Immunobiology of Dendritic Cells and the Influence of HIV Infection

  • Anthony L. Cunningham
  • Andrew Harman
  • Min Kim
  • Najla Nasr
  • Joey Lai


Recent progress in phenotyping of human dendritic cells (DCs) has allowed a closer alignment of the classification and functions of murine and human dendritic cell subsets. Marked differences in the functions of these human DC subsets and their response to HIV infection have become apparent, relevant to HIV pathogenesis and vaccine and microbicide development. Systems biology approaches to studying HIV uptake and infection of dendritic cells has revealed how markedly HIV subverts their functions, especially in relation to the trafficking pathways and viral transfer to T cells. Furthermore the interactions between DCs and other innate immune cells, NK cells, NKT cells and gamma delta T cells are now known to influence DC and T cell function and are also disturbed by HIV infection in vitro and in vivo. Such cellular interactions are potential targets for vaccine adjuvants and immunotherapy.


  1. Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B (2005) OUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33(Web Server issue):W393–W396. doi:33/suppl_2/W393 [pii] 10.1093/nar/gki354PubMedGoogle Scholar
  2. Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228(4703):1091–1094PubMedGoogle Scholar
  3. Alter G, Altfeld M (2011) Mutiny or scrutiny: NK cell modulation of DC function in HIV-1 infection. Trends Immunol 32(5):219–224. doi:10.1016/ Scholar
  4. Alters SE, Gadea JR, Holm B, Lebkowski J, Philip R (1999) IL-13 can substitute for IL-4 in the generation of dendritic cells for the induction of cytotoxic T lymphocytes and gene therapy. J Immunother 22(3):229–236PubMedGoogle Scholar
  5. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326. doi:10.1126/science.1070884PubMedGoogle Scholar
  6. Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171(12):6466–6477PubMedGoogle Scholar
  7. Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N, Leemput J, Bigot K, Campisi L, Abitbol M, Molina T, Charo I, Hume DA, Cumano A, Lauvau G, Geissmann F (2009) CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206(3):595–606. doi:10.1084/jem.20081385PubMedGoogle Scholar
  8. Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J, Braud VM, Germain RN, Glaichenhaus N (2006) Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203(3):619–631. doi:10.1084/jem.20051474PubMedGoogle Scholar
  9. Barreira da Silva R, Munz C (2011) Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci 68(21):3505–3518. doi:10.1007/s00018-011-0801-8PubMedGoogle Scholar
  10. Bernhard OK, Lai J, Wilkinson J, Sheil MM, Cunningham AL (2004) Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4. J Biol Chem 279(50):51828–51835. doi:10.1074/jbc.M402741200 M402741200 [pii]PubMedGoogle Scholar
  11. Boasso A, Royle CM, Doumazos S, Aquino VN, Biasin M, Piacentini L, Tavano B, Fuchs D, Mazzotta F, Lo Caputo S, Shearer GM, Clerici M, Graham DR (2011) Overactivation of plasmacytoid dendritic cells inhibits antiviral T-cell responses: a model for HIV immunopathogenesis. Blood 118(19):5152–5162. doi:10.1182/blood-2011-03-344218PubMedGoogle Scholar
  12. Bogunovic M, Ginhoux F, Wagers A, Loubeau M, Isola LM, Lubrano L, Najfeld V, Phelps RG, Grosskreutz C, Scigliano E, Frenette PS, Merad M (2006) Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J Exp Med 203(12):2627–2638. doi:10.1084/jem.20060667PubMedGoogle Scholar
  13. Bonardi V, Cherkis K, Nishimura MT, Dangl JL (2012) A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24(1):41–50. doi:10.1016/j.coi.2011.12.006PubMedGoogle Scholar
  14. Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122(1):1–11. doi:10.1016/j.imlet.2008.11.002PubMedGoogle Scholar
  15. Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, Cunningham AL (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174(4):2220–2227PubMedGoogle Scholar
  16. Breloer M, Fleischer B (2008) CD83 regulates lymphocyte maturation, activation and homeostasis. Trends Immunol 29(4):186–194. doi:10.1016/ Scholar
  17. Brilot F, Strowig T, Munz C (2008) NK cells interactions with dendritic cells shape innate and adaptive immunity. Front Biosci 13:6443–6454. doi:3165 [pii]PubMedGoogle Scholar
  18. Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11(1):57–65PubMedGoogle Scholar
  19. Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ, Netea MG, Kullberg BJ, Romani L, Figdor CG (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33(2):532–538. doi:10.1002/immu.200310029PubMedGoogle Scholar
  20. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257(5068):383–387PubMedGoogle Scholar
  21. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112(4):863–875. doi:10.1002/cncr.23239PubMedGoogle Scholar
  22. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360(6401):258–261. doi:10.1038/360258a0PubMedGoogle Scholar
