3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

  • H. PerfahlEmail author
  • H. M. Byrne
  • T. Chen
  • V. Estrella
  • T. Alarcón
  • A. Lapin
  • R. A. Gatenby
  • R. J. Gillies
  • M. C. Lloyd
  • P. K. Maini
  • M. Reuss
  • M. R. Owen
Part of the Bioanalysis book series (BIOANALYSIS, volume 2)


We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.


Vascular Endothelial Growth Factor Wall Shear Stress Vascular Endothelial Growth Factor Level Vascular Network Multiscale Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



HMB, MRO and HP acknowledge financial support by the Marie Curie Network MMBNOTT (Project No. MEST-CT-2005-020723). RAG and PKM acknowledge partial support from NIH/NCI grant U54CA143970. HP, AL and MR thank the BMBF—Funding Initiative FORSYS Partner: “Predictive Cancer Therapy”. In vivo window chamber work was funded in part by Moffitt Cancer Center PS-OC NIH/NCI U54CA143970. This publication was based on work supported in part by Award No. KUK-C1-1013-04, made by King Abdullah University of Science and Technology (KAUST).


  1. 1.
    Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in an inhomogeneous environment. J Theor Biol 225:257–274CrossRefGoogle Scholar
  2. 2.
    Alarcón T, Byrne HM, Maini PK (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 229(3):395–411CrossRefGoogle Scholar
  3. 3.
    Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Sim 3:440–475zbMATHCrossRefGoogle Scholar
  4. 4.
    Alarcón T, Owen MR, Byrne HM, Maini PK (2006) Multiscale modelling of tumour growth and therapy: The influence of vessel normalisation on chemotherapy. Comput Math Method M7(2-3):85–119zbMATHCrossRefGoogle Scholar
  5. 5.
    Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. Math Med Biol 22:163–186zbMATHCrossRefGoogle Scholar
  6. 6.
    Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899zbMATHCrossRefGoogle Scholar
  7. 7.
    Arakelyan L, Vainstein V, Agur Z (2002) A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5(3):203–14CrossRefGoogle Scholar
  8. 8.
    Arakelyan L, Merbl Y, Agur Z (2005) Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur J Cancer 41(1):159–167CrossRefGoogle Scholar
  9. 9.
    Breward CJW, Byrne HM, Lewis CE (2003) A multiphase model describing vascular tumour growth. Bull Math Biol 65:609–640CrossRefGoogle Scholar
  10. 10.
    Clark ER (1918) Studies on the growth of blood-vessels in the tail of the frog larva - by observation and experiment on the living animal. Am J Anat 23(1):37–88CrossRefGoogle Scholar
  11. 11.
    Drasdo D, Jagiella N, Ramis-Conde I, Vignon-Clementel I, Weens W (2010) Modeling steps from a benign tumor to an invasive cancer: Examples of intrinsically multi-scale problems. In: Chauviere A, Preziosi L, Verdier C (eds) Cell mechanics: From single scale-based models to multiscale modeling. Chapman & Hall/CRC, pp 379–417Google Scholar
  12. 12.
    Folkman J (1971) Tumour angiogenesis – therapeutic implications. New Engl J Med 285:1182–1186CrossRefGoogle Scholar
  13. 13.
    Folkman J, Klagsburn M (1987) Angiogenic factors. Science 235:442–447CrossRefGoogle Scholar
  14. 14.
    Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37(S1):59–70CrossRefGoogle Scholar
  15. 15.
    Lee DS, Rieger H, Bartha K (2006) Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96(5):058,104–4Google Scholar
  16. 16.
    Lloyd BA, Szczerba D, Rudin M, Székely G (2008) A computational framework for modelling solid tumour growth. Phil Trans R Soc A 366:3301–3318CrossRefGoogle Scholar
  17. 17.
    Macklin P, McDougall S, Anderson AR, Chaplain MAJ, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58:765–798MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mantzaris N, Webb SD, Othmer HG (2004) Mathematical modelling of tumour angiogenesis: A review. J Math Biol 49:111–187MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–89MathSciNetCrossRefGoogle Scholar
  20. 20.
    Owen MR, Alarcón T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58:689–721MathSciNetCrossRefGoogle Scholar
  21. 21.
    Owen M, Stamper I, Muthana M, Richardson G, Dobson J, Lewis C, Byrne H (2011) Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res 71(8):2826CrossRefGoogle Scholar
  22. 22.
    Perfahl H, Byrne H, Chen T, Estrella V, Alarcón T, Lapin A, Gatenby R, Gillies R, Lloyd M, Maini P, et al (2011) Multiscale modelling of vascular tumour growth in 3d: The roles of domain size and boundary conditions. PloS one 6(4):e14,790. doi:10.1371/journal.pone.0014790Google Scholar
  23. 23.
    Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20(2):135–181zbMATHCrossRefGoogle Scholar
  24. 24.
    Plank M, Sleeman B (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66(6):1785–1819MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: Theory and simulations. Am J Physiol 275(2 Pt 2):H349–H360Google Scholar
  26. 26.
    Pries A, Reglin B, Secomb T (2001) Structural adaptation of microvascular networks: Functional roles of adaptive responses. Am J Physiol 281:H1015–H1025Google Scholar
  27. 27.
    Pugh C, Rattcliffe P (2003) Regulation of angiogenesis by hypoxia: Role of the hif system. Nature Med 9:677–684CrossRefGoogle Scholar
  28. 28.
    Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman L, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: For better and for worse. Progr Biophys Mol Biol 81:177–199CrossRefGoogle Scholar
  29. 29.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386:871–875Google Scholar
  30. 30.
    Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys Rev E 71:1–16MathSciNetCrossRefGoogle Scholar
  31. 31.
    Secomb TW, Hsu R, Beamer NB, Coull BM (2000) Theoretical simulation of oxygen transport to brain by networks of microvessels: Effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7:237–247Google Scholar
  32. 32.
    Shirinifard A, Gens JS, Zaitlen BL, Poplawski NJ, Swat M (2009) 3D Multi-Cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10):e7190. doi: 10.1371/journal.pone.0007190
  33. 33.
    Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comp Modelling 41(10):1137–1156zbMATHCrossRefGoogle Scholar
  34. 34.
    Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403CrossRefGoogle Scholar
  35. 35.
    Tracqui P (2009) Biophysical models of tumour growth. Rep Prog Phys 72(5):056,701Google Scholar
  36. 36.
    Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210:249–263CrossRefGoogle Scholar
  37. 37.
    Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull Math Biol 67(2):211–259MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • H. Perfahl
    • 1
    Email author
  • H. M. Byrne
    • 2
  • T. Chen
    • 3
  • V. Estrella
    • 3
  • T. Alarcón
    • 4
  • A. Lapin
    • 1
  • R. A. Gatenby
    • 3
  • R. J. Gillies
    • 3
  • M. C. Lloyd
    • 3
  • P. K. Maini
    • 5
  • M. Reuss
    • 1
  • M. R. Owen
    • 6
  1. 1.Center for Systems-BiologyUniversity of StuttgartStuttgartGermany
  2. 2.Oxford Centre for Collaborative Applied Mathematics, Department of Computer ScienceUniversity of OxfordOxfordUK
  3. 3.H. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  4. 4.Centre de Recerca MatemàticaBarcelonaSpain
  5. 5.Centre for Mathematical Biology, Mathematical Institute and Oxford Centre for Integrative Systems Biology, Department of BiochemistryUniversity of OxfordOxfordUK
  6. 6.Centre for Mathematical Medicine and Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations