Cellular and Viral Mechanisms of HIV-1 Transmission Mediated by Dendritic Cells

  • Christopher M. Coleman
  • Corine St. Gelais
  • Li Wu
Chapter

Abstract

Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4+ T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4+ T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4+ T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4+ T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.

References

  1. Arhel NJ, Kirchhoff F (2009) Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 339:147–175PubMedCrossRefGoogle Scholar
  2. Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB, Piguet V (2004) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200:1279–1288PubMedCrossRefGoogle Scholar
  3. Biggins JE, Biesinger T, Yu Kimata MT, Arora R, Kimata JT (2007) ICAM-3 influences human immunodeficiency virus type 1 replication in CD4(+) T cells independent of DC-SIGN-mediated transmission. Virology 364:383–394PubMedCrossRefGoogle Scholar
  4. Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L et al (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32:654–669PubMedCrossRefGoogle Scholar
  5. Boggiano C, Manel N, Littman DR (2007) Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J Virol 81:2519–2523PubMedCrossRefGoogle Scholar
  6. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371PubMedGoogle Scholar
  7. Coleman CM, Spearman P, Wu L (2011) Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology 8:26PubMedCrossRefGoogle Scholar
  8. Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51PubMedCrossRefGoogle Scholar
  9. de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13:367–371PubMedCrossRefGoogle Scholar
  10. Dong C, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81:11352–11362PubMedCrossRefGoogle Scholar
  11. Earl PL, Moss B, Doms RW (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 65:2047–2055PubMedGoogle Scholar
  12. Fackler OT, Krausslich HG (2006) Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 9:409–415PubMedCrossRefGoogle Scholar
  13. Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81:6858–6868PubMedCrossRefGoogle Scholar
  14. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107:13336–13341PubMedCrossRefGoogle Scholar
  15. Foster JL, Garcia JV (2008) HIV-1 Nef: at the crossroads. Retrovirology 5:84PubMedCrossRefGoogle Scholar
  16. Frank I, Piatak M Jr, Stoessel H, Romani N, Bonnyay D, Lifson JD, Pope M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76:2936–2951PubMedCrossRefGoogle Scholar
  17. Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501PubMedCrossRefGoogle Scholar
  18. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR et al (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRefGoogle Scholar
  19. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585PubMedCrossRefGoogle Scholar
  20. Goujon C, Malim MH (2010) Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol 84:9254–9266PubMedCrossRefGoogle Scholar
  21. Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11:419–426PubMedCrossRefGoogle Scholar
  22. Gurney KB, Elliott J, Nassanian H, Song C, Soilleux E, McGowan I, Anton PA, Lee B (2005) Binding and transfer of human immunodeficiency virus by DC-SIGN  +  cells in human rectal mucosa. J Virol 79:5762–5773PubMedCrossRefGoogle Scholar
  23. Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA (2010) PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 6:e1000981PubMedCrossRefGoogle Scholar
  24. Hatch SC, Archer J, Gummuluru S (2009) Glycosphingolipid composition of human immundeficiency virus type-1 particles is a crucial determinant for dendritic cell-mediated HIV-1 trans infection. J Virol 83:3496–3506PubMedCrossRefGoogle Scholar
  25. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701PubMedCrossRefGoogle Scholar
  26. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422PubMedCrossRefGoogle Scholar
  27. Hernandez JC, Arteaga J, Paul S, Kumar A, Latz E, Urcuqui-Inchima S (2011) Up-regulation of TLR2 and TLR4 in dendritic cells in response to HIV type 1 and coinfection with opportunistic pathogens. AIDS Res Hum Retroviruses 27:1099–1109PubMedCrossRefGoogle Scholar
  28. Hijazi K, Wang Y, Scala C, Jeffs S, Longstaff C, Stieh D, Haggarty B, Vanham G, Schols D, Balzarini J et al (2011) DC-SIGN increases the affinity of HIV-1 envelope glycoprotein interaction with CD4. PLoS One 6:e28307PubMedCrossRefGoogle Scholar
  29. Hong PW, Flummerfelt KB, de Parseval A, Gurney K, Elder JH, Lee B (2002) Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 76:12855–12865PubMedCrossRefGoogle Scholar