  23. Caux C, Massacrier C, Dubois B, Valladeau J, Dezutter-Dambuyant C, Durand I, Schmitt D, Saeland S (1999) Respective involvement of TGF-beta and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J Leukoc Biol 66(5):781–791PubMedGoogle Scholar
  24. Cederarv M, Soderberg-Naucler C, Odeberg J (2009) HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity. Immunobiology 214(5):331–341. doi:S0171-2985(08)00139-3 [pii] 10.1016/j.imbio.2008.10.009PubMedGoogle Scholar
  25. Chatwell L, Holla A, Kaufer BB, Skerra A (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45(7):1981–1994. doi:S0161-5890(07)00819-X [pii]10.1016/j.molimm.2007.10.030PubMedGoogle Scholar
  26. Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K, Kostman J, Trinchieri G, Montaner LJ (2002) Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 168(9):4796–4801PubMedGoogle Scholar
  27. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, Koh H, Rodriguez A, Idoyaga J, Pack M, Velinzon K, Park CG, Steinman RM (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143(3):416–429. doi:10.1016/j.cell.2010.09.039PubMedGoogle Scholar
  28. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226. doi:ni1141 [pii]10.1038/ni1141PubMedGoogle Scholar
  29. Conry SJ, Milkovich KA, Yonkers NL, Rodriguez B, Bernstein HB, Asaad R, Heinzel FP, Tary-Lehmann M, Lederman MM, Anthony DD (2009) Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function. J Virol 83(21):11175–11187. doi:JVI.00753-09 [pii] 10.1128/JVI.00753-09PubMedGoogle Scholar
  30. Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, Poccia F, Gessani S (2005) Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J Immunol 174(1):252–260PubMedGoogle Scholar
  31. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, Jais JP, D’Cruz D, Casanova JL, Trouillet C, Geissmann F (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33(3):375–386. doi:10.1016/j.immuni.2010.08.012PubMedGoogle Scholar
  32. Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE (2006) Impaired Langerhans cell migration in psoriasis. J Exp Med 203(4):953–960. doi:10.1084/jem.20052367PubMedGoogle Scholar
  33. Cunningham AL, Carbone F, Geijtenbeek TB (2008) Langerhans cells and viral immunity. Eur J Immunol 38(9):2377–2385. doi:10.1002/eji.200838521PubMedGoogle Scholar
  34. Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG (2010) Manipulation of dendritic cell function by viruses. Curr Opin Microbiol 13(4):524–529. doi:10.1016/j.mib.2010.06.002PubMedGoogle Scholar
  35. de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TB (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118(10):3440–3452. doi:10.1172/JCI34721PubMedGoogle Scholar
  36. de Jong MA, de Witte L, Santegoets SJ, Fluitsma D, Taylor ME, de Gruijl TD, Geijtenbeek TB (2010a) Mutz-3-derived Langerhans cells are a model to study HIV-1 transmission and potential inhibitors. J Leukoc Biol 87(4):637–643. doi:jlb.0809577 [pii] 10.1189/jlb.0809577PubMedGoogle Scholar
  37. de Jong MA, Vriend LE, Theelen B, Taylor ME, Fluitsma D, Boekhout T, Geijtenbeek TB (2010b) C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol 47(6):1216–1225. doi:S0161-5890(09)00889-X [pii] 10.1016/j.molimm.2009.12.016PubMedGoogle Scholar
  38. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924PubMedGoogle Scholar
  39. de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13(3):367–371. doi:10.1038/nm1541PubMedGoogle Scholar
  40. Della Chiesa M, Romagnani C, Thiel A, Moretta L, Moretta A (2006) Multidirectional interactions are bridging human NK cells with plasmacytoid and monocyte-derived dendritic cells during innate immune responses. Blood 108(12):3851–3858. doi:10.1182/blood-2006-02-004028PubMedGoogle Scholar
  41. Doehle BP, Hladik F, McNevin JP, McElrath MJ, Gale M Jr (2009) Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol 83(20):10395–10405. doi:10.1128/JVI.00849-09PubMedGoogle Scholar
  42. Dominguez-Soto A, Aragoneses-Fenoll L, Martin-Gayo E, Martinez-Prats L, Colmenares M, Naranjo-Gomez M, Borras FE, Munoz P, Zubiaur M, Toribio ML, Delgado R, Corbi AL (2007) The DC-SIGN-related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells. Blood 109(12):5337–5345. doi:blood-2006-09-048058 [pii] 10.1182/blood-2006-09-048058PubMedGoogle Scholar
  43. Donaghy H, Bosnjak L, Harman AN, Marsden V, Tyring SK, Meng TC, Cunningham AL (2009) Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection. J Virol 83(4):1952–1961. doi:10.1128/JVI.01578-08PubMedGoogle Scholar
  44. Draghi M, Pashine A, Sanjanwala B, Gendzekhadze K, Cantoni C, Cosman D, Moretta A, Valiante NM, Parham P (2007) NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol 178(5):2688–2698. doi:178/5/2688 [pii]PubMedGoogle Scholar
  45. Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263(20):9557–9560PubMedGoogle Scholar
  46. Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298(5594):785–789. doi:10.1126/science.1076386PubMedGoogle Scholar
