Advertisement

Biomass Conversion

  • Stephen R. Decker
  • John Sheehan
  • David C. Dayton
  • Joseph J. Bozell
  • William S. Adney
  • Bonnie Hames
  • Steven R. Thomas
  • Richard L. Bain
  • Stefan Czernik
  • Min Zhang
  • Michael E. HimmelEmail author
Chapter

Abstract

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the sun to combine carbon dioxide from the atmosphere with water to produce organic plant matter. More inclusive definitions are possible. For example, animal products and waste can be included in the definition of biomass. Animals, like plants, are renewable; but animals clearly are one step removed from the direct use of sunlight. Using animal rather than plant material thus leads to substantially less efficient use of our planet’s ultimate renewable resource, the sun. So, we emphasize plant matter in our definition of biomass. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a “carbon neutral” fuel, meaning that it does not introduce new carbon into the atmosphere. In reality—as discussed later in the description of life cycle assessments of biomass use—we find that biomass fuels are not quite carbon neutral, because somewhere in the life cycle of their production, conversion, and distribution, some fossil energy carbon is released.

Notes

Acknowledgment

This work was supported by the U.S. Department of Energy Office of the Biomass Program.

References

  1. 1.
    Hall DO (1978) Solar energy use through biology—past, present and future. Solar Energy 22:307–328CrossRefGoogle Scholar
  2. 2.
    USDOE international energy annual 2000, DOE/EIA-0219(2000). U.S. Department of Energy, Energy Information Administration, Washington, DC (2002)Google Scholar
  3. 3.
    Goldemberg J, Monaco L, Macedo I (1993) The Brazilian fuel-alcohol program. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DCGoogle Scholar
  4. 4.
    Rhodes A, Fletcher D (1966) Principles of industrial microbiology. Pergamon, New YorkGoogle Scholar
  5. 5.
    Grohmann K, Himmel M (1991) Chapter 1: enzymes for fuels and chemical feedstocks. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion, vol 460. American Chemical Society, Washington, DC, pp 2–11CrossRefGoogle Scholar
  6. 6.
    Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic, San Diego, pp 13–17Google Scholar
  7. 7.
    Fry SC, Miller JG (1989) Toward a working model of the growing plant cell wall. In: Lewis NG, Paice MG (eds) Plant cell wall polymers. American Chemical Society, Washington, DC, pp 33–46CrossRefGoogle Scholar
  8. 8.
    Chum HL, Overend R (2003) Biomass and bioenergy in the United States. In: Goswami DY (ed) Advances in solar energy: an annual review, vol 15(3). American Solar Energy Society, Boulder, CO, pp 83–148Google Scholar
  9. 9.
    Haq Z (2002) Biomass for electricity. Energy Information Administration, U.S. Department of Energy, Washington, DCGoogle Scholar
  10. 10.
    Perry H (1974) The gasification of coal. Sci Am 230(3):19–25CrossRefGoogle Scholar
  11. 11.
    McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63CrossRefGoogle Scholar
  12. 12.
    Rapagna S, Jand N, Foscolo P (1998) Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy 23(7):551–557CrossRefGoogle Scholar
  13. 13.
    USDOE (2000) A biopower triumph—the gasification story, DOE/GO102000-1058. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DCGoogle Scholar
  14. 14.
    Sherrard EC, Gauger WH (1923) Effect of salts upon the acid hydrolysis of wood. Ind Eng Chem 15(1):63–64CrossRefGoogle Scholar
  15. 15.
    Sherrard EC (1922) Ethyl alcohol from western larch—larix occidentalis, nuttal. Ind Eng Chem 14(10):948–949CrossRefGoogle Scholar
  16. 16.
    LaForge FB, Hudson CS (1918) The preparation of several useful substances from corn cobs. J Ind Eng Chem 10(11):925–927CrossRefGoogle Scholar
  17. 17.
    Braconnot H (1819) Verwandlungen des Holzstoffs mittelst Schwefelsaure in Gummi, Zucker und eine eigne Saure, und mittelst Kali in Ulmin. Ann Phys January:547–571Google Scholar
  18. 18.
    Dunning J, Lathrop E (1945) The saccharification of agricultural residues: a continuous process. Ind Eng Chem 37(1):24–29CrossRefGoogle Scholar
  19. 19.
    Faith W (1945) Development of the Scholler process in the United States. Ind Eng Chem 37(1):9–11CrossRefGoogle Scholar
  20. 20.
    Saeman J (1945) Kinetics of wood saccharification: hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–51CrossRefGoogle Scholar
  21. 21.
    Sherrard E, Kressman F (1945) Review of processess in the United States prior to World War II. Ind Eng Chem 37(1):5–8CrossRefGoogle Scholar
  22. 22.
    Harris E, Berlinger E (1946) Madison wood-sugar process, R1617. U.S. Forest Product Laboratory, Madison, WIGoogle Scholar
  23. 23.
    Harris E (1949) Wood saccharification. In: Advances in carbohydrate chemistry. Academic, New York, vol 4, pp 163–188Google Scholar
  24. 24.
    Gilbert N, Hobbs I, Levine J (1952) Hydrolysis of wood using dilute sulfuric acid. Ind Eng Chem 44(7):1712–1720CrossRefGoogle Scholar
  25. 25.
    Wenzl H (1970) Chapter IV: the acid hydrolysis of wood. In: The chemical technology of wood. Academic, New York, pp 157–252Google Scholar
  26. 26.
    Grethlein H (1978) Comparison of the economics of acid and enzymatic hydrolysis of newsprint. Biotechnol Bioeng 20:503–525CrossRefGoogle Scholar
  27. 27.
    Wright J (1983) High-temperature acid hydrolysis of cellulose for alcohol fuel production, SERI/TR-231-1714. Solar Energy Research Institute, Golden, COGoogle Scholar
  28. 28.
    Grohmann K, Himmel M, Rivard C, Tucker M, Baker J, Torget R, Graboski M (1984) Chemical–mechanical methods for the enhanced utilization of straw. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 137–157Google Scholar
  29. 29.
    Church J, Woolbridge D (1981) Continuous high solids acid hydrolysis of biomass in a 1.5 in plug flow reactor. Ind Eng Chem Prod Res Devel 20:371–378CrossRefGoogle Scholar
  30. 30.
    Wright J, d’Agnicourt C (1984) Evaluation of sulfuric acid hydrolysis for alcohol fuel production. In: Biotechnology and bioengineering symposium. Wiley, New York, pp 105–123Google Scholar
  31. 31.
    Harris J, Baker A, Conner A, Jefferies T, Minor J et al (1985) Two-stage dilute sulfuric acid hydrolysis of wood: an investigation of fundamentals. General technical report FPL-45. U.S. Forest Products Laboratory, Madison, WIGoogle Scholar
  32. 32.
    Wirght J, Power A, Bergeron P (1985) Evaluation of concentrated halogen acid hydrolysis processes for alcohol fuel production, SERI/TR-232-2386. Solar Energy Research Institute, Golden, COGoogle Scholar
  33. 33.
    Farone WA, Cuzens JE (1996) Methods of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent 5,562,777, 8 Oct 1996Google Scholar
  34. 34.
    Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–121Google Scholar
  35. 35.
    Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 15:59–80Google Scholar
  36. 36.
    Kong F, Engler CR, Soltes EJ (1993) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRefGoogle Scholar
  37. 37.
    Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRefGoogle Scholar
  38. 38.
    Vinzant TB, Ehrman CI, Himmel ME (1997) SSF of pretreated hardwoods: effect of native lignin content. Appl Biochem Biotechnol 62:97–102CrossRefGoogle Scholar
  39. 39.
    Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRefGoogle Scholar
  40. 40.
    Zhang M, Frandan M, Newman J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation scientific note. Appl Biochem Biotechnol 51/52:527–536CrossRefGoogle Scholar
  41. 41.
    Zhang M, Deanda K, Finkelstein M, Picataggion S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRefGoogle Scholar
  42. 42.
    Zhang M, Chou Y, Piccatagio S, Finkelstein M (1996) Single Zymomonas mobilis strain for xylose and arabinose fermentation, NREL IR#95-51. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  43. 43.
    Ohta K, Beall D, Mejia J, Ingram L (1991) Genetic improvement of Escherichia for ethanol production: chromosol integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  44. 44.
    Lawford H, Rousseau J (1991) Energy from biomass and waste. In: Klass D (ed) Xylose to ethanol: enhanced yield and productivity using genetically engineered Escherichia coli. Chicago, pp 583–623Google Scholar
  45. 45.
    Ingram L, Ohta K, Beall D (1991) Energy from biomass and wastes. In: Klass D (ed) Genetic modification of E. coli for ethanol production. Institute of Gas Technology, Chicago, pp 1105–1125Google Scholar
  46. 46.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  47. 47.
    ISO (1997) ISO 14040: environmental management—life cycle assessment—principles and framework, ISO 14040: 1997(E). International Standardization Organization, Geneva, 15 June 1997Google Scholar
  48. 48.
    ISO (2000) ISO/TR 14049: environmental management—life cycle assessment—examples of application of ISO 14041 to goal and scope definition and inventory analysis, ISO/TR 14049. International Organization for Standardization, Geneva, 15 March 2000Google Scholar
  49. 49.
    ISO (1998) ISO 14041: environmental management—life cycle assessment—goal and scope definition and inventory analysis, ISO 14041:1998(E). International Organization for Standardization, Geneva, 1 Oct 1998Google Scholar
  50. 50.
    ISO (1996) ISO 14004: environmental management systems—general guidelines on principles, systems and supporting techniques, ISO 14004:1996(E). International Organization for Standardization, Geneva, 1 Sept 1996Google Scholar
  51. 51.
    ISO (2000) ISO 14043: environmental management systems—life cycle assessment—life cycle interpretation, ISO 14043:2000(E). International Organization for Standardization, Geneva, 1 March 2000Google Scholar
  52. 52.
    ISO (1996) ISO 14001: environmental management systems—specification with guidance for use, ISO 14001:1996(E). International Organization of Standardization, Geneva, 1 Sept 1996Google Scholar
  53. 53.
    Spath P, Mann M (2004) Biomass power and conventional fossil systems with and without CO2 sequestration—comparing the energy balance, greenhouse gas emissions and economics, NREL/TP-510-32575. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  54. 54.
    Spath P, Dayton D (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  55. 55.
    U.S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0383. U.S. Department of Energy, Washington, DCGoogle Scholar
  56. 56.
    Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57/58:741–761CrossRefGoogle Scholar
  57. 57.
    Hoffert M, Caldeira K, Benford G, Crisell D, Green CJ et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse plant. Science 298:981–987CrossRefGoogle Scholar
  58. 58.
    NRC (2000) Bio-based industrial products: priorities for research and commercialization. Committee on Bio-Based Industrial Products, National Research Council, Washington, DCGoogle Scholar
  59. 59.
    Johansson T, Kelly H, Reddy A, Williams R (1996) Renewable fuels and electricity for a growing world economy. In: Johansson T, Kelly H, Reddy A, Williams R (eds) Renewable energy: sources for fuels and electricity. Island Press, Washington, DCGoogle Scholar
  60. 60.
    Lynd LR, Jin H, Michels JG, Wyman CE, Dale B (2003) Bioenergy: background, potential, and policy: a policy briefing prepared for the Center for Strategic and International Studies. Center for Strategic and International Studies, Washington, DCGoogle Scholar
  61. 61.
    Lovins AB, Datta EK, Bustnes O-E, Koomey JG, Glasgow N (2004) Winning the oil endgame: innovation for profits, jobs and security. Rocky Mountain Institute, Snowmass, COGoogle Scholar
  62. 62.
    Greene N (2004) Growing energy: how biofuels Can help end America’s oil dependence. Natural Resources Defense Council, New YorkGoogle Scholar
  63. 63.
    Helle S, Cameron D et al (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of Saccharomyces cerevisiae. Enzyme Microb Technol 33(6):786–792CrossRefGoogle Scholar
  64. 64.
    Klinke HB, Thomsen AB et al (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26CrossRefGoogle Scholar
  65. 65.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefGoogle Scholar
  66. 66.
    Dupreez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida-shehatae and Pichia-stipitis. Appl Microbiol Biotechnol 23(3–4):228–233Google Scholar
  67. 67.
    Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425Google Scholar
  68. 68.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57(10):2810–2815Google Scholar
  69. 69.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  70. 70.
    Lawford HG, Rousseau JD (1992) Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 34–35:185–204CrossRefGoogle Scholar
  71. 71.
    Hahn-Hagerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol 28–29:131–144CrossRefGoogle Scholar
  72. 72.
    Padukone N, Evans KW, McMillan JD, Wyman CE (1995) Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol. Appl Microbiol Biotechnol 43(5):850–855CrossRefGoogle Scholar
  73. 73.
    Asghari A, Bothast RJ, Doran JB, Ingram LO (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J Ind Microbiol 16(1):42–47CrossRefGoogle Scholar
  74. 74.
    Zhang M, Eddy C, Deanda K, Franden MA, Finkelstein M, Picataggio S (1995) Metabolic engineering of Zymomonas-mobilis for ethanol-production from renewable feedstocks. Abstr Paper Am Chem Soc 209:115-BTECGoogle Scholar
  75. 75.
    Zhang M, Franden MA, Newman M, McMillan J, Finkelstein M, Picataggio S (1995) Promising ethanologens for xylose fermentation—scientific note. Appl Biochem Biotechnol 51–2:527–536CrossRefGoogle Scholar
  76. 76.
    Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas-mobilis. Science 267(5195):240–243CrossRefGoogle Scholar
  77. 77.
    Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470Google Scholar
  78. 78.
    Ho NWY, Chen ZD, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852–1859Google Scholar
  79. 79.
    Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63–5:243–255CrossRefGoogle Scholar
  80. 80.
    Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78CrossRefGoogle Scholar
  81. 81.
    Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409CrossRefGoogle Scholar
  82. 82.
    Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180(2):134–141CrossRefGoogle Scholar
  83. 83.
    Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of close-fermenting yeasts. Enzyme Microb Technol 16(11):922–932CrossRefGoogle Scholar
  84. 84.
    Jeffries TW, Dahn K, Kenealy WR, Pittman P, Sreenath HK, Davis BP (1994) Genetic-engineering of the xylose-fermenting yeast Pichia-stipitis for improved ethanol-production. Abstr Paper Am Chem Soc 207:167-BTECGoogle Scholar
  85. 85.
    Klapatch TR, Guerinot ML, Lynd LR (1996) Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16(6):342–347CrossRefGoogle Scholar
  86. 86.
    Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16(4):401–406CrossRefGoogle Scholar
  87. 87.
    Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28(1):16–24CrossRefGoogle Scholar
  88. 88.
    Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD et al (1997) Advanced bioethanol production technologies: a perspective. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 2–45CrossRefGoogle Scholar
  89. 89.
    Toon ST, Philippidis GP, Ho NWY, Chen ZD, Brainard A et al (1997) Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol 63(5):243–255CrossRefGoogle Scholar
  90. 90.
    Zhang Y-HP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102(20):7321–7325CrossRefGoogle Scholar
  91. 91.
    VanRensburg P, Zyl WHV, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14(1):67–76CrossRefGoogle Scholar
  92. 92.
    Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB et al (1999) Cloning and expression of Trichoderma reesei CBH I in Pichia pastoris. Biotechnol Prog 15(3):828–833CrossRefGoogle Scholar
  93. 93.
    VanRooyen R, Hahn-Hagerdal B, Grange DCL, VanZyl WH (2003) Comparative expression of novel beta-glucosidases in Saccharomyces cerevisiae. Yeast 20:S223Google Scholar
  94. 94.
    ASTM Methods available from American Society for Testing and Materials at http://www.ASTM.org; E1690-01 Determining ethanol extractives in biomass; E1721-01 Determining acid-insoluble residue in biomass; E1755-01 Determining ash in biomass; E1756-01 Determining total solids in biomass; E1757-0101 Preparing biomass for compositional analysis; E1758-0101 Determining carbohydrates in biomass by high performance liquid chromatography (HPLC); E1821-96 Determining carbohydrates in biomass by gas chromatograph (GC). http://www.ASTM.org. April
  95. 95.
    http://www.ott.doe.gov/biofuels/analytical_methods.html, n. R. e. l. p. a. Standard Laboratory Analytical Methods (LAPs) for biomass compositional analysis. http://www.ott.doe.gov/biofuels/analytical_methods.html. April 2005
  96. 96.
    Ehrman CI (1996) Methods for the chemical analysis of biomass process streams. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DCGoogle Scholar
  97. 97.
    DiFoggio R (1995) Examination of some misconceptions about near-infrared analysis. Appl Spectrosc 49(1):67–75CrossRefGoogle Scholar
  98. 98.
    Wisconsin Wisconsin Corn Hybrid Trials. http://corn.agronomy.wisc.edu/. Accessed 4 July 2005
  99. 99.
    Minnesota Minnesota Agricultural Experiment Station. http://www.maes.umn.edu/maespubs/vartrial/cropages/cornpage.html. Accessed 4 July 2005
  100. 100.
    Shull GH (1909) A pure-line method in corn breeding. Am Breed Assoc Rep 5:51–59Google Scholar
  101. 101.
    East EM (1936) Heterosis. Genetics 21:375–397Google Scholar
  102. 102.
    United States Department of Agriculture National Agricultural Statistics Service. http://www.nass.usda.gov/. Accessed 4 July 2005
  103. 103.
    Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Crop Science Society of America, Madison, WI, pp 463–564Google Scholar
  104. 104.
    Peterson PA (1993) Transposable elements in maize: their role in creating plant genetic variability. Adv Agron 51:79–124CrossRefGoogle Scholar
  105. 105.
    Alexander DE (1988) Breeding special nutritional and industrial types. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, WI, pp 869–880Google Scholar
  106. 106.
    Dudley JW (1977) Seventy-six generations of selection for oil and protein in maize. In: Pollak E et al (eds) Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, pp 459–473Google Scholar
  107. 107.
    Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein content in corn. Plant Breed Rev 24(1):79–110Google Scholar
  108. 108.
    Miller RL, Dudley JW, Alexander DE (1981) High intensity selection for percent oil in corn. Crop Sci 21:455–457Google Scholar
  109. 109.
    Dudley JW, Dijkhuizen A, Paul C, Coates ST, Rocheford TR (2004) Effects of random mating on marker-QTL associations in the cross of the Illinois high protein x Illinois low protein maize strains. Crop Sci 44:1419–1428CrossRefGoogle Scholar
  110. 110.
    Seki MMN, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145CrossRefGoogle Scholar
  111. 111.
    Yu JSH, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRefGoogle Scholar
  112. 112.
    Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefGoogle Scholar
  113. 113.
    JGI, J. G. I. Populus trichocarpa v.1.0. http://genome.jgi-psf.org/Poptrl/Poptrl.info.html. Accessed 4 June 2005
  114. 114.
    TIGR TIGR Maize Gene Index. http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=maize. Accessed 4 May 2005
  115. 115.
    Carpita NC, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5CrossRefGoogle Scholar
  116. 116.
    Carpita cell wall genomics. http://cellwall.genomics.purdue.edu/. Accessed 4 June 2005
  117. 117.
    Keegstra WallBioNet. http://xyloglucan.prl.msu.edu/. Accessed 4 June 2005
  118. 118.
    Somerville Chris Somerville. http://www-ciwdpb.stanford.edu/research/research_csomerville.php. Accessed 4 June 2005
  119. 119.
    Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 93(22):12637–12642CrossRefGoogle Scholar
  120. 120.
    Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X et al (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299CrossRefGoogle Scholar
  121. 121.
    Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 102(6):2221–2226CrossRefGoogle Scholar
  122. 122.
    Reiter WD, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 47(1–2):95–113CrossRefGoogle Scholar
  123. 123.
    Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T et al (2005) Glycosylphosphatidylinositolanchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell 17(4):1128–1140CrossRefGoogle Scholar
  124. 124.
    Milne TA, Chum HL, Agblevor F, Johnson DK (1992) Standardized analytical methods. Biomass Bioenergy 2(1–6):341–366CrossRefGoogle Scholar
  125. 125.
    Milne TA, Brennan AH, Glenn BH (1990) Sourcebook of methods of analysis for biomass and biomass conversion processes. Elsevier, New York, p 341Google Scholar
  126. 126.
    Tkachuk R (1977) Calculation of the nitrogen-to-protein conversion factor. In: Hulse JH, Rachie KO, Billingsley LW (eds) Nutritional standards and methods of evaluation for food legume breeders. Bernan Associates, Lanham, pp 78–82Google Scholar
  127. 127.
    Mossé J (1990) Nitrogen to protein conversion factor for 10 cereals and 6 legumes or oilseeds—a reappraisal of its definition and determination—variation according to species and to seed protein content. J Agric Food Chem 38(1):18–24CrossRefGoogle Scholar
  128. 128.
    Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis: new tools for the compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108, Proceedings of the 24th international symposium for the biotechnology of fuels and chemicals, pp 1–12Google Scholar
  129. 129.
    Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. New tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105–108:5–16CrossRefGoogle Scholar
  130. 130.
    Aden A, Ruth M, Ibsen K, Jechura J, Neeves K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report no. TP-510-32438 available online at URL http://www.nrel.gov/publications/. National Renewable Energy Laboratory, Golden, CO, June 2002, p 154
  131. 131.
    NREL. A calculator for theoretical ethanol yields form biomass. http://www.ott.doe.gov/biofuels/ethanol_calculator.html. Accessed April 2005
  132. 132.
    Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50(2):225–230CrossRefGoogle Scholar
  133. 133.
    Nelson OE (1966) Mutant genes that change the composition of maize endosperm proteins. Fed Proc 25(6):1676–1678Google Scholar
  134. 134.
    Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082(1):1–26CrossRefGoogle Scholar
  135. 135.
    Reiter W-D, Chappie C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12(2):335–345CrossRefGoogle Scholar
  136. 136.
    Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35(3):393–404CrossRefGoogle Scholar
  137. 137.
    Yong WD, Link B, O’Malley R, Tewari J, Hunter CT III et al (2005) Genomics of plant cell wall biogenesis. Planta 221:747–751CrossRefGoogle Scholar
  138. 138.
    Baker JO, Thomas SR, Adney WS, Nieves RA, Himmel ME (1994) The cellulase synergistic effect—binary and ternary-systems. Abstr Paper Am Chem Soc 207:50-AGFDGoogle Scholar
  139. 139.
    Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(pt 3):705–710Google Scholar
  140. 140.
    Gatenholm P, Tenkanen M (2004) Hemicelluloses: science and technology, vol 864. American Chemical Society, Washington, DC, p 388Google Scholar
  141. 141.
    Galante Y, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries. Curr Org Chem 7(13):1399–1422CrossRefGoogle Scholar
  142. 142.
    Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418Google Scholar
  143. 143.
    Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227CrossRefGoogle Scholar
  144. 144.
    Lebeda A, Luhova L, Sedlarova M, Jancova D (2001) The role of enzymes in plant-fungal pathogens interactions—review. Z Pflanzenk Pflanzen 108(1):89–111Google Scholar
  145. 145.
    Naidu G, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Eng 19(5):355–361CrossRefGoogle Scholar
  146. 146.
    Burke R, Cairney J (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12(3):105–116CrossRefGoogle Scholar
  147. 147.
    Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canad J Microbiol 48(10):857–870CrossRefGoogle Scholar
  148. 148.
    Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183CrossRefGoogle Scholar
  149. 149.
    Garg S, Modi D (1999) Decolorization of pulp-paper mill effluents by white-rot fungi. Crit Rev Biotechnol 19(2):85–112CrossRefGoogle Scholar
  150. 150.
    Cairney J, Burke R (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205(2):181–192CrossRefGoogle Scholar
  151. 151.
    Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53(2–3):273–289CrossRefGoogle Scholar
  152. 152.
    Zadrazil F, Kamra D, Isikhuemhen O, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi—review of work done at the FAL, Braunschweig. J Appl Animal Res 10(2):105–124CrossRefGoogle Scholar
  153. 153.
    Moss GP (1992) Recommendations of the nomenclature committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalysed reactions. URL:http://www.chem.qmul.ac.uk/iubmb/enzyme/
  154. 154.
    Eriksson K-EL, Cavaco-Paulo A (1998) Enzyme applications in fiber processing. In: ACS symposium series, vol 687. American Chemical Society, Washington, DCGoogle Scholar
  155. 155.
    Saddler JN, Penner MH (1994) Enzymatic degradation of insoluble carbohydrates. In: ACS symposium series, vol 618. American Chemical Society, Washington, DCGoogle Scholar
  156. 156.
    Mansfield SD, Saddler JN (2003) Applications of enzymes to lignocellulosics. In: ACS symposium series, vol 855. American Chemical Society, Washington, DCGoogle Scholar
  157. 157.
    Leatham GF, Himmel ME (1991) Enzymes in biomass conversion. In: ACS symposium series, vol 460. American Chemical Society, Washington, DCGoogle Scholar
  158. 158.
    Jeffries TW, Viikari L (1996) Enzymes for pulp and paper processing. In: ACS symposium series, vol 655. American Chemical Society, Washington, DCGoogle Scholar
  159. 159.
    Himmel ME, Baker JO, Saddler JN (2001) Glycosyl hydrolases for biomass conversion. In: ACS symposium series, vol 769. American Chemical Society, Washington, DCGoogle Scholar
  160. 160.
    Himmel ME, Baker JO, Overend RP (1994) Enzymatic conversion of biomass for fuels production. In: ACS symposium series, vol 566. American Chemical Society, Washington, DCGoogle Scholar
  161. 161.
    Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32(Database issue):D431–D433CrossRefGoogle Scholar
  162. 162.
    Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370CrossRefGoogle Scholar
  163. 163.
    Coutinho PM, Henrissat B (1999) CAZy—carbohydrate active enzymes. URL:http://afmb.cnrs-mrs.fr/CAZY/
  164. 164.
    Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305CrossRefGoogle Scholar
  165. 165.
    Mandels M, Miller GL, Slater RW (1961) Separation of fungal carbohydrases by starch block zone electrophoresis. Arch Biochem Biophys 93:115–121CrossRefGoogle Scholar
  166. 166.
    Pere J, Puolakka A, Nousiainen P, Buchert J (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89(2–3):247–255CrossRefGoogle Scholar
  167. 167.
    Samejima M, Sugiyama J, Igarashi K, Eriksson K-EL (1997) Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 305(2):281–288CrossRefGoogle Scholar
  168. 168.
    Helbert W, Sugiyama J, Ishihara M, Yamanaka S (1997) Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol 57(1–3):29–37CrossRefGoogle Scholar
  169. 169.
    Zauscher S, Klingenberg DJ (2000) Normal forces between cellulose surfaces measured with colloidal probe microscopy. J Colloid Interface Sci 229(2):497–510CrossRefGoogle Scholar
  170. 170.
    Lee I, Evans BR, Woodward J (2000) The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 82(1–4):213–221CrossRefGoogle Scholar
  171. 171.
    Rutland MW, Carambassis A, Willing GA, Neuman RD (1997) Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloids Surf A Physicochem Eng Asp 123–124:369–374CrossRefGoogle Scholar
  172. 172.
    Gustafsson J, Ciovica L, Peltonen J (2003) The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44(3):661–670CrossRefGoogle Scholar
  173. 173.
    Li H, Rief M, Oesterhelt R, Gaub HE, Zhang X, Shen J (1999) Single-molecule force spectroscopy on polysaccharides by AFM—nanomechanical fingerprint of α-(1,4)-linked polysaccharides. Chem Phys Lett 305(3–4):197–201CrossRefGoogle Scholar
  174. 174.
    Ramos LP, Zandon A, Filho A, Deschamps FC, Saddler JN (1999) The effect of Trichoderma cellulases on the fine structure of a bleached softwood kraft pulp. Enzyme Microb Technol 24(7):371–380CrossRefGoogle Scholar
  175. 175.
    Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME (2003) An automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 105:689–703CrossRefGoogle Scholar
  176. 176.
    Kong F, Engler CR, Soltes EJ (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34/35:23–35CrossRefGoogle Scholar
  177. 177.
    Tenkanen M, Poutanen K (1992) Significance of esterases in the degradation of xylans. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, New York, pp 203–212Google Scholar
  178. 178.
    Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424CrossRefGoogle Scholar
  179. 179.
    Poutanen K, Sundberg M, Korte H, Puls J (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510CrossRefGoogle Scholar
  180. 180.
    Biely P, Vrsanska M, Kremnicky L, Alfoldi J, Tenkanen M et al (1994) Family F and G endo-beta-1,4-xylanases—differences in their performance on glucuronoxylan and rhodymenan. Abstr Paper Am Chem Soc 207:148-BTECGoogle Scholar
  181. 181.
    Coughlan MP, Hazlewood GP (1993) Hemicellulose and hemicellulases. Portland, London, UKGoogle Scholar
  182. 182.
    Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497Google Scholar
  183. 183.
    Ryu D, Mandels M (1980) Cellulases: biosynthesis and applications. In: Reviews, pp 1–12Google Scholar
  184. 184.
    Himmel ME, Decker SR, Adney WS, Baker JO (2000) Cellulase animation. Copyright DOE/MRIPAU2-568-354, p 11Google Scholar
  185. 185.
    Miller GL (1959) Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  186. 186.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268CrossRefGoogle Scholar
  187. 187.
    Philippidis GP (1994) Cellulase production technology—evaluation of current status. Enzym Convers Biomass Fuel Prod 566:188–217CrossRefGoogle Scholar
  188. 188.
    Esterbauer H, Steiner W, Kreiner W, Sattler W, Hayn M (1992) Comparison of enzymatic hydrolysis in a worldwide round robin assay. Bioresour Technol 39:117–123CrossRefGoogle Scholar
  189. 189.
    Adney WS, Mohagheghi A, Thomas SR, Himmel ME (1995) Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American Chemical Society, Washington, DC, pp 256–271Google Scholar
  190. 190.
    Esterbauer H, Steiner LI, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36:51–65CrossRefGoogle Scholar
  191. 191.
    Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of 8 purified cellulases—specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013CrossRefGoogle Scholar
  192. 192.
    Ghose TK, Bisaria VS (1987) Measurement of hemicellulase activities. 1. Xylanases. Pure Appl Chem 59(12):1739–1751CrossRefGoogle Scholar
  193. 193.
    Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33Google Scholar
  194. 194.
    Wood TM, McCrae SI (1977) Cellulase from Fusarium solani purification and properties of the C-1 component. Carbohydr Res 57:117–133CrossRefGoogle Scholar
  195. 195.
    Ghose TK, Pathak AN, Bisaria VS (1975) In: Bailey M, Enari T-M, Linko M (eds) Proceedings of the symposium on enzymatic hydrolysis of cellulose. VTT, Aulanko, Finland, p 111Google Scholar
  196. 196.
    Shoemaker SP, Brown RD Jr (1978) Characterization of endo-1,4-b-D-glucanases purified from Trichoderma viride. Biochim Biophys Acta 523:147–161CrossRefGoogle Scholar
  197. 197.
    Sheir-Neiss G, Montenecourt BS (1984) Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46–53CrossRefGoogle Scholar
  198. 198.
    Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132Google Scholar
  199. 199.
    Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23Google Scholar
  200. 200.
    Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380Google Scholar
  201. 201.
    Johnston DB, Shoemaker SP, Smith GM, Whitaker JR (1998) Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate. J Food Biochem 22:301–319CrossRefGoogle Scholar
  202. 202.
    Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-beta-D-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microb Technol 23:350–359CrossRefGoogle Scholar
  203. 203.
    Baker JO, Vinzant TB, Ehrman CI, Adney WS, Himmel ME (1997) Use of a new membrane-reactor saccharification assay to evaluate the performance of cellulases under simulated SSF conditions—effect on enzyme quality of growing Trichoderma reesei in the presence of targeted lignocellulosic substrate. Appl Biochem Biotechnol 63–5:585–595CrossRefGoogle Scholar
  204. 204.
    Rescigno A, Rinaldi AC, Curreli N, Olianas A, Sanjust E (1994) A dyed substrate for the assay of endo-1,4-beta-glucanases. J Biochem Biophys Methods 28(2):123–129CrossRefGoogle Scholar
  205. 205.
    Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17:81–106CrossRefGoogle Scholar
  206. 206.
    Bartley TD, Murphy-Holland K, Eveleigh DE (1984) A method for the detection and differentiation of cellulase components in polyacrylamide gels. Anal Biochem 140(1):157–161CrossRefGoogle Scholar
  207. 207.
    Carder JH (1986) Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153(1):75–79CrossRefGoogle Scholar
  208. 208.
    Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng Symp 33:1221–1234CrossRefGoogle Scholar
  209. 209.
    Adney WS, Ehrman CI, Baker JO, Thomas SR, Himmel ME (1994) Cellulase assays—methods from empirical mathematical-models. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 218–235CrossRefGoogle Scholar
  210. 210.
    Sieben A (1975) Cellulase and other hydrolytic enzyme assays using an oscillating tube viscometer. Anal Biochem 63(1):214–219CrossRefGoogle Scholar
  211. 211.
    Kim CH (1995) Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 61(3):959–965Google Scholar
  212. 212.
    Chee KK (1990) Kinetic study of random chain scission by viscometry. J Appl Polymer Sci 41:985–994CrossRefGoogle Scholar
  213. 213.
    Demeester J, Bracke M, Lauwers A (1979) Absolute viscometric method for the determination of endocellulase (Cx) activities based upon light-scattering interpretations of gel chromatographic fractionation data. Adv Chem Sen 181:91–125CrossRefGoogle Scholar
  214. 214.
    Manning K (1981) Improved viscometric assay for cellulase methods. J Biochem Biotechnol 5:189–202Google Scholar
  215. 215.
    Gilkes NR, Kwan E, Kilburn DG, Miller RC, Warren RAJ (1997) Attack of carboxymethylcellulose at opposite ends by two cellobiohydrolases from Cellulomonas fimi. J Biotechnol 57(1–3):83–90CrossRefGoogle Scholar
  216. 216.
    Limam F, Chaabouni SE, Ghrir R, Marzouki N (1995) Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: purification and properties. Enzyme Microb Technol 17(4):340–346CrossRefGoogle Scholar
  217. 217.
    Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306CrossRefGoogle Scholar
  218. 218.
    Sadana JC, Patil RV (1985) Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose. Carbohydr Res 140(1):111–120CrossRefGoogle Scholar
  219. 219.
    van Tilbeurgh H, Claeyssens M, DeBruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett 149:152–156CrossRefGoogle Scholar
  220. 220.
    Vrsanska M, Biely P (1992) The cellobiohydrolase I from Trichoderma reesei QM 9414: action on cello-oligosaccharides. Carbohydr Res 227:19–27CrossRefGoogle Scholar
  221. 221.
    Konstantinidis AK, Marsden I, Sinnott ML (1993) Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J 291(pt 3):883–888Google Scholar
  222. 222.
    Claeyssens M, van Tilbeurgh H, Tomme P, Wood TM, McCrae SI (1989) Fungal cellulase systems: comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem J 261:819–826Google Scholar
  223. 223.
    Beldman G, Searle-Van Leeuwen M, Rombouts F, Voragen F (1985) The cellulase of Trichoderma viride; purification, characterization and comparison of all detectable endoglucanases, exoglucanases and B-glucosidases. Eur J Biochem 146:301–308CrossRefGoogle Scholar
  224. 224.
    Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cell2A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99(1):63–78CrossRefGoogle Scholar
  225. 225.
    Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM et al (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 1596(2):366–380CrossRefGoogle Scholar
  226. 226.
    Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM (2003) The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme Microb Technol 32(1):35–40CrossRefGoogle Scholar
  227. 227.
    Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20(3–4):191–213CrossRefGoogle Scholar
  228. 228.
    Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57(1–3):15–28CrossRefGoogle Scholar
  229. 229.
    Wood TM (1971) The cellulase of Fusarium solani: purification and specificity of the b-(164)-glucanase and the β-D-glucosidase components. Biochem J 121:353–362Google Scholar
  230. 230.
    Deshpande MV, Eriksson K-E, Pettersson LG (1984) β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487CrossRefGoogle Scholar
  231. 231.
    Adney WS, Baker JO, Vinzant TB, Thomas SR, Himmel ME (1995) Kinetic comparison of beta-D-glucosidases of industrial importance. Abstr Paper Am Chem Soc 209:119-BTECGoogle Scholar
  232. 232.
    Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem 144(1):142–146CrossRefGoogle Scholar
  233. 233.
    Biely P (1988) Detection and differentiation of cellulases and xylanases. Abstr Paper Am Chem Soc 195:202-CELLGoogle Scholar
  234. 234.
    Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131Google Scholar
  235. 235.
    Gielkens MM, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi: characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31(1):22–29CrossRefGoogle Scholar
  236. 236.
    Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24CrossRefGoogle Scholar
  237. 237.
    Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multi-protein cellulose-binding cellulase-hemicellulase complex. Biochem J 343(pt 1):215–224CrossRefGoogle Scholar
  238. 238.
    Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57(8):2337–2344Google Scholar
  239. 239.
    Cybinski DH, Layton I, Lowry JB, Dalrymple BP (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52(2):221–225CrossRefGoogle Scholar
  240. 240.
    de Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410CrossRefGoogle Scholar
  241. 241.
    Saha BC (2000) α-1-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423CrossRefGoogle Scholar
  242. 242.
    Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol 15(6):460–475CrossRefGoogle Scholar
  243. 243.
    Wood TM, McCrae SI (1996) Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase. Appl Microbiol Biotechnol 45(4):538–545Google Scholar
  244. 244.
    Sakamoto T, Sakai T (1995) Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39(4):821–823CrossRefGoogle Scholar
  245. 245.
    McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo-mode of action. Biochem J 323(pt 2):547–555Google Scholar
  246. 246.
    Matsuo N, Kaneko S, Kuno A, Kobayashi H, Kusakabe I (2000) Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(pt 1):9–15CrossRefGoogle Scholar
  247. 247.
    Yanai T, Sato M (2000) Purification and characterization of a novel alpha-L-arabinofuranosidase from Pichia capsulata X91. Biosci Biotechnol Biochem 64(6):1181–1188CrossRefGoogle Scholar
  248. 248.
    Degrassi G, Vindigni A, Venturi V (2003) A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J Biotechnol 101(1):69–79CrossRefGoogle Scholar
  249. 249.
    Gomes J, Gomes I, Terler K, Gubala N, Ditzelm AG, Steiner W (2000) Optimisation of culture medium and conditions for α-1-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27(6):414–422CrossRefGoogle Scholar
  250. 250.
    Lee RC, Burton RA, Hrmova M, Fincher GB (2001) Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem J 356(pt 1):181–189CrossRefGoogle Scholar
  251. 251.
    Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65(9):3990–3995Google Scholar
  252. 252.
    Castanares A, Wood TM (1992) Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans 20(3):275SGoogle Scholar
  253. 253.
    McDermid KP, Forsberg CW, MacKenzie CR (1990) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56(12):3805–3810Google Scholar
  254. 254.
    Khandke KM, Vithayathil PJ, Murthy SK (1989) Purification and characterization of an alpha-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274(2):511–517CrossRefGoogle Scholar
  255. 255.
    Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78(2):149–161CrossRefGoogle Scholar
  256. 256.
    Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ (2003) The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilises the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 278(22):286–292CrossRefGoogle Scholar
  257. 257.
    Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7(3):337–342CrossRefGoogle Scholar
  258. 258.
    Choi ID, Kim HY, Choi YJ (2000) Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236. Biosci Biotechnol Biochem 64(12):2530–2537CrossRefGoogle Scholar
  259. 259.
    Saraswat V, Bisaria VS (1997) Biosynthesis of xylanolytic and xylan-debranching enzymes in Melanocarpus albomyces IIS 68. J Ferment Bioeng 83(4):352–357CrossRefGoogle Scholar
  260. 260.
    Nagy T, Emami K, Fontes CM, Ferreira LM, Humphry DR, Gilbert HJ (2002) The membrane-bound alpha-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O-methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuronoxylan. J Bacteriol 184(17):4925–4929CrossRefGoogle Scholar
  261. 261.
    de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180(2):243–249Google Scholar
  262. 262.
    Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an alpha-(4-O-methyl)-D-glucuronidase. J Biotechnol 43(3):183–194CrossRefGoogle Scholar
  263. 263.
    Nishitani K, Nevins DJ (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 266(10):6539–6543Google Scholar
  264. 264.
    Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK (2000) Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83(3):231–244CrossRefGoogle Scholar
  265. 265.
    Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57(1–3):151–166CrossRefGoogle Scholar
  266. 266.
    Schwarz WH, Bronnenmeier K, Krause B, Lottspeich F, Staudenbauer WL (1995) Debranching of arabinoxylan: properties of the thermoactive recombinant alpha-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 43(5):856–860CrossRefGoogle Scholar
  267. 267.
    Bailey MJ, Poutanen K (1989) Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 30(1):5–10CrossRefGoogle Scholar
  268. 268.
    Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407Google Scholar
  269. 269.
    Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D (1996) Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 319(pt 3):881–886Google Scholar
  270. 270.
    Green F III, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 182(2):197–199CrossRefGoogle Scholar
  271. 271.
    Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of beta-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30(pt 1):73–79Google Scholar
  272. 272.
    Ruiz-Arribas A, Fernandez-Abalos JM, Sanchez P, Garda AL, Santamaria RI (1995) Overproduction, purification, and biochemical characterization of a xylanase (Xysl) from Streptomyces halstedii JM8. Appl Environ Microbiol 61(6):2414–2419Google Scholar
  273. 273.
    Taguchi H, Hamasaki T, Akamatsu T, Okada H (1996) A simple assay for xylanase using o-nitrophenyl-beta-D-xylobioside. Biosci Biotechnol Biochem 60(6):983–985CrossRefGoogle Scholar
  274. 274.
    Milagres AMF, Sales RM (2001) Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microb Technol 28(6):522–526CrossRefGoogle Scholar
  275. 275.
    Lin LL, Thomson JA (1991) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 68(2):197–203CrossRefGoogle Scholar
  276. 276.
    Bray MR, Clarke AJ (1992) Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204(1):191–196CrossRefGoogle Scholar
  277. 277.
    Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1997) The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr Res 302(3–4):191–195CrossRefGoogle Scholar
  278. 278.
    Debeire P, Priem B, Strecker G, Vignon M (1990) Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. A proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem 187(3):573–580CrossRefGoogle Scholar
  279. 279.
    Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 65(3):487–494CrossRefGoogle Scholar
  280. 280.
    Saluzzi L, Flint HJ, Stewart CS (2001) Adaptation of Ruminococcus flavefaciens resulting in increased degradation of ryegrass cell walls. FEMS Microbiol Ecol 36(2–3):131–137CrossRefGoogle Scholar
  281. 281.
    La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67(12):5512–5519CrossRefGoogle Scholar
  282. 282.
    Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic bacillus sp. Strain K-1. Appl Environ Microbiol 65(2):694–697Google Scholar
  283. 283.
    York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 285:99–128Google Scholar
  284. 284.
    Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci U S A 99(5):3340–3345CrossRefGoogle Scholar
  285. 285.
    Dunand C, Gautier C, Chambat G, Lienart Y (2000) Characterization of the binding of alpha-L-Fuc (1–>2)-beta-D-Gal (1–>), a xyloglucan signal, in blackberry protoplasts. Plant Sci 151(2):183–192CrossRefGoogle Scholar
  286. 286.
    Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (1996) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl 2-0-(alpha-L-fucopyranosyl)-beta-D-galactopyranoside. Carbohydr Res 285:1–15Google Scholar
  287. 287.
    Watt DK, Brasch DJ, Larsen DS, Melton LD, Simpson J (2000) Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-alpha-D-xylopyranoside and the synthesis of methyl alpha-L-fucopyranosyl-(1–>2)-beta-D-galactopyranosyl-(1–>2)-beta-D-xylopyranoside. Carbohydr Res 325(4):300–312CrossRefGoogle Scholar
  288. 288.
    Busato AP, Vargas-Rechia CG, Reicher F (2001) Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry 58(3):525–531CrossRefGoogle Scholar
  289. 289.
    Vierhuis E, York WS, Kolli VS, Vincken J, Schols HA, Van Alebeek GW, Voragen AG (2001) Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 332(3):285–297CrossRefGoogle Scholar
  290. 290.
    Maruyama K, Goto C, Numata M, Suzuki T, Nakagawa Y et al (1996) O-acetylated xyloglucan in extracellular polysaccharides from cell-suspension cultures of Mentha. Phytochemistry 41(5):1309–1314CrossRefGoogle Scholar
  291. 291.
    Wu CT, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126(3):1299–1313CrossRefGoogle Scholar
  292. 292.
    Hrmova M, Fincher GB (2001) Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47(1–2):73–91CrossRefGoogle Scholar
  293. 293.
    Hu G, Rijkenberg FH (1998) Subcellular localization of beta-1,3-glucanase in Puccinia recondita f.sp. tritici-infected wheat leaves. Planta 204(3):324–334CrossRefGoogle Scholar
  294. 294.
    Kotake T, Nakagawa N, Takeda K, Sakurai N (1997) Purification and characterization of wall-bound exo-1,3-beta-D-glucanase from barley (Hordeum vulgare L.) seedlings. Plant Cell Physiol 38(2):194–200CrossRefGoogle Scholar
  295. 295.
    Brummell DA, Catala C, Lashbrook CC, Bennett AB (1997) A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci U S A 94(9):4794–4799CrossRefGoogle Scholar
  296. 296.
    Keitel T, Thomsen KK, Heinemann U (1993) Crystallization of barley (1-3,1-4)-beta-glucanase, isoenzyme II. J Mol Biol 232(3):1003–1004CrossRefGoogle Scholar
  297. 297.
    Wang G, Marquardt RR, Xiao H, Zhang Z (1999) Development of a 96-well enzyme-linked solid-phase assay for beta- glucanase and xylanase. J Agric Food Chem 47(3):1262–1267CrossRefGoogle Scholar
  298. 298.
    Mestechkina NM, Anulov OV, Smirnova NI, Shcherbukhin VD (2000) Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus Bunge. Appl Biochem Microbiol 36(5):502–506CrossRefGoogle Scholar
  299. 299.
    Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332(4):439–444CrossRefGoogle Scholar
  300. 300.
    Teramoto A, Fuchigami M (2000) Changes in temperature, texture, and structure of konnyaku (konjac glucomannan gel) during high-pressure-freezing. J Food Sci 65(3):491–497CrossRefGoogle Scholar
  301. 301.
    Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59(1):38–50CrossRefGoogle Scholar
  302. 302.
    Zhang HS, Yang JG, Zhao Y (2002) The glucomannan from ramie. Carbohydr Polym 47(1):83–86CrossRefGoogle Scholar
  303. 303.
    Smirnova NI, Mestechkina NM, Shcherbukhin VD (2001) The structure and characteristics of glucomannans from Eremurus iae and E-zangezuricus: assignment of acetyl group localization in macromolecules. Appl Biochem Microbiol 37(3):287–291CrossRefGoogle Scholar
  304. 304.
    Petkowicz CLD, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44(2):107–112CrossRefGoogle Scholar
  305. 305.
    Parker KN, Chhabra SR, Lam D, Callen W, Duffaud GD et al (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75(3):322–333CrossRefGoogle Scholar
  306. 306.
    Parker KN, Chhabra S, Lam D, Snead MA, Mathur EJ, Kelly RM (2001) Beta-mannosidase from Thermotoga species. Methods Enzymol 330:238–246CrossRefGoogle Scholar
  307. 307.
    Chhabra S, Parker KN, Lam D, Callen W, Snead MA, Mathur EJ et al (2001) Beta-mannanases from Thermotoga species. Methods Enzymol 330:224–238CrossRefGoogle Scholar
  308. 308.
    Ganter JL, Sabbi JC, Reed WF (2001) Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolymers 59(4):226–242CrossRefGoogle Scholar
  309. 309.
    Ademark P, de Vries RP, Hagglund P, Stalbrand H, Visser J (2001) Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 268(10):2982–2990CrossRefGoogle Scholar
  310. 310.
    Tenkanen M, Puls J, Ratto M, Viikari L (1993) Enzymatic deacetylation of galactoglucomannans. Appl Microbiol Biotechnol 39(2):159–165CrossRefGoogle Scholar
  311. 311.
    Tenkanen M, Thornton J, Viikari L (1995) An acetylglucomannan esterase of Aspergillus-oryzae-purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 42(3):197–206CrossRefGoogle Scholar
  312. 312.
    Berens S, Kaspari H, Klemme JH (1996) Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie Van Leeuwenhoek 69(3):235–241CrossRefGoogle Scholar
  313. 313.
    Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP et al (1996) Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35(50):16195–16204CrossRefGoogle Scholar
  314. 314.
    Ghangas GS, Hu YJ, Wilson DB (1989) Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 171(6):2963–2969Google Scholar
  315. 315.
    McKie VA, Vincken JP, Voragen AG, van den Broek LA, Stimson E, Gilbert HJ (2001) A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 355(pt 1):167–177Google Scholar
  316. 316.
    Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ (1995) A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305(pt 3):1005–1010Google Scholar
  317. 317.
    Sipat A, Taylor KA, Lo RY, Forsberg CW, Krell PJ (1987) Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl Environ Microbiol 53(3):477–481Google Scholar
  318. 318.
    Takahashi R, Mizumoto K, Tajika K, Takano R (1992) Production of oligosaccharides from hemicellulose of woody biomass by enzymatic-hydrolysis.1. A simple method for isolating beta-D-mannanase-producing microorganisms. Mokuzai Gakkaishi 38(12):1126–1135Google Scholar
  319. 319.
    Whitehead TR, Hespell RB (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol 55(4):893–896Google Scholar
  320. 320.
    Markovic O, Mislovicov AD, Biely P, Heinrichov K (1992) Chromogenic substrate for endo-polygalacturonase detection in gels. J Chromatogr A 603(1–2):243–246Google Scholar
  321. 321.
    Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798–ffGoogle Scholar
  322. 322.
    Skjot M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M et al (2001) Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A-oryzae and tobacco. Mol Genet Genomics 265(5):913–921CrossRefGoogle Scholar
  323. 323.
    Zantinge JL, Huang HC, Cheng KJ (2002) Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 33(4):798, 800, 802 passimGoogle Scholar
  324. 324.
    Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967CrossRefGoogle Scholar
  325. 325.
    de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522, table of contentsGoogle Scholar
  326. 326.
    Cardoso SM, Silva AM, Coimbra MA (2002) Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydr Res 337(10):917–924CrossRefGoogle Scholar
  327. 327.
    McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1–>4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22(2):105–113CrossRefGoogle Scholar
  328. 328.
    Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ et al (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276(22):19404–19413CrossRefGoogle Scholar
  329. 329.
    Fransen CT, Haseley SR, Huisman MM, Schols HA, Voragen AG et al (2000) Studies on the structure of a lithium-treated soybean pectin: characteristics of the fragments and determination of the carbohydrate substituents of galacturonic acid. Carbohydr Res 328(4):539–547CrossRefGoogle Scholar
  330. 330.
    Mazeau K, Perez S (1998) The preferred conformations of the four oligomeric fragments of Rhamnogalacturonan II. Carbohydr Res 311(4):203–217CrossRefGoogle Scholar
  331. 331.
    Gainvors A, Nedjaoum N, Gognies S, Muzart M, Nedjma M, Belarbi A (2000) Purification and characterization of acidic endo-polygalacturonase encoded by the PGLI-1 gene from Saccharomyces cerevisiae. FEMS Microbiol Lett 183(1):131–135CrossRefGoogle Scholar
  332. 332.
    Kennedy JF, Methacanon P (1999) Enzymes for carbohydrate engineering. In: Park K-H, Robyt JF, Choi Y-D (eds) Carbohydrate polymers, vol 39(3), p 292. Elsevier, Amsterdam, The Netherlands, 1996, pp Vii + 215Google Scholar
  333. 333.
    Mutter M, Renard CM, Beldman G, Schols HA, Voragen AG (1998) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 311(3):155–164CrossRefGoogle Scholar
  334. 334.
    Antov MG, Pericin DM, Dimic GR (2001) Cultivation of Polyporus squamosus for pectinase production in aqueous two-phase system containing sugar beet extraction waste. J Biotechnol 91(1):83–87CrossRefGoogle Scholar
  335. 335.
    Bhattacharya S, Rastogi NK (1998) Rheological properties of enzyme-treated mango pulp. J Food Eng 36(3):249–262CrossRefGoogle Scholar
  336. 336.
    Castilho LR, Alves TLM, Medronho RA (1999) Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem 34(2):181–186CrossRefGoogle Scholar
  337. 337.
    Fanta N, Quaas A, Zulueta P, Rez LM (1992) Release of reducing sugars from Citrus seedlings, leaves and fruits. Effect of treatment with pectinase and cellulase from Alternaria and Trichoderma. Phytochemistry 31(10):3359–3364CrossRefGoogle Scholar
  338. 338.
    Kapoor M, Khalil Beg Q, Bhushan B et al (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem 36(5):467–473CrossRefGoogle Scholar
  339. 339.
    Hadj-Taieb N, Ayadi M, Trigui S, Bouabdallah F, Gargouri A (2002) Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microb Technol 30(5):662–666CrossRefGoogle Scholar
  340. 340.
    Weissermel K, Arpe H-J (1997) Industrial organic chemistry, 3rd edn. VCH, New YorkCrossRefGoogle Scholar
  341. 341.
    Murphy DJ (1994) Designer oil crops: breeding, processing and biotechnology. VCH, WeinheimGoogle Scholar
  342. 342.
    Robbelen G, Downey RK, Ashri A (1989) Oil crops of the world: their breeding and utilization. McGraw-Hill, New YorkGoogle Scholar
  343. 343.
    Scott DS, Piskorz J, Radlein D (1994) Production of levoglucosan as an industrial chemical. In: Witczak ZJ (ed) Levoglucosenone and levoglucosans. Chemistry and applications. ATL Press Science Publishers, Mt. Prospect, IL, pp 179–188Google Scholar
  344. 344.
    Eggersdorfer M, Meyer J, Eckes P (1992) Use of renewable resources for nonfood materials. FEMS Microbiol Rev 103(2–4):355–364Google Scholar
  345. 345.
    Donaldson TL, Culberson OL (1984) An industry model of commodity chemicals from renewable resources. Energy 9(8):693–707CrossRefGoogle Scholar
  346. 346.
    Hanselmann KW (1982) Lignochemicals. Experientia 38(2):176–188CrossRefGoogle Scholar
  347. 347.