  30. Hong PW, Nguyen S, Young S, Su SV, Lee B (2007) Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120. J Virol 81:8325–8336PubMedCrossRefGoogle Scholar
  31. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995PubMedCrossRefGoogle Scholar
  32. Izquierdo-Useros N, Blanco J, Erkizia I, Fernandez-Figueras MT, Borras FE, Naranjo-Gomez M, Bofill M, Ruiz L, Clotet B, Martinez-Picado J (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81:7559–7570PubMedCrossRefGoogle Scholar
  33. Izquierdo-Useros N, Esteban O, Rodriguez-Plata MT, Erkizia I, Prado JG, Blanco J, Garcia-Parajo MF, Martinez-Picado J (2011) Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells. Traffic 12:1702–1713PubMedCrossRefGoogle Scholar
  34. Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez- Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12):2732–2741Google Scholar
  35. Janas AM, Dong C, Wang JH, Wu L (2008) Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry. Virology 375:442–451PubMedCrossRefGoogle Scholar
  36. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293PubMedCrossRefGoogle Scholar
  37. Jolly C, Mitar I, Sattentau QJ (2007a) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81:13916–13921PubMedCrossRefGoogle Scholar
  38. Jolly C, Mitar I, Sattentau QJ (2007b) Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol 81:5547–5560PubMedCrossRefGoogle Scholar
  39. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRefGoogle Scholar
  40. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650PubMedCrossRefGoogle Scholar
  41. Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8:55–67PubMedCrossRefGoogle Scholar
  42. Krementsov DN, Weng J, Lambele M, Roy NH, Thali M (2009) Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 6:64PubMedCrossRefGoogle Scholar
  43. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34PubMedCrossRefGoogle Scholar
  44. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:135–144PubMedCrossRefGoogle Scholar
  45. Lee B, Leslie G, Soilleux E, O’Doherty U, Baik S, Levroney E, Flummerfelt K, Swiggard W, Coleman N, Malim M et al (2001) cis Expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J Virol 75:12028–12038PubMedCrossRefGoogle Scholar
  46. Lehmann M, Nikolic DS, Piguet V (2011) How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 3:1757–1776PubMedCrossRefGoogle Scholar
  47. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777PubMedCrossRefGoogle Scholar
  48. Levy S, Shoham T (2005a) Protein–protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224CrossRefGoogle Scholar
  49. Levy S, Shoham T (2005b) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148PubMedCrossRefGoogle Scholar
  50. McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297PubMedCrossRefGoogle Scholar
  51. Messmer D, Bromberg J, Devgan G, Jacque JM, Granelli-Piperno A, Pope M (2002a) Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells. AIDS Res Hum Retroviruses 18:1043–1050PubMedCrossRefGoogle Scholar
  52. Messmer D, Jacque JM, Santisteban C, Bristow C, Han SY, Villamide-Herrera L, Mehlhop E, Marx PA, Steinman RM, Gettie A et al (2002b) Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J Immunol 169:4172–4182PubMedGoogle Scholar
  53. Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT (2005) The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 15:714–723PubMedCrossRefGoogle Scholar
  54. Naghavi MH, Goff SP (2007) Retroviral proteins that interact with the host cell cytoskeleton. Curr Opin Immunol 19:402–407PubMedCrossRefGoogle Scholar
  55. Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852PubMedCrossRefGoogle Scholar
  56. Pertel T, Reinhard C, Luban J (2011) Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology 8:49PubMedCrossRefGoogle Scholar
  57. Petit C, Buseyne F, Boccaccio C, Abastado JP, Heard JM, Schwartz O (2001) Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286:225–236PubMedCrossRefGoogle Scholar
  58. Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS (1989) Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 244:575–577PubMedCrossRefGoogle Scholar
  59. Puigdomenech I, Massanella M, Izquierdo-Useros N, Ruiz-Hernandez R, Curriu M, Bofill M, Martinez-Picado J, Juan M, Clotet B, Blanco J (2008) HIV transfer between CD4 T cells does not require LFA-1 binding to ICAM-1 and is governed by the interaction of HIV envelope glycoprotein with CD4. Retrovirology 5:32PubMedCrossRefGoogle Scholar
  60. Qin Y, Li Y, Liu W, Tian R, Guo Q, Li S, Li H, Zhang D, Zheng Y, Wu L et al (2011) Penicillium marneffei-stimulated dendritic cells enhance HIV-1 trans-infection and promote viral infection by activating primary CD4+ T cells. PLoS One 6:e27609PubMedCrossRefGoogle Scholar