  47. East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572(2–3):364–386. doi:S0304416502003197 [pii]PubMedGoogle Scholar
  48. Eidsmo L, Allan R, Caminschi I, van Rooijen N, Heath WR, Carbone FR (2009) Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol 182(5):3165–3172. doi:10.4049/jimmunol.0802950PubMedGoogle Scholar
  49. Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7(4):310–317. doi:10.1038/nri2041PubMedGoogle Scholar
  50. Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81(13):6858–6868. doi:10.1128/JVI.02472-06PubMedGoogle Scholar
  51. Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S (2004) Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78(18):9763–9772. doi:10.1128/JVI.78.18.9763-9772.2004PubMedGoogle Scholar
  52. Feinberg H, Powlesland AS, Taylor ME, Weis WI (2010) Trimeric structure of langerin. J Biol Chem 285(17):13285–13293. doi:M109.086058 [pii] 10.1074/jbc.M109.086058PubMedGoogle Scholar
  53. Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P (2001a) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101(2):201–210. doi:10.1006/clim.2001.5111 S1521-6616(01)95111-3 [pii]PubMedGoogle Scholar
  54. Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P (2001b) Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 101(2):201–210. doi:10.1006/clim.2001.5111PubMedGoogle Scholar
  55. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K, Bess JW Jr, Bavari S, Lowekamp BC, Bliss D, Lifson JD, Subramaniam S (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107(30):13336–13341. doi:10.1073/pnas.1003040107PubMedGoogle Scholar
  56. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101(47):16606–16611. doi:10.1073/pnas.0407522101PubMedGoogle Scholar
  57. Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2):77–84. doi:10.1038/nri723PubMedGoogle Scholar
  58. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146(10):3444–3451PubMedGoogle Scholar
  59. Fonteneau JF, Kavanagh DG, Lirvall M, Sanders C, Cover TL, Bhardwaj N, Larsson M (2003) Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood 102(13):4448–4455. doi:10.1182/blood-2003-06-1801PubMedGoogle Scholar
  60. Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A, Liu YJ, Lifson JD, Littman DR, Bhardwaj N (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78(10):5223–5232PubMedGoogle Scholar
  61. Frank I, Piatak M Jr, Stoessel H, Romani N, Bonnyay D, Lifson JD, Pope M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76(6):2936–2951PubMedGoogle Scholar
  62. Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M, Piguet V (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6(6):488–501. doi:10.1111/j.1600-0854.2005.00293.xPubMedGoogle Scholar
  63. Garcia E, Nikolic DS, Piguet V (2008) HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 9(2):200–214. doi:10.1111/j.1600-0854.2007.00678.xPubMedGoogle Scholar
  64. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597. doi:S0092-8674(00)80694-7 [pii]PubMedGoogle Scholar
  65. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5):575–585PubMedGoogle Scholar
  66. Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187(6):961–966PubMedGoogle Scholar
  67. Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 174(2):727–734PubMedGoogle Scholar
  68. Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin  +  dendritic cells survey the skin in the steady state. J Exp Med 204(13):3133–3146. doi:10.1084/jem.20071733PubMedGoogle Scholar
  69. Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674. doi:10.1073/pnas.0402431101PubMedGoogle Scholar
  70. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ (1997) The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185(6):1101–1111PubMedGoogle Scholar
  71. Gupta P, Collins KB, Ratner D, Watkins S, Naus GJ, Landers DV, Patterson BK (2002) Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol 76(19):9868–9876PubMedGoogle Scholar
  72. Hanna J, Mandelboim O (2007) When killers become helpers. Trends Immunol 28(5):201–206. doi:10.1016/ Scholar
  73. Hanna J, Gonen-Gross T, Fitchett J, Rowe T, Daniels M, Arnon TI, Gazit R, Joseph A, Schjetne KW, Steinle A, Porgador A, Mevorach D, Goldman-Wohl D, Yagel S, LaBarre MJ, Buckner JH, Mandelboim O (2004) Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest 114(11):1612–1623. doi:10.1172/JCI22787PubMedGoogle Scholar
  74. Harbison CE, Lyi SM, Weichert WS, Parrish CR (2009) Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking. J Virol 83(20):10504–10514. doi:10.1128/JVI.00295-09PubMedGoogle Scholar
  75. Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M, Lai J, Cunningham AL (2006) HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J Immunol 177(10):7103–7113PubMedGoogle Scholar
  76. Harman AN, Kraus M, Bye CR, Byth K, Turville SG, Tang O, Mercier SK, Nasr N, Stern JL, Slobedman B, Driessen C, Cunningham AL (2009) HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 114(1):85–94. doi:10.1182/blood-2008-12-194845PubMedGoogle Scholar