    Lipinsky ES (1981) Chemicals from biomass—petrochemical substitution options. Science 212(4502):1465–1471CrossRefGoogle Scholar
  348. 348.
    Indergaard M, Johansson A, Crawford B (1989) Biomass technologies. Chimia 43(7–8):230–232Google Scholar
  349. 349.
    Kirk–Othmer encyclopedia of chemical technology, vol 12, 4th edn. Wiley, New York, 1994Google Scholar
  350. 350.
    Goldstein IS (1981) Chemicals from biomass—present status. Forest Prod 31(10):63–68Google Scholar
  351. 351.
    Goldstein IS (1981) Organic chemicals from biomass. CRC Press, Boca Raton, FLGoogle Scholar
  352. 352.
    Kuhad RC, Singh A (1993) Lignocellulose biotechnology—current and future-prospects. Crit Rev Biotechnol 13(2):151–172CrossRefGoogle Scholar
  353. 353.
    Kerr RA (1998) The next oil crisis looms large—and perhaps close. Science 281(5380):1128–1131CrossRefGoogle Scholar
  354. 354.
    Campbell CJ, Laherrere JH (1998) Preventing the next oil crunch—the end of cheap oil. Sci Am 278(3):77–83CrossRefGoogle Scholar
  355. 355.
    U. S. Department of Energy (1997) Energy information administration, annual energy review, vol DOE/EIA-0384(97). U. S. Department of Energy, Washington, DCGoogle Scholar
  356. 356.
    Holderich WF, Roseler J, Heitmann G, Liebens AT (1997) The use of zeolites in the synthesis of fine and intermediate chemicals. Catal Today 37(4):353–366CrossRefGoogle Scholar
  357. 357.
    Donnini GP, Blain TJ, Holton HH, Kutney GW (1983) 300 Alkaline pulping additives—structure-activity-relationships. Pulp Pap Canada 84(11):R134–R140Google Scholar
  358. 358.
    McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, vol 566. ACS, Washington, DC, pp 292–324CrossRefGoogle Scholar
  359. 359.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefGoogle Scholar
  360. 360.
    Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–9:75–86CrossRefGoogle Scholar
  361. 361.
    Torget R, Werdene P, Himmel M, Grohmann K (1990) Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 24–5:115–126CrossRefGoogle Scholar
  362. 362.
    Singh A, Das K, Sharma DK (1984) Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J Chem Technol Biotechnol A Chem Technol 34(2):51–61CrossRefGoogle Scholar
  363. 363.
    Singh A, Das K, Sharma DK (1984) Integrated process for production of xylose, furfural, and glucose from bagasse by 2-step acid-hydrolysis. Ind Eng Chem Prod Res Dev 23(2):257–262CrossRefGoogle Scholar
  364. 364.
    Vila C, Santos V, Parajo JC (2003) Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors. Bioresour Technol 90(3):339–344CrossRefGoogle Scholar
  365. 365.
    Lehnen R, Saake B, Nimz HH (2001) Furfural and hydroxymethyl furfural as by-products of FORMACELL pulping. Holzforschung 55(2):199–204CrossRefGoogle Scholar
  366. 366.
    Lignosulfonates. In: Chemical economics handbook. SRI Consulting, Menlo Park, CAGoogle Scholar
  367. 367.
    Ward OP, Singh A (2002) Bioethanol technology: developments and perspectives. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 51. Academic, Amsterdam, pp 53–80Google Scholar
  368. 368.
    Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  369. 369.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628CrossRefGoogle Scholar
  370. 370.
    Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–6:561–576CrossRefGoogle Scholar
  371. 371.
    Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–9:133–142CrossRefGoogle Scholar
  372. 372.
    Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202CrossRefGoogle Scholar
  373. 373.
    Schell DJ, Torget R, Power A, Walter PJ, Grohmann K, Hinman ND (1991) A technical and economic-analysis of acid-catalyzed steam explosion and dilute sulfuric-acid pretreatments using wheat straw or aspen wood chips. Appl Biochem Biotechnol 28–9:87–97CrossRefGoogle Scholar
  374. 374.
    Aziz S, Sarkanen K (1989) Organosolv pulping—a review. Tappi J 72(3):169–175Google Scholar
  375. 375.
    Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13(1):45–65CrossRefGoogle Scholar
  376. 376.
    Kleinert TN (1974) Organosolvent pulping with aqueous alcohol. Tappi 57(8):99–102Google Scholar
  377. 377.
    Lora JH, Aziz S (1985) Organosolv pulping—a versatile approach to wood refining. Tappi J 68(8):94–97Google Scholar
  378. 378.
    McDonough TJ (1993) The chemistry of organosolv delignification. Tappi J 76(8):186–193Google Scholar
  379. 379.
    Sarkanen KV (1990) Chemistry of solvent pulping. Tappi J 73(10):215–219Google Scholar
  380. 380.
    Stockburger P (1993) An overview of near-commercial and commercial solvent-based pulping processes. Tappi J 76(6):71–74Google Scholar
  381. 381.
    Kishimoto T, Sano Y (2001) Delignification mechanism during high-boiling solvent pulping Part 1. Reaction of guaiacylglycerol-beta-guaiacyl ether. Holzforschung 55(6):611–616CrossRefGoogle Scholar
  382. 382.
    Thring RW, Chornet E, Overend RP (1993) Thermolysis of glycol lignin in the presence of tetralin. Canad J Chem Eng 71(1):107–115CrossRefGoogle Scholar
  383. 383.
    Demirbas A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63(2):179–185CrossRefGoogle Scholar
  384. 384.
    Jimenez L, de la Torre MJ, Maestre F, Ferrer JL, Perez I (1997) Organosolv pulping of wheat straw by use of phenol. Bioresour Technol 60(3):199–205CrossRefGoogle Scholar
  385. 385.
    Nimz HH, Berg A, Granzow C, Casten R, Muladi S (1989) Pulping and bleaching by the acetosolv process. Papier 43(10A):V102–V108Google Scholar
  386. 386.
    Nimz HH, Granzow C, Berg A (1986) Acetosolv pulping. Holz Roh Werkst 44(9):362CrossRefGoogle Scholar
  387. 387.
    Parajo JC, Alonso JL, Vazquez D, Santos V (1993) Optimization of catalyzed acetosolv fractionation of pine wood. Holzforschung 47(3):188–196CrossRefGoogle Scholar
  388. 388.
    Saake B, Lummitsch S, Mormanee R, Lehnen R, Nimz HH (1995) production of pulps using the Formacell process. Papier 49(10A):V1–V7Google Scholar
  389. 389.
    Sundquist J (1996) Chemical pulping based on formic acid—summary of Milox research. Pap Puu Paper Tim 78(3):92–95Google Scholar
  390. 390.
    Poppius-Levlin K, Mustonen R, Huovila T, Sundquist J (1991) Milox pulping with acetic-acid peroxyacetic acid. Pap Puu Paper Tim 73(2):154–158Google Scholar
  391. 391.
    Dahlmann G, Schroeter MC (1990) The organocell process—pulping with the environment in mind. Tappi J 73(4):237–240Google Scholar
  392. 392.
    Pye EK, Lora JH (1991) The Alcell process—a proven alternative to kraft pulping. Tappi J 74(3):113–118Google Scholar
  393. 393.
    Schroeter MC (1991) Possible lignin reactions in the organocell pulping process. Tappi J 74(10):197–200Google Scholar
  394. 394.
    Black NP (1991) ASAM alkaline sulfite pulping process shows potential for large-scale application. Tappi J 74(4):87–93Google Scholar
  395. 395.
    Kirci H, Bostanci S, Yalinkilic MK (1994) A new modified pulping process alternative to sulfate method alkali-sulfite-antraquinone-ethanol (ASAE). Wood Sci Technol 28(2):89–99CrossRefGoogle Scholar
  396. 396.
    Patt R, Knoblauch J, Faix O, Kordsachia O, Puls J (1991) Lignin and carbohydrate reactions in alkaline sulfite, anthraquinone, methanol (ASAM) pulping. Papier 45(7):389–396Google Scholar
  397. 397.
    Schubert HL, Fuchs K, Patt R, Kordsachia O, Bobik M (1993) The ASAM-process—a pulp technology ready for industry—experiences gained through 3 years operation of the pilot-plant. Papier 47(10A):V6–V15Google Scholar
  398. 398.
    Yawalata D, Paszner L (2004) Cationic effect in high concentration alcohol organosolv pulping: the next generation biorefinery. Holzforschung 58(1):7–13Google Scholar
  399. 399.
    Oliet M, Garcia J, Rodriguez F, Gilarrranz MA (2002) Solvent effects in autocatalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87(2):157–162CrossRefGoogle Scholar
  400. 400.
    Goyal GC, Lora JH, Pye EK (1992) Autocatalyzed organosolv pulping of hardwoods—effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 75(2):110–116Google Scholar
  401. 401.
    Oliet M, Rodriguez F, Garcia J, Gilarranz MA (2001) The effect of autocatalyzed ethanol pulping on lignin characteristics. J Wood Chem Technol 21(1):81–95CrossRefGoogle Scholar
  402. 402.
    Yawalata D, Paszner L (2004) Anionic effect in high concentration alcohol organosolv pulping. Holzforschung 58(1):1–6CrossRefGoogle Scholar
  403. 403.
    Paszner L, Cho HJ (1989) Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi J 72(2):135–142Google Scholar
  404. 404.
    Paszner L, Behera NC (1989) Topochemistry of softwood delignification by alkali earth metal salt catalyzed organosolv pulping. Holzforschung 43(3):159–168CrossRefGoogle Scholar
  405. 405.
    Black SK, Hames BR, Myers MD (1998) US 5,730,837Google Scholar
  406. 406.
    Ibrahim M, Glasser WG (1999) Steam-assisted biomass fractionation. Part III: a quantitative evaluation of the “clean fractionation” concept. Bioresour Technol 70(2):181–192CrossRefGoogle Scholar
  407. 407.
    Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14(3):205–218CrossRefGoogle Scholar
  408. 408.
    Heitz M, Capekmenard E, Koeberle PG, Gagne J, Chornet E et al (1991) Fractionation of populus-tremuloides at the pilot-plant scale—optimization of steam pretreatment conditions using the stake-Ii technology. Bioresour Technol 35(1):23–32CrossRefGoogle Scholar
  409. 409.
    Schultz TP, Blermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Product Res Dev 22(2):344–348CrossRefGoogle Scholar
  410. 410.
    Sun XF, Xu F, Sun RC, Wang YX, Fowler P, Baird MS (2004) Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym Degrad Stab 86(2):245–256CrossRefGoogle Scholar
  411. 411.
    Shevchenko SM, Chang K, Dick DG, Gregg DJ, Saddler JN (2001) Structure and properties of lignin in softwoods after SO2-catalyzed steam explosion and enzymatic hydrolysis. Cell Chem Technol 35(5–6):487–502Google Scholar
  412. 412.
    Shevchenko SM, Beatson RP, Saddler JN (1999) The nature of lignin from steam explosion enzymatic hydrolysis of softwood—structural features and possible uses. Appl Biochem Biotechnol 77–9:867–876CrossRefGoogle Scholar
  413. 413.
    Ramos LP, Mathias AL, Silva FT, Cotrim AR, Ferraz AL, Chen CL (1999) Characterization of residual lignin after SO2-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips. J Agricult Food Chern 47(6):2295–2302CrossRefGoogle Scholar
  414. 414.
    Fernandez-Bolanos J, Felizon B, Heredia A, Guillen R, Jimenez A (1999) Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresour Technol 68(2):121–132CrossRefGoogle Scholar
  415. 415.
    Emmel A, Mathias AL, Wypych F, Ramos LP (2003) Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86(2):105–115CrossRefGoogle Scholar
  416. 416.
    Schell D, Nguyen Q, Tucker M, Boynton B (1998) Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Appl Biochem Biotechnol 70–2:17–24CrossRefGoogle Scholar
  417. 417.
    Bura R, Bothast RJ, Mansfield SD, Saddler JN (2003) Optimization of SO2-catalyzed steam pretreatment of corn fiber for ethanol production. Appl Biochem Biotechnol 105:319–335CrossRefGoogle Scholar
  418. 418.
    Bura R, Mansfield SD, Saddler JN, Bothast RJ (2002) SO2-catalyzed steam explosion of com fiber for ethanol production. Appl Biochem Biotechnol 98:59–72CrossRefGoogle Scholar
  419. 419.
    McDonald AG, Clark TA (1992) Characterization of oligosaccharides released by steam explosion of sulfurdioxide impregnated pinus-radiata. J Wood Chem Technol 12(1):53–78CrossRefGoogle Scholar
  420. 420.
    Gellerstedt G, Lindfors EL (1984) Structural-changes in lignin during kraft pulping. Holzforschung 38(3):151–158CrossRefGoogle Scholar
  421. 421.
    Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266CrossRefGoogle Scholar
  422. 422.
    Kleppe PJ (1970) Kraft pulping. Tappi 53(1):35ffGoogle Scholar
  423. 423.
    Holton H (1977) Soda additive softwood pulping—major new process. Pulp Pap Canada 78(10):19–24Google Scholar
  424. 424.
    Holton HH, Chapman FL (1977) Kraft pulping with anthraquinone—laboratory and full-scale mill trials. Tappi 60(11):121–125Google Scholar
  425. 425.
    Dimmel DR (1985) Electron-transfer reactions in pulping systems. 1. Theory and applicability to anthraquinone pulping. J Wood Chem Technol 5(1):1–14CrossRefGoogle Scholar
  426. 426.
    Dimmel DR, Perry LF, Palasz PD, Chum HL (1985) Electron-transfer reactions in pulping systems. 2. Electrochemistry of anthraquinone lignin model quinone methides. J Wood Chem Technol 5(1):15–36CrossRefGoogle Scholar
  427. 427.
