241–1246PubMedGoogle Scholar
  38. Endres MJ, Jaffer S, Haggarty B, Turner JD, Doranz BJ, O’Brien PJ et al (1997) Targeting of HIV- and SIV-infected cells by CD4-chemokine receptor pseudotypes. Science 278(5342):1462–1464PubMedGoogle Scholar
  39. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al (2003) In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 111(11):1673–1681PubMedGoogle Scholar
  40. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13(2):243–260PubMedGoogle Scholar
  41. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10):3700–3709PubMedGoogle Scholar
  42. Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7(5):306–315PubMedGoogle Scholar
  43. Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A et al (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78(10):5223–5232PubMedGoogle Scholar
  44. Geijtenbeek TB, van Kooyk Y (2003) Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111(7–8):698–714PubMedGoogle Scholar
  45. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606PubMedGoogle Scholar
  46. Goudy KS, Annoni A, Naldini L, Roncarolo MG (2011) Manipulating immune tolerance with micro-RNA regulated gene therapy. Front Microbiol 2:221PubMedGoogle Scholar
  47. Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2003) Heterologous human immunodeficiency virus type 1 lentiviral vectors packaging a simian immunodeficiency virus-derived genome display a specific postentry transduction defect in dendritic cells. J Virol 77(17):9295–9304PubMedGoogle Scholar
  48. Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674PubMedGoogle Scholar
  49. Granelli-Piperno A, Shimeliovich I, Pack M, Trumpfheller C, Steinman RM (2006) HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J Immunol 176(2):991–998PubMedGoogle Scholar
  50. Grassi F, Hosmalin A, McIlroy D, Calvez V, Debre P, Autran B (1999) Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS 13(7):759–766PubMedGoogle Scholar
  51. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96(4):1327–1333PubMedGoogle Scholar
  52. Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008PubMedGoogle Scholar
  53. Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M et al (2006) HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J Immunol 177(10):7103–7113PubMedGoogle Scholar
  54. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979–990PubMedGoogle Scholar
  55. Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O et al (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577PubMedGoogle Scholar
  56. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698PubMedGoogle Scholar
  57. Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G et al (2010) Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 84(13):6645–6653PubMedGoogle Scholar
  58. Kang Y, Xie L, Tran DT, Stein CS, Hickey M, Davidson BL et al (2005) Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer. Blood 106(5):1552–1558PubMedGoogle Scholar
  59. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105PubMedGoogle Scholar
  60. Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A (2003) Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol 170(8):4260–4266PubMedGoogle Scholar
  61. Keir ME, Stoddart CA, Linquist-Stepps V, Moreno ME, McCune JM (2002) IFN-alpha secretion by type 2 predendritic cells up-regulates MHC class I in the HIV-1-infected thymus. J Immunol 168(1):325–331PubMedGoogle Scholar
  62. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72(1):811–816PubMedGoogle Scholar
  63. Krathwohl MD, Schacker TW, Anderson JL (2006) Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193(4):494–504PubMedGoogle Scholar
  64. Kuate S, Stahl-Hennig C, Stoiber H, Nchinda G, Floto A, Franz M et al (2006) Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus. Virology 351(1):133–144PubMedGoogle Scholar
  65. Leavitt MC, Yu M, Yamada O, Kraus G, Looney D, Poeschla E et al (1994) Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther 5(9):1115–1120PubMedGoogle Scholar
  66. Lee CL, Dang J, Joo KI, Wang P (2011) Engineered lentiviral vectors pseudotyped with a CD4 receptor and a fusogenic protein can target cells expressing HIV-1 envelope proteins. Virus Res 160(1–2):340–350PubMedGoogle Scholar
  67. Lehmann C, Lafferty M, Garzino-Demo A, Jung N, Hartmann P, Fatkenheuer G et al (2010) Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients. PLoS One 5(6):e11110PubMedGoogle Scholar
  68. Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C et al (2008) Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS 22(6):685–694PubMedGoogle Scholar
  69. Limberis MP, Bell CL, Heath J, Wilson JM (2010) Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 18(1):143–150PubMedGoogle Scholar
  70. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMedGoogle Scholar
  71. Lizee G, Gonzales MI, Topalian SL (2004) Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther 15(4):393–404PubMedGoogle Scholar
  72. Lopes L, Fletcher K, Ikeda Y, Collins M (2006) Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 55(8):1011–1016PubMedGoogle Scholar
  73. Lore K, Sonnerborg A, Brostrom C, Goh LE, Perrin L, McDade H et al (2002) Accumulation of DC-SIGN+ CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 16(5):683–692PubMedGoogle Scholar