  77. Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier SK, Jones K, Nasr N, Rustagi A, Cumming H, Donaghy H, Mak J, Gale M Jr, Churchill M, Hertzog P, Cunningham AL (2011) HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 118(2):298–308. doi:10.1182/blood-2010-07-297721PubMedGoogle Scholar
  78. Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, Mercier S, Jones K, Nasr N, Cumming H, Donaghy H, Mak J, Churchill M, Hertzog P, Cunningham AL (2011b) HIV infection of dendritic cells subverts the interferon induction pathway via IRFI and inhibits Type 1 interferon production. Blood 118(2):298–308PubMedGoogle Scholar
  79. Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol 175(3):1636–1642PubMedGoogle Scholar
  80. Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140–5147PubMedGoogle Scholar
  81. Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ (2007) Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26(2):257–270. doi:10.1016/j.immuni.2007.01.007PubMedGoogle Scholar
  82. Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577. doi:10.1038/ni1470PubMedGoogle Scholar
  83. Hu ZB, Ma W, Zaborski M, MacLeod R, Quentmeier H, Drexler HG (1996) Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10(6):1025–1040PubMedGoogle Scholar
  84. Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC (2010) Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 95(6):328–338. doi:10.1016/j.ygeno.2010.03.002PubMedGoogle Scholar
  85. Ismaili J, Olislagers V, Poupot R, Fournie JJ, Goldman M (2002) Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103(3 Pt 1):296–302PubMedGoogle Scholar
  86. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527):151–155. doi:10.1038/375151a0PubMedGoogle Scholar
  87. Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, Whitney JA, Connolly J, Banchereau J, Mellman I (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610–624. doi:10.1016/j.immuni.2007.08.015PubMedGoogle Scholar
  88. Ju X, Clark G, Hart DN (2010) Review of human DC subtypes. Methods Mol Biol 595:3–20. doi:10.1007/978-1-60761-421-0_1PubMedGoogle Scholar
  89. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192(2):219–226PubMedGoogle Scholar
  90. Kalb ML, Glaser A, Stary G, Koszik F, Stingl G (2012) TRAIL(+) human plasmacytoid dendritic cells kill tumor cells in vitro: mechanisms of imiquimod- and IFN-alpha-mediated antitumor reactivity. J Immunol 188(4):1583–1591. doi:10.4049/jimmunol.1102437PubMedGoogle Scholar
  91. Kalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL, Kirkwood JM, Lotze MT, Herberman RB (2005) Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther 5(10):1303–1315. doi:10.1517/14712598.5.10.1303PubMedGoogle Scholar
  92. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23(6):611–620. doi:10.1016/j.immuni.2005.10.008PubMedGoogle Scholar
  93. Kassim SH, Rajasagi NK, Ritz BW, Pruett SB, Gardner EM, Chervenak R, Jennings SR (2009) Dendritic cells are required for optimal activation of natural killer functions following primary infection with herpes simplex virus type 1. J Virol 83(7):3175–3186. doi:JVI.01907-08 [pii] 10.1128/JVI.01907-08PubMedGoogle Scholar
  94. Kawamura T, Gulden FO, Sugaya M, McNamara DT, Borris DL, Lederman MM, Orenstein JM, Zimmerman PA, Blauvelt A (2003) R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc Natl Acad Sci U S A 100(14):8401–8406. doi:10.1073/pnas.1432450100PubMedGoogle Scholar
  95. Kawamura K, Kadowaki N, Kitawaki T, Uchiyama T (2006) Virus-stimulated plasmacytoid dendritic cells induce CD4+ cytotoxic regulatory T cells. Blood 107(3):1031–1038. doi:10.1182/blood-2005-04-1737PubMedGoogle Scholar
  96. Kawamura T, Koyanagi Y, Nakamura Y, Ogawa Y, Yamashita A, Iwamoto T, Ito M, Blauvelt A, Shimada S (2008) Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV. J Immunol 180(5):3297–3304PubMedGoogle Scholar
  97. Khoo US, Chan KY, Chan VS, Lin CL (2008) DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med 86(8):861–874. doi:10.1007/s00109-008-0350-2PubMedGoogle Scholar
  98. Kim M, Osborne NR, Zeng W, Donaghy H, Jackson DC, Cunningham AL (2012) NK-CD4 lymphocyte interaction plays a major role in crosstalk with dendritic cells in response to Herpes simplex viral lantigens. J Immunol 188(9): 4158–4170Google Scholar
  99. Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4(7):1755–1759PubMedGoogle Scholar
  100. Laffont S, Seillet C, Ortaldo J, Coudert JD, Guery JC (2008) Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood 112(3):661–671. doi:10.1182/blood-2007-10-120089PubMedGoogle Scholar
  101. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657. doi:10.1038/nature10117PubMedGoogle Scholar
  102. Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL (2009) Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 284(17):11027–11038. doi:10.1074/jbc.M809698200PubMedGoogle Scholar
  103. Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ (2008) The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112(4):1299–1307. doi:10.1182/blood-2008-01-136473PubMedGoogle Scholar
  104. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136(12):4480–4486PubMedGoogle Scholar
  105. Larregina AT, Morelli AE, Spencer LA, Logar AJ, Watkins SC, Thomson AW, Falo LD Jr (2001) Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2(12):1151–1158. doi:10.1038/ni731PubMedGoogle Scholar
  106. Larsson M, Fonteneau JF, Lirvall M, Haslett P, Lifson JD, Bhardwaj N (2002) Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. AIDS 16(10):1319–1329PubMedGoogle Scholar
  107. Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165(4):1847–1853PubMedGoogle Scholar
  108. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS (2002) T cell receptor signaling precedes immunological synapse formation. Science 295(5559):1539–1542. doi:10.1126/science.1067710PubMedGoogle Scholar
  109. Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, Brenner MB (2002) CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med 196(12):1575–1584PubMedGoogle Scholar
  110. Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234(1):45–54. doi:10.1111/j.0105-2896.2009.00879.xPubMedGoogle Scholar
  111. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324(5925):392–397. doi:10.1126/science.1170540PubMedGoogle Scholar
  112. Lonati A, Mommaas MA, Pasolini G, Lavazza A, Rowden G, De Panfilis G (1996) Macrophages, but not Langerhans cell-like cells of dendritic lineage, express the CD36 molecule in normal human dermis: relevance to downregulatory cutaneous immune responses? J Invest Dermatol 106(1):96–101PubMedGoogle Scholar
  113. Lopez C, Fitzgerald PA, Siegal FP (1983) Severe acquired immune deficiency syndrome in male homosexuals: diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections. J Infect Dis 148(6):962–966PubMedGoogle Scholar
  114. Lopez-Herrera A, Liu Y, Rugeles MT, He JJ (2005) HIV-1 interaction with human mannose receptor (hMR) induces production of matrix metalloproteinase 2 (MMP-2) through hMR-mediated intracellular signaling in astrocytes. Biochim Biophys Acta 1741(1–2):55–64. doi:10.1016/j.bbadis.2004.12.001PubMedGoogle Scholar
  115. Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201(12):2023–2033. doi:jem.20042413 [pii] 10.1084/jem.20042413PubMedGoogle Scholar
  116. Loser K, Beissert S (2007) Dendritic cells and T cells in the regulation of cutaneous immunity. Adv Dermatol 23:307–333PubMedGoogle Scholar
  117. Lund JM, Linehan MM, Iijima N, Iwasaki A (2006) Cutting edge: plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J Immunol 177(11):7510–7514PubMedGoogle Scholar
  118. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520. doi:10.1182/blood-2001-11-0097PubMedGoogle Scholar
  119. Martinelli E, Cicala C, Van Ryk D, Goode DJ, Macleod K, Arthos J, Fauci AS (2007) HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha} secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 104(9):3396–3401. doi:10.1073/pnas.0611353104PubMedGoogle Scholar
  120. Mavilio D, Lombardo G, Kinter A, Fogli M, La Sala A, Ortolano S, Farschi A, Follmann D, Gregg R, Kovacs C, Marcenaro E, Pende D, Moretta A, Fauci AS (2006) Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med 203(10):2339–2350. doi:10.1084/jem.20060894PubMedGoogle Scholar
  121. Mayerova D, Parke EA, Bursch LS, Odumade OA, Hogquist KA (2004) Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity 21(3):391–400. doi:10.1016/j.immuni.2004.07.019PubMedGoogle Scholar
  122. McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297. doi:10.1126/science.1084238PubMedGoogle Scholar
  123. Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabrysova L, Howes A, O’Garra A (2011) Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 11(10):693–702. doi:10.1038/nri3063PubMedGoogle Scholar
  124. Melki MT, Saidi H, Dufour A, Olivo-Marin JC, Gougeon ML (2010) Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1. PLoS Pathog 6(4):e1000862. doi:10.1371/journal.ppat.1000862PubMedGoogle Scholar
  125. Miller CJ (1998) Localization of simian immunodeficiency virus-infected cells in the genital tract of male and female rhesus macaques. J Reprod Immunol 41(1–2):331–339PubMedGoogle Scholar
  126. Miller CJ, Hu J (1999) T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans’ cells of the female genital tract are infected with SIV. J Infect Dis 179(Suppl 3):S413–S417. doi:10.1086/314795PubMedGoogle Scholar
  127. Morandi B, Bougras G, Muller WA, Ferlazzo G, Munz C (2006) NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 36(9):2394–2400. doi:10.1002/eji.200636290PubMedGoogle Scholar
  128. Moretta A (2005) The dialogue between human natural killer cells and dendritic cells. Curr Opin Immunol 17(3):306–311. doi:10.1016/j.coi.2005.03.004PubMedGoogle Scholar
  129. Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, Moretta A (2006) Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 214:219–228. doi:10.1111/j.1600-065X.2006.00450.xPubMedGoogle Scholar