    Saeman JF (1945) Ind Eng Chem 37:43CrossRefGoogle Scholar
  428. 428.
    Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480CrossRefGoogle Scholar
  429. 429.
    Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39(8):2817–2825CrossRefGoogle Scholar
  430. 430.
    Witczak ZJ (ed) (1994) Levoglucosenone and levoglucosans. Chemistry and applications. ATL, Mt. Prospect, ILGoogle Scholar
  431. 431.
    Trahanovsky WS, Ochaoda JM, Wang C, Revell KD, Arvidson KB et al (2003) A convenient procedure for the preparation of levoglucosenone and its conversion to novel chiral derivatives. In: Carbohydrate synthons in natural products chemistry: synthesis, functionalization and applications, vol 841, pp 21–31Google Scholar
  432. 432.
    Shibagaki M, Takahashi K, Kuno H, Honda I, Matsushita H (1990) Synthesis of levoglucosenone. Chem Lett 2:307–310CrossRefGoogle Scholar
  433. 433.
    Fung DPC (1976) Further investigation on effect of H3p04 on pyrolysis of cellulose. Wood Sci 9(1):55–57Google Scholar
  434. 434.
    Halpern Y, Riffer R, Broido A (1973) Levoglucosenone (1,6-anhydro-3,4-dideoxy-delta3-beta-Dpyranosen-2-one)—major product ofacid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem 38(2):204–209CrossRefGoogle Scholar
  435. 435.
    Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23(12):3525–3539CrossRefGoogle Scholar
  436. 436.
    Dobele G, Dizhbite T, Rossinskaja G, Telysheva G, Mier D, Radtke S, Faix O (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis—a promising method for obtaining 1,6-anhydrosaccharides in high yields. Anal Appl Pyrol 68–9:197–211CrossRefGoogle Scholar
  437. 437.
    Dobele G, Rossinskaja G, Telysheva G, Meier D, Faix O (1999) Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Anal Appl Pyrol 49(1–2):307–317CrossRefGoogle Scholar
  438. 438.
    Edye LA, Richards GN, Zheng G (1993) Transition-metals as catalysts for pyrolysis and gasification of biomass. ACS Symp Ser 515:90–101CrossRefGoogle Scholar
  439. 439.
    Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrol 35(1):15–41CrossRefGoogle Scholar
  440. 440.
    Richards GN, Zheng GC (1991) Influence of metal-ions and of salts on products from pyrolysis of wood applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrol 21(1–2):133–146CrossRefGoogle Scholar
  441. 441.
    Denooy AEJ, Besemer AC, Vanbekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous-solution—kinetics and mechanism. Tetrahedron 51(29):8023–8032CrossRefGoogle Scholar
  442. 442.
    Denooy AEJ, Besemer AC, Vanbekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRefGoogle Scholar
  443. 443.
    Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66CrossRefGoogle Scholar
  444. 444.
    Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51(1):69–75CrossRefGoogle Scholar
  445. 445.
    Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRefGoogle Scholar
  446. 446.
    Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRefGoogle Scholar
  447. 447.
    Tahiri C, Vignon MR (2000) TEMPO-oxidation of cellulose: synthesis and characterisation of polyglucuronans. Cellulose 7(2):177–188CrossRefGoogle Scholar
  448. 448.
    Gomez-Bujedo S, Fleury E, Vignon MR (2004) Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaCIO oxidation of water-soluble cellulose acetate. Biomacromolecules 5(2):565–571CrossRefGoogle Scholar
  449. 449.
    Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671CrossRefGoogle Scholar
  450. 450.
    Kato Y, Kaminaga J, Matsuo R, Isogai A (2004) TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr Polym 58(4):421–426CrossRefGoogle Scholar
  451. 451.
    Koga T, Taniguchi I (2004) Electrochemical oxidation of glucose to glucarate using TEMPO as a mediator in an alkaline solution. Electrochemistry 72(12):858–860Google Scholar
  452. 452.
    Schamann M, Schafer HJ (2003) TEMPO-mediated anodic oxidation of methyl glycosides and l-methyl and l-azido disaccharides. Eur Org Chem 2:351–358CrossRefGoogle Scholar
  453. 453.
    Thaburet JF, Merbouh N, Ibert M, Marsais F, Queguiner G (2001) TEMPO-mediated oxidation of maltodextrins and D-glucose: effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates. Carbohydr Res 330(1):21–29CrossRefGoogle Scholar
  454. 454.
    Merbouh N, Thaburet JF, Ibert M, Marsais F, Bobbitt JM (2001) Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. Carbohydr Res 336(1):75–78CrossRefGoogle Scholar
  455. 455.
    Bozell JJ (ed) (2001) Chemicals and materials from renewable resources, vol 784. American Chemical Society, Washington, DC, p 64CrossRefGoogle Scholar
  456. 456.
    Trombotto S, Violet-Courtens E, Cottier L, Queneau Y (2004) Oxidation of two major disaccharides: sucrose and isomaltulose. Top Catal 27(1–4):31–37CrossRefGoogle Scholar
  457. 457.
    Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res 217:71–85CrossRefGoogle Scholar
  458. 458.
    Ahmad T, Kenne L, Olsson K, Theander O (1995) The formation of 2-furaldehyde and formic-acid from pentoses in slightly acidic deuterium-oxide studied by H-I-Nmr spectroscopy. Carbohydr Res 276(2):309–320CrossRefGoogle Scholar
  459. 459.
    Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic-acid formation during hydrothermal, acidic and alkaline-degradation of deuterium-xylose. Monatsh Chem 123(6–7):547–556CrossRefGoogle Scholar
  460. 460.
    Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22(4):295–304CrossRefGoogle Scholar
  461. 461.
    Mansilla HD, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66(3):189–193CrossRefGoogle Scholar
  462. 462.
    Carrasco E (1993) Production of furfural by dilute-acid hydrolysis of wood—methods for calculating furfural yield. Wood Fiber Sci 25(1):91–102Google Scholar
  463. 463.
    Riera EA, Alvarez R, Coca J (1991) Production of furfural by acid-hydrolysis of corncobs. J Chem Technol Biotechnol 50(2):149–155CrossRefGoogle Scholar
  464. 464.
    Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30(4):29–32Google Scholar
  465. 465.
    Basta AH, EI-Saied H (2003) Furfural production and kinetics of pentosans hydrolysis in corn cobs. Cell Chem Technol 37(1–2):79–94Google Scholar
  466. 466.
    Zeitsch KJ (2001) Gaseous acid catalysis: an intriguing new process. Chem Innov 31(1):41–44Google Scholar
  467. 467.
    Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423CrossRefGoogle Scholar
  468. 468.
    Gamse T, Marr R, Froschl E, Siebenhofer M (1997) Extraction of furfural with carbon dioxide. Separation Sci Technol 32(1–4):355–371CrossRefGoogle Scholar
  469. 469.
    Sako T, Sugeta T, Nakazawa N, Okubo T, Sato M et al (1992) Kinetic study of furfural formation accompanying supercritical carbon-dioxide extraction. J Chem Eng Jpn 25(4):372–377CrossRefGoogle Scholar
  470. 470.
    Kim YC, Lee HS (2001) Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid catalyst. J Ind Eng Chem 7(6):424–429Google Scholar
  471. 471.
    Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2–3):95–99CrossRefGoogle Scholar
  472. 472.
    Schraufnagel RA, Rase HF (1975) Levulinic acid from sucrose using acidic ion-exchange resins. Ind Eng Chem Prod Res Dev 14(1):40–44CrossRefGoogle Scholar
  473. 473.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28(3–4):227–239CrossRefGoogle Scholar
  474. 474.
    Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114CrossRefGoogle Scholar
  475. 475.
    Lourvanij K, Rorrer GL (1994) Dehydration of glucose to organic-acids in microporous pillared clay catalysts. Appl Catal A Gen 109(1):147–165CrossRefGoogle Scholar
  476. 476.
    Dahlmann J (1968) Hydrolytic method for the production of levulinic acid and its derivatives from biomass and sugars. Chem Ber 101:4251–4253CrossRefGoogle Scholar
  477. 477.
    Farone WA, Cuzens JE (1999) Method for the production of levulinic acid. US Patent 5,892,107, 6 April 1999Google Scholar
  478. 478.
    Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Dehydration of D-fructose to levulinic acid over Lzy zeolite catalyst. Biomass 14(3):185–194CrossRefGoogle Scholar
  479. 479.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jamefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycling 28:227–239CrossRefGoogle Scholar
  480. 480.
    Fitzpatrick SW (2006) The biofine technology A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. Feedstocks for the future: renewables for the production of chemicals and materials. ACS Symp Ser 921:271–287CrossRefGoogle Scholar
  481. 481.
    Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF)—a review focusing on its manufacture. Starch-Starke 42(8):314–321CrossRefGoogle Scholar
  482. 482.
    Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27(1–4):11–30CrossRefGoogle Scholar
  483. 483.
    Kroger M, Prusse U, Vorlop KD (2000) A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Top Catal 13(3):237–242CrossRefGoogle Scholar
  484. 484.
    Seri K, Sakaki T, Shibata M, Inoue Y, Ishida H (2002) Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C. Bioresour Technol 81(3):257–260CrossRefGoogle Scholar
  485. 485.
    Seri K, Inoue Y, Ishida H (2001) Catalytic activity of lanthanide(III) ions for the dehydration of hexose to 5hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74(6):1145–1150CrossRefGoogle Scholar
  486. 486.
    Ishida H, Seri K (1996) Catalytic activity of lanthanoide(III) ions for dehydration of D-glucose to 5-(hydroxymethyl)furfural. J Mol Catal A Chem 112(2):L163–L165CrossRefGoogle Scholar
  487. 487.
    Seri K, Inoue Y, Ishida H (2000) Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 1:22–23CrossRefGoogle Scholar
  488. 488.
    Vinke P, Vanbekkum H (1992) The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent. Starch-Starke 44(3):90–96CrossRefGoogle Scholar
  489. 489.
    Vandam HE, Kieboom APG, Vanbekkum H (1986) The conversion of fructose and glucose in acidic media formation of hydroxymethylfurfural. Starch-Starke 38(3):95–101CrossRefGoogle Scholar
  490. 490.
    Kuster BFM, Vanderbaan HS (1977) Dehydration of D-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydr Res 54(2):165–176CrossRefGoogle Scholar
  491. 491.
    Kuster BFM, Temmink HMG (1977) Dehydration Of D-fructose(formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid) 4 influence of PH and weak-acid anions on dehydration of D-fructose. Carbohydr Res 54(2):185–191CrossRefGoogle Scholar
  492. 492.
    Rigal L, Gaset A, Gorrichon JP (1981) Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system. Ind Eng Chem Prod Res Dev 20(4):719–721CrossRefGoogle Scholar
  493. 493.
    Elhajj T, Masroua A, Martin JC, Descotes G (1987) Synthesis of 5-hydroxymethylfuran-2-carboxaldehyde and its derivatives by acidic treatment of sugars on ion-exchange resins. Bull Soc Chim Fr 5:855–860Google Scholar
  494. 494.
    Mercadier D, Rigal L, Gaset A, Gorrichon JP (1981) Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins. 1. Choice of the catalyst and the characteristics of the reaction medium. Chem Technol Biotechnol 31(8):489–496Google Scholar
  495. 495.
    Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chem 5(2):280–284CrossRefGoogle Scholar
  496. 496.
    Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4(10):517–520CrossRefGoogle Scholar
  497. 497.
    Carlini C, Patrono P, Galletti AMR, Sbrana G (2004) Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl Catal A Gen 275(1–2):111–118CrossRefGoogle Scholar
  498. 498.
    Armaroli T, Busca G, Carlini C, Giuttari M, Galletti AMR, Sbrana G (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151(1–2):233–243CrossRefGoogle Scholar
  499. 499.
    Carlini C, Giuttari M, Galletti AMR, Sbrana G, Armaroli T, Busca G (1999) Selective saccharides dehydration to5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catal A Gen 183(2):295–302CrossRefGoogle Scholar
  500. 500.
    Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P et al (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145(1–2):211–224CrossRefGoogle Scholar
  501. 501.
    Lourvanij K, Rorrer GL (1993) Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160 degrees-C. Ind Eng Chem Res 32(1):11–19CrossRefGoogle Scholar
  502. 502.
    Koda K, Goto H, Shintani H, Matsumoto Y, Meshitsuka G (2001) Oxidative cleavage of lignin aromatics during chlorine bleaching of kraft pulp. J Wood Sci 47(5):362–367CrossRefGoogle Scholar
  503. 503.
    Gaspar AR, Evtuguin DV, Neto CP (2004) Polyoxometalate-catalyzed oxygen delignification of kraft pulp: a pilot-plant experience. Ind Eng Chem Res 43(24):7754–7761CrossRefGoogle Scholar
  504. 504.
    Gaspar A, Evtuguin DV, Neto CP (2004) Lignin reactions in oxygen delignification catalysed by Mn(II)-substituted molybdovanadophosphate polyanion. Holzforschung 58(6):640–649CrossRefGoogle Scholar
  505. 505.
    Crestini C, Pastorini A, Tagliatesta P (2004) Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. Mol Catal A Chem 208(1–2):195–202CrossRefGoogle Scholar
  506. 506.
    Gaspar A, Evtuguin DV, Neto CP (2003) Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates. Appl Catal A Gen 239(1–2):157–168CrossRefGoogle Scholar
  507. 507.
    Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agric Food Chem 51(7):1932–1941CrossRefGoogle Scholar
  508. 508.
    Chen CL, Capanema EA, Gracz HS (2003) Comparative studies on the delignification of pine kraft anthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis. J Agric Food Chem 51(21):6223–6232CrossRefGoogle Scholar
  509. 509.
    Alves V, Capanema E, Chen CL, Gratzl J (2003) Comparative studies on oxidation of lignin model compounds with hydrogen peroxide using Mn(IV)-Me(3)TACN and Mn(IV)-Me4DTNE as catalyst. J Mol Catal A Chem 206(1–2):37–51CrossRefGoogle Scholar
  510. 510.