  74. Markusic DM, van Til NP, Hiralall JK, Elferink RP, Seppen J (2009) Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain. BMC Biotechnol 9:85PubMedGoogle Scholar
  75. Marodon G (2001) CD4 down modulation on T-cells: an ‘immune’ checkpoint for HIV. Immunol Lett 79(3):165–168PubMedGoogle Scholar
  76. Marsac D, Loirat D, Petit C, Schwartz O, Michel ML (2002) Enhanced presentation of major histocompatibility complex class I-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J Virol 76(15):7544–7553PubMedGoogle Scholar
  77. Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT et al (2007) Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 250(1–2):75–84PubMedGoogle Scholar
  78. Matrai J, Cantore A, Bartholomae CC, Annoni A, Wang W, Acosta-Sanchez A et al (2011) Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology 53(5):1696–1707PubMedGoogle Scholar
  79. Mautino MR, Morgan RA (2000) Potent inhibition of human immunodeficiency virus type 1 replication by conditionally replicating human immunodeficiency virus-based lentiviral vectors expressing envelope antisense mRNA. Hum Gene Ther 11(14):2025–2037PubMedGoogle Scholar
  80. Mebatsion T, Finke S, Weiland F, Conzelmann KK (1997) A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 90(5):841–847PubMedGoogle Scholar
  81. Meera S, Madhuri T, Manisha G, Ramesh P (2010) Irreversible loss of pDCs by apoptosis during early HIV infection may be a critical determinant of immune dysfunction. Viral Immunol 23(3):241–249PubMedGoogle Scholar
  82. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363(15):1429–1437PubMedGoogle Scholar
  83. Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE et al (2007) Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 110(7):2334–2341PubMedGoogle Scholar
  84. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157PubMedGoogle Scholar
  85. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24(6):687–696PubMedGoogle Scholar
  86. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975PubMedGoogle Scholar
  87. Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621PubMedGoogle Scholar
  88. Morris KV, Rossi JJ (2004) Anti-HIV-1 gene expressing lentiviral vectors as an adjunctive therapy for HIV-1 infection. Curr HIV Res 2(2):185–191PubMedGoogle Scholar
  89. Morris KV, Gilbert J, Wong-Staal F, Gasmi M, Looney DJ (2004) Transduction of cell lines and primary cells by FIV-packaged HIV vectors. Mol Ther 10(1):181–190PubMedGoogle Scholar
  90. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267PubMedGoogle Scholar
  91. Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9(5):457–463PubMedGoogle Scholar
  92. Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17(3):295-304Google Scholar
  93. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8(7):681–686PubMedGoogle Scholar
  94. Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, Pereira C et al (2009) Studies on toll-like receptor stimuli responsiveness in HIV-1 and HIV-2 infections. Cytokine 46(3):325–331PubMedGoogle Scholar
  95. Orchard PJ, Wagner JE (2011) Leukodystrophy and gene therapy with a dimmer switch. N Engl J Med 364(6):572–573PubMedGoogle Scholar
  96. Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C et al (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98(10):3016–3021PubMedGoogle Scholar
  97. Parker GA, Picut CA (2005) Liver immunobiology. Toxicol Pathol 33(1):52–62PubMedGoogle Scholar
  98. Patterson S, Donaghy H, Amjadi P, Gazzard B, Gotch F, Kelleher P (2005) Human BDCA-1-positive blood dendritic cells differentiate into phenotypically distinct immature and mature populations in the absence of exogenous maturational stimuli: differentiation failure in HIV infection. J Immunol 174(12):8200–8209PubMedGoogle Scholar
  99. Peretti S, Schiavoni I, Pugliese K, Federico M (2006) Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology 345(1):115–126PubMedGoogle Scholar
  100. Pichlmair A, Diebold SS, Gschmeissner S, Takeuchi Y, Ikeda Y, Collins MK et al (2007) Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J Virol 81(2):539–547PubMedGoogle Scholar
  101. Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum CJ, Chougnet CA (2011) Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 6(12):e28118PubMedGoogle Scholar
  102. Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100(1):183–188PubMedGoogle Scholar
  103. Riley JL, Schlienger K, Blair PJ, Carreno B, Craighead N, Kim D et al (2000) Modulation of susceptibility to HIV-1 infection by the cytotoxic T lymphocyte antigen 4 costimulatory molecule. J Exp Med 191(11):1987–1997PubMedGoogle Scholar
  104. Rossetti M, Gregori S, Hauben E, Brown BD, Sergi LS, Naldini L et al (2011) HIV-1-derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells. Hum Gene Ther 22(2):177–188PubMedGoogle Scholar
  105. Rouas R, Uch R, Cleuter Y, Jordier F, Bagnis C, Mannoni P et al (2002) Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 9(9):715–724PubMedGoogle Scholar
  106. Rowe HM, Lopes L, Ikeda Y, Bailey R, Barde I, Zenke M et al (2006) Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 13(2):310–319PubMedGoogle Scholar
  107. Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E et al (2010) Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 116(19):3839–3852PubMedGoogle Scholar