  130. Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108(5):1643–1651. doi:10.1182/blood-2006-02-006361PubMedGoogle Scholar
  131. Morita CT, Li H, Lamphear JG, Rich RR, Fraser JD, Mariuzza RA, Lee HK (2001) Superantigen recognition by gammadelta T cells: SEA recognition site for human Vgamma2 T cell receptors. Immunity 14(3):331–344PubMedGoogle Scholar
  132. Moszynski P (2007) Halt to microbicide trial sets back AIDS research. BMJ 334(7588):276PubMedGoogle Scholar
  133. Mourao-Sa D, Robinson MJ, Zelenay S, Sancho D, Chakravarty P, Larsen R, Plantinga M, Van Rooijen N, Soares MP, Lambrecht B, Reis e Sousa C (2011) CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur J Immunol 41(10):3040–3053. doi:10.1002/eji.201141641PubMedGoogle Scholar
  134. Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116. doi:10.1093/intimm/dxh190PubMedGoogle Scholar
  135. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. doi:10.1038/nri3084PubMedGoogle Scholar
  136. Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151(11):6535–6545PubMedGoogle Scholar
  137. Ogawa Y, Kawamura T, Kimura T, Ito M, Blauvelt A, Shimada S (2009) Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation. Blood 113(21):5157–5166. doi:10.1182/blood-2008-10-185728PubMedGoogle Scholar
  138. Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha PM (2008) HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373(1):85–97. doi:10.1016/j.virol.2007.10.042PubMedGoogle Scholar
  139. Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, Fujita T (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282(10):7576–7581. doi:10.1074/jbc.M608618200PubMedGoogle Scholar
  140. Otter M, Barrett-Bergshoeff MM, Rijken DC (1991) Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 266(21):13931–13935PubMedGoogle Scholar
  141. Parronchi P, Mohapatra S, Sampognaro S, Giannarini L, Wahn U, Chong P, Maggi E, Renz H, Romagnani S (1996) Effects of interferon-alpha on cytokine profile, T cell receptor repertoire and peptide reactivity of human allergen-specific T cells. Eur J Immunol 26(3):697–703. doi:10.1002/eji.1830260328PubMedGoogle Scholar
  142. Patterson S, Rae A, Hockey N, Gilmour J, Gotch F (2001) Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol 75(14):6710–6713. doi:10.1128/JVI.75.14.6710-6713.2001PubMedGoogle Scholar
  143. Pichlmair A, Reis e Sousa C (2007) Innate recognition of viruses. Immunity 27(3):370–383. doi:10.1016/j.immuni.2007.08.012PubMedGoogle Scholar
  144. Piemonti L, Bernasconi S, Luini W, Trobonjaca Z, Minty A, Allavena P, Mantovani A (1995) IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur Cytokine Netw 6(4):245–252PubMedGoogle Scholar
  145. Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77(7):4070–4080PubMedGoogle Scholar
  146. Pollara G, Jones M, Handley ME, Rajpopat M, Kwan A, Coffin RS, Foster G, Chain B, Katz DR (2004) Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 173(6):4108–4119PubMedGoogle Scholar
  147. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha  +  dendritic cells. J Exp Med 207(6):1261–1271. doi:10.1084/jem.20092618PubMedGoogle Scholar
  148. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282(5388):480–483PubMedGoogle Scholar
  149. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11(6):753–761PubMedGoogle Scholar
  150. Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schakel K (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 196(4):517–527PubMedGoogle Scholar
  151. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431. doi:10.1172/JCI42918PubMedGoogle Scholar
  152. Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, Sinigaglia F (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185(5):825–831PubMedGoogle Scholar
  153. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93PubMedGoogle Scholar
  154. Roseman DS, Baenziger JU (2000) Molecular basis of lutropin recognition by the mannose/GalNAc-4-SO4 receptor. Proc Natl Acad Sci U S A 97(18):9949–9954. doi:10.1073/pnas.170184597 170184597 [pii]PubMedGoogle Scholar
  155. Saidi H, Melki MT, Gougeon ML (2008) HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk. PLoS One 3(10):e3601. doi:10.1371/journal.pone.0003601PubMedGoogle Scholar
  156. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118PubMedGoogle Scholar
  157. Sancho D, Sousa E, Reis C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529. doi:10.1146/annurev-immunol-031210-101352PubMedGoogle Scholar
  158. Schakel K, von Kietzell M, Hansel A, Ebling A, Schulze L, Haase M, Semmler C, Sarfati M, Barclay AN, Randolph GJ, Meurer M, Rieber EP (2006) Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity 24(6):767–777. doi:10.1016/j.immuni.2006.03.020PubMedGoogle Scholar
  159. Schleypen JS, Von Geldern M, Weiss EH, Kotzias N, Rohrmann K, Schendel DJ, Falk CS, Pohla H (2003) Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 106(6):905–912. doi:10.1002/ijc.11321PubMedGoogle Scholar