  61. Rappocciolo G, Piazza P, Fuller CL, Reinhart TA, Watkins SC, Rowe DT, Jais M, Gupta P, Rinaldo CR (2006) DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog 2:e70PubMedCrossRefGoogle Scholar
  62. Reitter JN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684PubMedCrossRefGoogle Scholar
  63. Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JH, Kapsenberg ML, Berkhout B (2002) Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol 76:7812–7821PubMedCrossRefGoogle Scholar
  64. Sanders RW, van Anken E, Nabatov AA, Liscaljet IM, Bontjer I, Eggink D, Melchers M, Busser E, Dankers MM, Groot F et al (2008) The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology 5:10PubMedCrossRefGoogle Scholar
  65. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582PubMedCrossRefGoogle Scholar
  66. Smith AL, Ganesh L, Leung K, Jongstra-Bilen J, Jongstra J, Nabel GJ (2007) Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J Exp Med 204:421–430PubMedCrossRefGoogle Scholar
  67. Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, Abastado JP, Heard JM, van Kooyk Y, Schwartz O (2002) HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16:145–155PubMedCrossRefGoogle Scholar
  68. St Gelais C, Coleman C, Wang J-H, Wu L (2012) Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation. PLoS One 7(3):e34521PubMedCrossRefGoogle Scholar
  69. Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381PubMedCrossRefGoogle Scholar
  70. Trumpfheller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 15:289–298PubMedCrossRefGoogle Scholar
  71. Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr et al (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103:2170–2179PubMedCrossRefGoogle Scholar
  72. van Gisbergen KP, Paessens LC, Geijtenbeek TB, van Kooyk Y (2005) Molecular mechanisms that set the stage for DC-T cell engagement. Immunol Lett 97:199–208PubMedCrossRefGoogle Scholar
  73. van Kooyk Y, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709PubMedCrossRefGoogle Scholar
  74. van Montfort T, Eggink D, Boot M, Tuen M, Hioe CE, Berkhout B, Sanders RW (2011) HIV-1 N-glycan composition governs a balance between dendritic cell-mediated viral transmission and antigen presentation. J Immunol 187:4676–4685PubMedCrossRefGoogle Scholar
  75. Vasiliver-Shamis G, Dustin ML, Hioe CE (2010) HIV-1 virological synapse is not simply a copycat of the immunological synapse. Viruses 2:1239–1260PubMedCrossRefGoogle Scholar
  76. Vendrame D, Sourisseau M, Perrin V, Schwartz O, Mammano F (2009) Partial inhibition of human immunodeficiency virus replication by type I interferons: impact of cell-to-cell viral transfer. J Virol 83:10527–10537PubMedCrossRefGoogle Scholar
  77. Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J (1987) Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci U S A 84:8120–8124PubMedCrossRefGoogle Scholar
  78. Wang JH, Janas AM, Olson WJ, KewalRamani VN, Wu L (2007a) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81:2497–2507PubMedCrossRefGoogle Scholar
  79. Wang JH, Janas AM, Olson WJ, Wu L (2007b) Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 81:8933–8943PubMedCrossRefGoogle Scholar
  80. Wang JH, Kwas C, Wu L (2009) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2 and -3, is important for dendritic cell-mediated human immunodeficiency virus type-1 transmission. J Virol 83:4195–4204PubMedCrossRefGoogle Scholar
  81. Wang JH, Wells C, Wu L (2008) Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells. Virology 381:143–154PubMedCrossRefGoogle Scholar
  82. Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103:738–743PubMedCrossRefGoogle Scholar
  83. Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6:859–868PubMedCrossRefGoogle Scholar
  84. Wu L, Martin TD, Carrington M, KewalRamani VN (2004) Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 318:17–23PubMedCrossRefGoogle Scholar
  85. Wu L, Martin TD, Vazeux R, Unutmaz D, KewalRamani VN (2002) Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J Virol 76:5905–5914PubMedCrossRefGoogle Scholar
  86. Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4:e1000134PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christopher M. Coleman
    • 1
  • Corine St. Gelais
    • 1
  • Li Wu
    • 1
    • 2
  1. 1.Department of Veterinary Biosciences, Center for Retrovirus ResearchThe Ohio State UniversityColumbusUSA
  2. 2.Department of Microbial Infection and Immunity, Center for Retrovirus ResearchThe Ohio State UniversityColumbusUSA

Personalised recommendations