  108. Salmon P, Arrighi JF, Piguet V, Chapuis B, Zubler RH, Trono D et al (2001) Transduction of CD34+ cells with lentiviral vectors enables the production of large quantities of transgene-expressing immature and mature dendritic cells. J Gene Med 3(4):311–320PubMedGoogle Scholar
  109. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529PubMedGoogle Scholar
  110. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al (2000) Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 1(2):171–179PubMedGoogle Scholar
  111. Sevilla N, McGavern DB, Teng C, Kunz S, Oldstone MB (2004) Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J Clin Invest 113(5):737–745PubMedGoogle Scholar
  112. Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N et al (2010) A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 115(8):1534–1544PubMedGoogle Scholar
  113. Sinn PL, Burnight ER, Hickey MA, Blissard GW, McCray PB Jr (2005) Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J Virol 79(20):12818–12827PubMedGoogle Scholar
  114. Sioud M, Drlica K (1991) Prevention of human immunodeficiency virus type 1 integrase expression in Escherichia coli by a ribozyme. Proc Natl Acad Sci U S A 88(16):7303–7307PubMedGoogle Scholar
  115. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96(13):4103–4110PubMedGoogle Scholar
  116. Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL (2004) HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood 104(9):2810–2817PubMedGoogle Scholar
  117. Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR et al (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79(14):8861–8869PubMedGoogle Scholar
  118. Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L et al (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98(4):906–912PubMedGoogle Scholar
  119. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedGoogle Scholar
  120. Stevenson M, Haggerty S, Lamonica CA, Meier CM, Welch SK, Wasiak AJ (1990) Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J Virol 64(5):2421–2425PubMedGoogle Scholar
  121. Sun LQ, Wang L, Gerlach WL, Symonds G (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res 23(15):2909–2913PubMedGoogle Scholar
  122. Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC et al (2005) Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105(10):3824–3832PubMedGoogle Scholar
  123. Tilton JC, Manion MM, Luskin MR, Johnson AJ, Patamawenu AA, Hallahan CW et al (2008) Human immunodeficiency virus viremia induces plasmacytoid dendritic cell activation in vivo and diminished alpha interferon production in vitro. J Virol 82(8):3997–4006PubMedGoogle Scholar
  124. Tsui LV, Kelly M, Zayek N, Rojas V, Ho K, Ge Y et al (2002) Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 20(1):53–57PubMedGoogle Scholar
  125. Vanham G, Penne L, Devalck J, Kestens L, Colebunders R, Bosmans E et al (1999) Decreased CD40 ligand induction in CD4 T cells and dysregulated IL-12 production during HIV infection. Clin Exp Immunol 117(2):335–342PubMedGoogle Scholar
  126. Veron P, Boutin S, Bernard J, Danos O, Davoust J, Masurier C (2006) Efficient transduction of monocyte- and CD34+-derived Langerhans cells with lentiviral vectors in the absence of phenotypic and functional maturation. J Gene Med 8(8):951–961PubMedGoogle Scholar
  127. Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2(5):308–316PubMedGoogle Scholar
  128. Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B (2005) HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 33(2):796–804PubMedGoogle Scholar
  129. White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J et al (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 73(4):2832–2840PubMedGoogle Scholar
  130. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751PubMedGoogle Scholar
  131. Yang L, Bailey L, Baltimore D, Wang P (2006) Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci U S A 103(31):11479–11484PubMedGoogle Scholar
  132. Ye Z, Harmison GG, Ragheb JA, Schubert M (2005) Targeted infection of HIV-1 Env expressing cells by HIV(CD4/CXCR4) vectors reveals a potential new rationale for HIV-1 mediated down-modulation of CD4. Retrovirology 2:80PubMedGoogle Scholar
  133. Yonkers NL, Rodriguez B, Asaad R, Lederman MM, Anthony DD (2011) Systemic immune activation in HIV infection is associated with decreased MDC responsiveness to TLR ligand and inability to activate naive CD4 T-cells. PLoS One 6(9):e23884PubMedGoogle Scholar
  134. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101(2):173–185PubMedGoogle Scholar
  135. Zhou C, Bahner IC, Larson GP, Zaia JA, Rossi JJ, Kohn EB (1994) Inhibition of HIV-1 in human T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene 149(1):33–39PubMedGoogle Scholar
  136. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875PubMedGoogle Scholar
  137. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880PubMedGoogle Scholar
  138. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Maura Rossetti
    • 1
  • Mariangela Cavarelli
    • 2
  • Silvia Gregori
    • 1
  • Gabriella Scarlatti
    • 2
  1. 1.Division of Regenerative Medicine, Stem Cells, and Gene TherapySan Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific InstituteMilanItaly
  2. 2.Division of Immunology, Transplant, and Infectious Diseases, Viral Evolution and Transmission UnitSan Raffaele Scientific InstituteMilanItaly

Personalised recommendations