  160. Schleypen JS, Baur N, Kammerer R, Nelson PJ, Rohrmann K, Grone EF, Hohenfellner M, Haferkamp A, Pohla H, Schendel DJ, Falk CS, Noessner E (2006) Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res 12(3 Pt 1):718–725. doi:10.1158/1078-0432.CCR-05-0857PubMedGoogle Scholar
  161. Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1(1):25–34. doi:10.1038/nrmicro729PubMedGoogle Scholar
  162. Shen L, Rock KL (2006) Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr Opin Immunol 18(1):85–91. doi:10.1016/j.coi.2005.11.003PubMedGoogle Scholar
  163. Shortman K (2012) Ralph Steinman and dendritic cells. Immunol Cell Biol 90(1):1–2. doi:10.1038/icb.2011.91PubMedGoogle Scholar
  164. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161. doi:10.1038/nri746PubMedGoogle Scholar
  165. Shrestha N, Ida JA, Lubinski AS, Pallin M, Kaplan G, Haslett PA (2005) Regulation of acquired immunity by gamma delta T-cell/dendritic-cell interactions. Ann N Y Acad Sci 1062:79–94. doi:10.1196/annals.1358.011PubMedGoogle Scholar
  166. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837PubMedGoogle Scholar
  167. Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pohlmann S (2003) DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305(1):115–123. doi:S0042682202917307 [pii]PubMedGoogle Scholar
  168. Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL (2004) HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood 104(9):2810–2817. doi:10.1182/blood-2003-07-2314PubMedGoogle Scholar
  169. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99(13):8826–8831. doi:10.1073/pnas.092258599PubMedGoogle Scholar
  170. Sodhi A, Montaner S, Gutkind JS (2004) Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5(12):998–1012. doi:nrm1529 [pii] 10.1038/nrm1529PubMedGoogle Scholar
  171. Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71(3):445–457PubMedGoogle Scholar
  172. Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L, Huang L, Levy JA, Liu YJ (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98(4):906–912PubMedGoogle Scholar
  173. Stahl P, Schlesinger PH, Sigardson E, Rodman JS, Lee YC (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19(1):207–215. doi:0092-8674(80)90402-X [pii]PubMedGoogle Scholar
  174. Stambach NS, Taylor ME (2003) Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13(5):401–410. doi:10.1093/glycob/cwg045 cwg045 [pii]PubMedGoogle Scholar
  175. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159(10):4772–4780PubMedGoogle Scholar
  176. Steinbrook R (2007) One step forward, two steps back—will there ever be an AIDS vaccine? N Engl J Med 357(26):2653–2655. doi:10.1056/NEJMp0708117PubMedGoogle Scholar
  177. Strowig T, Brilot F, Munz C (2008) Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 180(12):7785–7791PubMedGoogle Scholar
  178. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedGoogle Scholar
  179. Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T, Clausen BE, Matsubara K, Letterio J, Steinman RM, Matsuda Y, Inaba K (2002) Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 14(5):433–444PubMedGoogle Scholar
  180. Takahara K, Yashima Y, Omatsu Y, Yoshida H, Kimura Y, Kang YS, Steinman RM, Park CG, Inaba K (2004) Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int Immunol 16(6):819–829. doi:10.1093/intimm/dxh084dxh084 [pii].PubMedGoogle Scholar
  181. Tang L, Yang J, Tang X, Ying W, Qian X, He F (2010) The DC-SIGN family member LSECtin is a novel ligand of CD44 on activated T cells. Eur J Immunol 40(4):1185–1191. doi:10.1002/eji.200939936PubMedGoogle Scholar
  182. Tasca S, Tambussi G, Nozza S, Capiluppi B, Zocchi MR, Soldini L, Veglia F, Poli G, Lazzarin A, Fortis C (2003) Escape of monocyte-derived dendritic cells of HIV-1 infected individuals from natural killer cell-mediated lysis. AIDS 17(16):2291–2298. doi:10.1097/01.aids.0000096851.36052.a4PubMedGoogle Scholar
  183. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197(7):823–829. doi:10.1084/jem.20021840 jem.20021840 [pii]PubMedGoogle Scholar
  184. Tateno H, Ohnishi K, Yabe R, Hayatsu N, Sato T, Takeya M, Narimatsu H, Hirabayashi J (2010) Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 285(9):6390–6400. doi:M109.041863 [pii] 10.1074/jbc.M109.041863PubMedGoogle Scholar
  185. Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265(21):12156–12162PubMedGoogle Scholar
  186. Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267(3):1719–1726PubMedGoogle Scholar
  187. Tel J, van der Leun AM, Figdor CG, Torensma R, de Vries IJ (2012) Harnessing human plasmacytoid dendritic cells as professional APCs. Cancer Immunol Immunother. doi:10.1007/s00262-012-1210-zGoogle Scholar
  188. Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488PubMedGoogle Scholar
  189. Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3(10):975–983. doi:10.1038/ni841PubMedGoogle Scholar
  190. Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr, Lifson JD, Pope M, Cunningham AL (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6):2170–2179. doi:10.1182/blood-2003-09-3129PubMedGoogle Scholar
  191. Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Methods 5(1):75–85. doi:10.1038/nmeth1137PubMedGoogle Scholar
  192. Valladeau J, Duvert-Frances V, Pin JJ, Dezutter-Dambuyant C, Vincent C, Massacrier C, Vincent J, Yoneda K, Banchereau J, Caux C, Davoust J, Saeland S (1999) The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 29(9):2695–2704. doi:10.1002/(SICI)1521-4141(199909)29:09<2695::AID-IMMU2695>3.0.CO;2-Q [pii], 10.1002/(SICI)1521-4141(199909)29:09<2695::AID-IMMU2695>3.0.CO;2-QPubMedGoogle Scholar
  193. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12(1):71–81. doi:S1074-7613(00)80160-0 [pii]PubMedGoogle Scholar
  194. van der Vlist M, Geijtenbeek TB (2010) Langerin functions as an antiviral receptor on Langerhans cells. Immunol Cell Biol 88(4):410–415. doi:10.1038/icb.2010.32PubMedGoogle Scholar
  195. Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38(11):2975–2980. doi:10.1002/eji.200838919PubMedGoogle Scholar
  196. Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7(7):543–555. doi:10.1038/nri2103PubMedGoogle Scholar
  197. Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207(6):1131–1134. doi:10.1084/jem.20100985PubMedGoogle Scholar
  198. Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29(3):352–361. doi:10.1016/j.immuni.2008.09.002PubMedGoogle Scholar
  199. Wald A, Link K (2002) Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J Infect Dis 185(1):45–52. doi:10.1086/338231PubMedGoogle Scholar
  200. Weissman D, Rabin RL, Arthos J, Rubbert A, Dybul M, Swofford R, Venkatesan S, Farber JM, Fauci AS (1997) Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389(6654):981–985. doi:10.1038/40173PubMedGoogle Scholar
  201. Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505PubMedGoogle Scholar
  202. Willems F, Marchant A, Delville JP, Gerard C, Delvaux A, Velu T, de Boer M, Goldman M (1994) Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur J Immunol 24(4):1007–1009. doi:10.1002/eji.1830240435PubMedGoogle Scholar
  203. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119(5):1096–1102. doi:10.1046/j.1523-1747.2002.19515.xPubMedGoogle Scholar
  204. Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 6:859–868PubMedGoogle Scholar
  205. Xu L, Li Q, Ye H, Zhang Q, Chen H, Huang F, Chen R, Zhou R, Zhou W, Xia P, Chen Y, Pan C (2010) The nine-repeat DC-SIGNR isoform is associated with increased HIV-RNA loads and HIV sexual transmission. J Clin Immunol 30(3):402–407. doi:10.1007/s10875-010-9376-7PubMedGoogle Scholar
  206. Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M, Ueha S, Narumi S, Morikawa S, Ezaki T, Lu B, Gerard C, Ishikawa S, Matsushima K (2004) Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 16(7):915–928. doi:10.1093/intimm/dxh093dxh093 [pii]PubMedGoogle Scholar
  207. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858PubMedGoogle Scholar
  208. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203(8):1851–1858. doi:10.1084/jem.20060603PubMedGoogle Scholar
  209. Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134. doi:10.1371/journal.ppat.1000134PubMedGoogle Scholar
  210. Zaba LC, Krueger JG, Lowes MA (2009) Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 129(2):302–308. doi:10.1038/jid.2008.225PubMedGoogle Scholar
  211. Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, Reinhart TA, Rogan M, Cavert W, Miller CJ, Veazey RS, Notermans D, Little S, Danner SA, Richman DD, Havlir D, Wong J, Jordan HL, Schacker TW, Racz P, Tenner-Racz K, Letvin NL, Wolinsky S, Haase AT (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443):1353–1357PubMedGoogle Scholar
  212. Zhang AL, Colmenero P, Purath U, Teixeira de Matos C, Hueber W, Klareskog L, Tarner IH, Engleman EG, Soderstrom K (2007) Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood 110(7):2484–2493. doi:10.1182/blood-2007-02-076364PubMedGoogle Scholar
  213. Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, Knipe DM, Iwasaki A (2003) Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197(2):153–162PubMedGoogle Scholar
  214. Zhu J, Hladik F, Woodward A, Klock A, Peng T, Johnston C, Remington M, Magaret A, Koelle DM, Wald A, Corey L (2009) Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat Med 15(8):886–892. doi:10.1038/nm.2006PubMedGoogle Scholar
  215. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. doi:10.1182/blood-2010-02-258558PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Anthony L. Cunningham
    • 1
    • 2
  • Andrew Harman
    • 2
  • Min Kim
    • 2
  • Najla Nasr
    • 2
  • Joey Lai
    • 2
  1. 1.Westmead Millennium InstituteWestmeadAustralia
  2. 2.Centre for Virus ResearchWestmead Millennium Institute and University of SydneySydneyAustralia

Personalised recommendations