    Balakshin MY, Evtuguin DV, Neto CP, Cavaco-Paulo A (2001) Polyoxometalates as mediators in the laccase catalyzed delignification. J Mol Catal B Enzym 16(3–4):131–140CrossRefGoogle Scholar
  511. 511.
    Evtuguin DV, Neto CP, Rocha J (2000) Lignin degradation in oxygen delignification catalysed by [PM07V5040](8-) polyanion. Part I. Study on wood lignin. Holzforschung 54(4):381–389CrossRefGoogle Scholar
  512. 512.
    Cui Y, Puthson P, Chen CL, Gratzl JS, Kirkman AG (2000) Kinetic study on delignification of kraft-AQ pine pulp with hydrogen peroxide catalyzed by Mn(IV)-Me4DTNE. Holzforschung 54(4):413–419CrossRefGoogle Scholar
  513. 513.
    Crestini C, Saladino R, Tagliatesta P, Boschi T (1999) Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorgan Med Chem 7(9):1897–1905CrossRefGoogle Scholar
  514. 514.
    Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological and material perspectives, vol 740. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  515. 515.
    Sippola V, Krause O, Vuorinen T (2004) Oxidation of lignin model compounds with cobalt-sulphosalen catalyst in the presence and absence of carbohydrate model compound. J Wood Chem Technol 24(4):323–340CrossRefGoogle Scholar
  516. 516.
    Sippola VO, Krause AOI (2003) Oxidation activity and stability of homogeneous cobalt-sulphosalen catalyst Studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. J Mol Catal A Chem 194(1–2):89–97CrossRefGoogle Scholar
  517. 517.
    Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–3:71–80CrossRefGoogle Scholar
  518. 518.
    Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255CrossRefGoogle Scholar
  519. 519.
    Embree HD, Chen TH, Payne GF (2001) Oxygenated aromatic compounds from renewable resources: motivation, opportunities, and adsorptive separations. Chem Eng J 84(2):133–147CrossRefGoogle Scholar
  520. 520.
    Koehler JA, Brune BJ, Chen TH, Glemza AJ, Vishwanath P et al (2000) Potential approach for fractionating oxygenated aromatic compounds from renewable resources. Ind Eng Chem Res 39(9):3347–3355CrossRefGoogle Scholar
  521. 521.
    Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-Schiff base complex-catalyzed oxidation of parasubstituted phenolics—preparation of benzoquinones. J Org Chem 60(8):2398–2404CrossRefGoogle Scholar
  522. 522.
    Bozell JJ, Hoberg JO, Dimmel DR (2000) Heteropolyacid catalyzed oxidation of lignin and lignin models to benzoquinones. J Wood Chem Technol 20(1):19–41CrossRefGoogle Scholar
  523. 523.
    Dimmel DR, Althen E, Savidakis M, Courchene C, Bozell JJ (1999) New quinone-based pulping catalysts. Tappi J 82(12):83–89Google Scholar
  524. 524.
    Bozell JJ, Hoberg JO, Dimmel DR (1998) Catalytic oxidation of para-substituted phenols with nitrogen dioxide and oxygen. Tetrahedron Lett 39(16):2261–2264CrossRefGoogle Scholar
  525. 525.
    Shore SG, Ding E, Park C, Keane MA (2004) The application of {(DMF)(I 0)Yb-2[TM(CN)(4)](3) }(infinity) (TM = Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J Mol Catal A Chem 212(1–2):291–300CrossRefGoogle Scholar
  526. 526.
    Shore SG, Ding ER, Park C, Keane MA (2002) Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catal Commun 3(2):77–84CrossRefGoogle Scholar
  527. 527.
    Scire S, Minico S, Crisafulli C (2002) Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors. Appl Catal A Gen 235(1–2):21–31CrossRefGoogle Scholar
  528. 528.
    Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196(2):262–270CrossRefGoogle Scholar
  529. 529.
    Claus P, Berndt H, Mohr C, Radnik J, Shin EJ, Keane MA (2000) Pd/MgO: catalyst characterization and phenol hydrogenation activity. J Catal 192(1):88–97CrossRefGoogle Scholar
  530. 530.
    Mahata N, Raghavan KV, Vishwanathan V (1999) Influence of alkali promotion on phenol hydrogenation activity of palladium alumina catalysts. Appl Catal A Gen 182(1):183–187CrossRefGoogle Scholar
  531. 531.
    Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49(3):273–278CrossRefGoogle Scholar
  532. 532.
    Wu GX, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion Hardwood lignin. Ind Eng Chem Res 33(3):718–723CrossRefGoogle Scholar
  533. 533.
    Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577CrossRefGoogle Scholar
  534. 534.
    Fargues C, Mathias A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19(2):127–136CrossRefGoogle Scholar
  535. 535.
    Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from om Kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36CrossRefGoogle Scholar
  536. 536.
    Wu GX, Heitz M (1995) Catalytic mechanism of Cu2+ and Fe3+ in alkaline 0–2 oxidation of lignin. J Wood Chem Technol 15(2):189–202CrossRefGoogle Scholar
  537. 537.
    Tarabanko VE, Fornova NA, Kuznetsov BN, Ivanchenko NM, Kudryashev AV (1995) On the mechanism of vanillin formation in the catalytic-oxidation of lignin with oxygen. React Kinet Catal Lett 55(1):161–170CrossRefGoogle Scholar
  538. 538.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46CrossRefGoogle Scholar
  539. 539.
    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54CrossRefGoogle Scholar
  540. 540.
    Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22CrossRefGoogle Scholar
  541. 541.
    Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energ Rev 4(1):1–73CrossRefGoogle Scholar
  542. 542.
    Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18(2):590–598CrossRefGoogle Scholar
  543. 543.
    Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 45(5):651–671CrossRefGoogle Scholar
  544. 544.
    Antal MJ, Gronli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640CrossRefGoogle Scholar
  545. 545.
    Balci S, Dogu T, Yucel H (1993) Pyrolysis kinetics of lignocellulosic materials. Ind Eng Chem Res 32(11):2573–2579CrossRefGoogle Scholar
  546. 546.
    Branca C, Di Blasi C (2003) Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Anal Appl Pyrol 67(2):207–219CrossRefGoogle Scholar
  547. 547.
    Brown AL, Dayton DC, Daily JW (2001) A study of cellulose pyrolysis chemistry and global kinetics at high heating rates. Energy Fuel 15(5):1286–1294CrossRefGoogle Scholar
  548. 548.
    Di Blasi C, Branca C (1999) Global degradation kinetics of wood and agricultural residues in air. Can J Chem Eng 77(3):555–561CrossRefGoogle Scholar
  549. 549.
    Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349CrossRefGoogle Scholar
  550. 550.
    Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modeling of the pyrolysis of biomass particles—studies on kinetics, thermal and heat-transfer effects. Canad J Chem Eng 69(4):907–915CrossRefGoogle Scholar
  551. 551.
    Manya JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42(3):434–441CrossRefGoogle Scholar
  552. 552.
    Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol 126(1–6):97–137Google Scholar
  553. 553.
    Diebold JP (1994) A unified, global-model for the pyrolysis of cellulose. Biomass Bioenergy 7(1–6):75–85CrossRefGoogle Scholar
  554. 554.
    Bradbury AGW, Sakai Y, Shafizadeh F (1979) Kinetic-model for pyrolysis of cellulose. J Appl Polymer Sci 23(11):3271–3280CrossRefGoogle Scholar
  555. 555.
    Antal MJ, Mok WSL, Varhegyi G, Szekely T (1990) Review of methods for improving the yield of charcoal from biomass. Energy Fuel 4(3):221–225CrossRefGoogle Scholar
  556. 556.
    Wenzl HJA. Chemical technology of wood. Academic, Saint Louis, MOGoogle Scholar
  557. 557.
    Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102CrossRefGoogle Scholar
  558. 558.
    Bridgwater AV, Cottam ML (1992) Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuel 6(2):113–120CrossRefGoogle Scholar
  559. 559.
    Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass—1983–1990. Energy Fuel 5(3):399–410CrossRefGoogle Scholar
  560. 560.
    Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energ Source 24(5):471–482CrossRefGoogle Scholar
  561. 561.
    Shafizadeh F (1984) The chemistry of pyrolysis and combustion. Adv Chem Ser 207:491–529Google Scholar
  562. 562.
    Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3(4):283–305CrossRefGoogle Scholar
  563. 563.
    Bridgwater AE (2002) Fast pyrolysis of biomass: vol. 2: a handbook. CPL Scientific, Newbury, BerksGoogle Scholar
  564. 564.
    Bridgwater AA, Czernik SA, Diebold JA, Meier DA, Oasmaa AA, Peacocke CA, Piskorz JA (1999) Fast pyrolysis of biomass: a handbook. CPL Scientific Newbury Berks, Newbury, BerksGoogle Scholar
  565. 565.
    Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end user. Energy Fuel 13(4):914–921CrossRefGoogle Scholar
  566. 566.
    Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):337–350CrossRefGoogle Scholar
  567. 567.
    Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV et al (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—part 2: tests in diesel engines. Biomass Bioenergy 25(1):101–111CrossRefGoogle Scholar
  568. 568.
    Czernik S, Scahill J, Diebold J (1995) The production of liquid fuel by fast pyrolysis of biomass. J Sol Energ Eng Trans ASME 117(1):2–6CrossRefGoogle Scholar
  569. 569.
    Ganesh A, Banerjee R (2001) Biomass pyrolysis for power generation—a potential technology. Renew Energy 22(1–3):9–14CrossRefGoogle Scholar
  570. 570.
    Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res 43(11):2610–2618CrossRefGoogle Scholar
  571. 571.
    Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. H. Aldehydes, ketones, and acids. Ind Eng Chem Res 43(11):2619–2626CrossRefGoogle Scholar
  572. 572.
    Grassi G, Bridgwater AV (1993) The opportunities for electricity production from biomass by advanced thermal-conversion technologies. Biomass Bioenergy 4(5):339–345CrossRefGoogle Scholar
  573. 573.
    Peacocke GVC, Bridgwater AV (1994) Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 7(1–6):147–154CrossRefGoogle Scholar
  574. 574.
    Shihadeh A, Hochgreb S (2000) Diesel engine combustion of biomass pyrolysis oils. Energy Fuel 14(2):260–274CrossRefGoogle Scholar
  575. 575.
    Solantausta Y, Beckman D, Bridgwater AV, Diebold JP, Elliott DC (1992) Assessment of liquefaction and pyrolysis systems. Biomass Bioenergy 2(1–6):279–297CrossRefGoogle Scholar
  576. 576.
    Solantausta Y, Bridgwater AT, Beckman D (1995) Feasibility of power production with pyrolysis and gasification systems. Biomass Bioenergy 9(1–5):257–269CrossRefGoogle Scholar
  577. 577.
    Vitolo S, Bresci B, Seggiani M, Gallo MG (2001) Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 80(1):17–26CrossRefGoogle Scholar
  578. 578.
    Wornat MJ, Porter BG, Yang NYC (1994) Single droplet combustion of biomass pyrolysis oils. Energy Fuel 8(5):1131–1142CrossRefGoogle Scholar
  579. 579.
    Cottam ML, Bridgwater AV (1994) Technoeconomic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy 7(1–6):267–273CrossRefGoogle Scholar
  580. 580.
    Horne PA, Williams PT (1996) Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel 75(9):1043–1050CrossRefGoogle Scholar
  581. 581.
    Williams PT, Horne PA (1995) The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel 74(12):1839–1851CrossRefGoogle Scholar
  582. 582.
    Williams PT, Horne PA (1995) The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Anal Appl Pyrol 31:39–61CrossRefGoogle Scholar
  583. 583.
    Radlein D (1999) The production of chemicals from fast pyrolysis bio-oils. In: Bridgwater A (ed) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury, UK, pp 164–188Google Scholar
  584. 584.
    Tabatabaieraissi A, Trezek GJ (1987) Parameters governing biomass gasification. Ind Eng Chem Res 26(2):221–228CrossRefGoogle Scholar
  585. 585.
    Beenackers AACM, Van Swaaij WPM (1984) Gasification of biomass, a state of the art review. In: Bridgwater AV (ed) Thermochemical processing of biomass. Butterworths, London, UK, pp 91–136Google Scholar
  586. 586.
    Hos JJ, Groeneveld MJ (1987) Biomass gasification. In: Hall DO, Overend RP (eds) Biomass. Wiley, Chichester, UK, pp 237–255Google Scholar
  587. 587.
    Beenackers A (1999) Biomass gasification in moving beds, a review of European technologies. Renew Energy 16(1–4):1180–1186CrossRefGoogle Scholar
  588. 588.
    Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26(2):171–193CrossRefGoogle Scholar
  589. 589.
    Scala F, Chirone R (2004) Fluidized bed combustion of alternative solid fuels. Exp Therm Fluid Sci 28(7):691–699CrossRefGoogle Scholar
  590. 590.
    Scala F, Salatino P (2002) Modelling fluidized bed combustion of high-volatile solid fuels. Chem Eng Sci 57(7):1175–1196CrossRefGoogle Scholar
  591. 591.
    Lanauze RD (1987) A review of the fluidized-bed combustion of biomass. J Inst Energy 60(443):66–76Google Scholar
  592. 592.
    Asif M, Ibrahim AA (2002) Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds. Powder Technol 126(3):241–254CrossRefGoogle Scholar
  593. 593.
    Stultz SC, Kitto JB, Rahn CH (1992) Chapter 16: atmospheric pressure fluidized-bed boilers. In: Stulz S, Kitto J (eds) Steam: its generation and use, vol 40. Babcock Wilcox Co, Barberton, OH, p 1064Google Scholar
  594. 594.
    Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48(2):119–126CrossRefGoogle Scholar
  595. 595.
    Littlewood K (1977) Gasification—theory and application. Prog Energy Combust Sci 3(1):35–71CrossRefGoogle Scholar
  596. 596.
    De Bari I, Barisano D, Cardinale M, Matera D, Nanna F, Viggiano D (2000) Air gasification of biomass in a downdraft fixed bed: a comparative study of the inorganic and organic products distribution. Energy Fuel 14(4):889–898CrossRefGoogle Scholar
  597. 597.
    Wyman CE, Hinman ND, Bain RL, Stevens DJ (1993) Ethanol and methanol from cellulosic materials, Chapter 21. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy, sources for fuels and electricity. Island Press, Washington, DC, pp 865–923. Acc No. 12161Google Scholar
  598. 598.
    Milne TA, Abatzoglou N, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. NREL report no. TP-570-25357. National Renewable Energy Laboratory, Golden, CO, Nov 1998, p 202Google Scholar
  599. 599.
    Simell P, Stahlberg P, Kurkela E, Albrecht J, Deutsch S, Sjostrom K (2000) Provisional protocol for the sampling and analysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass Bioenergy 18(1):19–38CrossRefGoogle Scholar
  600. 600.
    Knoef HAM, Koele HJ (2000) Survey of tar measurement protocols. Biomass Bioenergy 18(1):55–59CrossRefGoogle Scholar
  601. 601.
    Maniatis K, Beenackers A (2000) Tar protocols. IEA bioenergy gasification task. Biomass Bioenergy 18(1):1–4CrossRefGoogle Scholar
  602. 602.
    Caballero MA, Corella J, Aznar MP, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39(5):1143–1154CrossRefGoogle Scholar
  603. 603.
    Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23(2):113–128CrossRefGoogle Scholar
  604. 604.
    Devi L, Ptasinski KJ, Janssen F (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140CrossRefGoogle Scholar
  605. 605.
    Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76(12):1117–1127CrossRefGoogle Scholar
  606. 606.
    Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. A. Technologies and performance modeling. J Eng Gas Turb Power Trans ASME 118(3):507–515CrossRefGoogle Scholar
  607. 607.
    Consonni S, Larson ED (1996) Biomass-gasifier/aeroderivative gas turbine combined cycles. B. Performance calculations and economic assessment. J Eng Gas Turb Power Trans ASME 118(3):516–525CrossRefGoogle Scholar
  608. 608.
    Jurado F, Ortega M, Cano A, Carpio J (2001) Biomass gasification, gas turbine, and diesel engine. Energ Source 23(10):897–905CrossRefGoogle Scholar
  609. 609.
    Kinoshita CM, Turn SQ, Overend RP, Bain RL (1997) Power generation potential of biomass gasification systems. J Energ Eng ASCE 123(3):88–99CrossRefGoogle Scholar
  610. 610.
    Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919CrossRefGoogle Scholar
  611. 611.
    Gerhard SC, Wang DN, Overend RP, Paisley MA (1994) Catalytic conditioning of synthesis gas produced by biomass gasification. Biomass Bioenergy 7(1–6):307–313CrossRefGoogle Scholar
  612. 612.
    Kinoshita CM, Wang Y, Zhou J (1994) Tar formation under different biomass gasification conditions. J Anal Appl Pyrol 29(2):169–181CrossRefGoogle Scholar
  613. 613.
    Marsak J, Skoblja S (2002) Role of catalysts in tar removal from biomass gasification. Chem Listy 96(10):813–820Google Scholar
  614. 614.
    Simell P, Kurkela E, Stahlberg P, Hepola J (1996) Catalytic hot gas cleaning of gasification gas. Catal Today 27(1–2):55–62CrossRefGoogle Scholar
  615. 615.
    Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173CrossRefGoogle Scholar
  616. 616.
    Baker EG, Mudge LK, Brown MD (1987) Steam gasification of biomass with nickel secondary catalysts. Ind Eng Chem Res 26(7):1335–1339CrossRefGoogle Scholar
  617. 617.
    Brown MD, Mudge LK, Baker EG (1984) Catalysts for gasification of biomass. Biotechnol Bioeng 14:125–136Google Scholar
  618. 618.
    Mudge LK, Sealock LJ, Weber SL (1979) Catalyzed steam gasification of biomass. Anal Appl Pyrol 1(2):165–175CrossRefGoogle Scholar
  619. 619.
    Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. NREL/SR-510-29952. Department of Energy, National Renewable Energy Laboratory, Golden, CO, Aug 2001, p 88Google Scholar
  620. 620.
    Corella J, Aznar MP, Gil J, Caballero MA (1999) Biomass gasification in fluidized bed: where to locate the dolomite to improve gasification? Energy Fuel 13(6):1122–1127CrossRefGoogle Scholar
  621. 621.
    Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? Energy Fuel 18(3):713–720CrossRefGoogle Scholar
  622. 622.
    Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36(5):1535–1543CrossRefGoogle Scholar
  623. 623.
    Devi L, Ptasinski KJ, Janssen F, van Paasen SVB, Bergman PCA, Kiel JHA (2005) Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renew Energy 30(4):565–587CrossRefGoogle Scholar
  624. 624.
    Orio A, Corella J, Narvaez I (1997) Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Ind Eng Chem Res 36(9):3800–3808CrossRefGoogle Scholar
  625. 625.
    Simell PA, Leppalahti JK, Kurkela EA (1995) Tar-decomposing activity of carbonate rocks under high CO2 partial-pressure. Fuel 74(6):938–945CrossRefGoogle Scholar
  626. 626.
    Aznar MP, Caballero MA, Gil J, Martin JA, Corella J (1998) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Ind Eng Chem Res 37(7):2668–2680CrossRefGoogle Scholar
  627. 627.
    Caballero MA, Aznar MP, Gil J, Martin JA, Frances E, Corella J (1997) Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Ind Eng Chem Res 36(12):5227–5239CrossRefGoogle Scholar
  628. 628.
    Courson C, Makaga E, Petit C, Kiennemann A (2000) Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming. Catal Today 63(2–4):427–437CrossRefGoogle Scholar
  629. 629.
    Bridgwater AV (1995) The technical and economic-feasibility of biomass gasification for power-generation. Fuel 74(5):631–653CrossRefGoogle Scholar
  630. 630.
    Stahl K, Neergaard M (1998) IGCC power plant for biomass utilisation, Varnamo, Sweden. Biomass Bioenergy 15(3):205–211CrossRefGoogle Scholar
  631. 631.
    Lundqvist RG (1993) The IGCC demonstration plant at Varnamo. Bioresour Technol 46(1–2):49–53CrossRefGoogle Scholar
  632. 632.
    Dasappa S, Paul PJ, Mukunda HS, Rajan NKS, Sridhar G, Sridhar HV (2004) Biomass gasification technology—a route to meet energy needs. Curr Sci 87(7):908–916Google Scholar
  633. 633.
    Dasappa S, Sridhar HV, Sridhar G, Paul PJ, Mukunda HS (2003) Biomass gasification—a substitute to fossil fuel for heat application. Biomass Bioenergy 25(6):637–649CrossRefGoogle Scholar
  634. 634.
    Fuel Cell Handbook Corp Author(s), EG and G Services Staff, Author, Parsons, Inc. Staff, Author, SA/C Staff, Author, 5th edn. Business/Technology (B/T), Orinda, 2000, p 292Google Scholar
  635. 635.
    Appleby AJ (1996) Fuel cell technology: status and future prospects. Energy 21(7–8):521–653CrossRefGoogle Scholar
  636. 636.
    Cappadonia M, Stimming U, Kordesch KV, de Oliveira JCT (2005) Fuel cells. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, Hoboken, p 400Google Scholar
  637. 637.
    Kordesch KVA, Simader GA (2000) Fuel cells and their applications. Wiley, Hoboken, NJ, p 375Google Scholar
  638. 638.
    Larminie J (2002) Fuel cells. In: Kirk-Othmer encyclopedia of chemical technology. vol 12, 5th edn. Wiley, Hoboken, NJ, p 850Google Scholar
  639. 639.
    Eichenberger PH (1998) The 2 MW Santa Clara project. J Power Sources 71(1–2):95–99CrossRefGoogle Scholar
  640. 640.
    Figueroa RA, Otahal J (1998) Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego. J Power Sources 71(1–2):100–104CrossRefGoogle Scholar
  641. 641.
    Huijsmans JPP, Kraaij GJ, Makkus RC, Rietveld G, Sitters EF, Reijers HTJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86(1–2):117–121CrossRefGoogle Scholar
  642. 642.
    Huijsmans JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC—a promise for the 21st century. J Power Sources 71(1–2):107–110CrossRefGoogle Scholar
  643. 643.
    Lobachyov KV, Richter HJ (1998) An advanced integrated biomass gasification and molten fuel cell power system. Energ Convers Manage 39(16–18):1931–1943CrossRefGoogle Scholar
  644. 644.
    Gesser HD, Hunter NR (1998) A review of C-1 conversion chemistry. Catal Today 42(3):183–189CrossRefGoogle Scholar
  645. 645.
    Green AES (1991) Overview of fuel conversion. FACT (American Society of Mechanical Engineers), 12 (Solid Fuel Conversion for the Transportation Sector), 3–15Google Scholar
  646. 646.
    Keim, W., C1 chemistry: present status and aspects for the future. In: Chemistry for the future, Proceedings of the IUPAC congress, 29, 1984, pp 53–62Google Scholar
  647. 647.
    Rostrup-Nielsen JR (2002) Syngas in perspective. Catal Today 71(3–4):243–247CrossRefGoogle Scholar
  648. 648.
    Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):189–297CrossRefGoogle Scholar
  649. 649.
    Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, TP-510-34929. National Renewable Energy Laboratory, Golden, CO, p 160Google Scholar
  650. 650.
    Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27CrossRefGoogle Scholar
  651. 651.
    van den Broek R, Faaij A, van Wijk A (1996) Biomass combustion for power generation. Biomass Bioenergy 11(4):271–281CrossRefGoogle Scholar
  652. 652.
    Prasad SB (1995) Biomass-fired steam power cogeneration system—a theoretical-study. Energ Convers Manage 36(1):65–77CrossRefGoogle Scholar
  653. 653.
    Baxter LL, Miles TR, Miles TR, Jenkins BM, Milne T et al (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1–3):47–78CrossRefGoogle Scholar
  654. 654.
    Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRefGoogle Scholar
  655. 655.
    Demirbas A (2003) Toxic air emissions from biomass combustion. Energ Source 25(5):419–427Google Scholar
  656. 656.
    Hubbard AJ (1995) Hazardous air emissions potential from a wood-fired furnace. Combust Sci Technol 108(4–6):297–309CrossRefGoogle Scholar
  657. 657.
    Baxter LL (1993) Ash deposition during biomass and coal combustion—a mechanistic approach. Biomass Bioenergy 4(2):85–102CrossRefGoogle Scholar
  658. 658.
    Blander M, Milne TA, Dayton DC, Backman R, Blake D et al (2001) Equilibrium chemistry of biomass combustion: a round-robin set of calculations using available computer programs and databases. Energy Fuel 15(2):344–349CrossRefGoogle Scholar
  659. 659.
    Dayton DC, Frederick WJ (1996) Direct observation of alkali vapor release during biomass combustion and gasification. 2. Black liquor combustion at 1100 degrees C. Energy Fuel 10(2):284–292CrossRefGoogle Scholar
  660. 660.
    Dayton DC, French RJ, Milne TA (1995) Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular-beam mass-spectrometry to switchgrass combustion. Energy Fuel 9(5):855–865CrossRefGoogle Scholar
  661. 661.
    Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113CrossRefGoogle Scholar
  662. 662.
    Bakker RR, Jenkins BM, Williams RB (2002) Fluidized bed combustion of leached rice straw. Energy Fuel 16(2):356–365CrossRefGoogle Scholar
  663. 663.
    Nordin A (1994) Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6(5):339–347CrossRefGoogle Scholar
  664. 664.
    Brouwer J, Owens WD, Harding NS, Heap MP, Pershing DW (1995) Cofiring waste biofuels and coal for emissions reduction. Abstr Paper Am Chem Soc 209:32-FUELGoogle Scholar
  665. 665.
    Demirbas A (2003) Sustainable cofiring of biomass with coal. Energ Convers Manage 44(9):1465–1479CrossRefGoogle Scholar
  666. 666.
    Harding NS, Adams BR (2000) Biomass as a reburning fuel: a specialized cofiring application. Biomass Bioenergy 19(6):429–445CrossRefGoogle Scholar
  667. 667.
    Niksa S, Liu GS, Felix L, Bushy PV, Boylan DM (2003) Predicting NOX emissions from biomass cofiring. Abstr Paper Am Chem Soc 226:U540Google Scholar
  668. 668.
    Hughes EE, Tillman DA (1998) Biomass cofiring: status and prospects 1996. Fuel Process Technol 54(1–3):127–142CrossRefGoogle Scholar
  669. 669.
    Boylan D, Bush V, Bransby DI (2000) Switchgrass cofiring: pilot scale and field evaluation. Biomass Bioenergy 19(6):411–417CrossRefGoogle Scholar
  670. 670.
    Boylan DM (1996) Southern company tests of wood/coal cofiring in pulverized coal units. Biomass Bioenergy 10(2–3):139–147CrossRefGoogle Scholar
  671. 671.
    Gold BA, Tillman DA (1996) Wood cofiring evaluation at TVA power plants. Biomass Bioenergy 10(2–3):71–78CrossRefGoogle Scholar
  672. 672.
    Tillman DA (2000) Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19(6):365–384CrossRefGoogle Scholar
  673. 673.
    Tillman DA, Stahl RW (1995) Wood cofiring experience in cyclone boilers. Abstr Paper Am Chem Soc 209:31-FUELGoogle Scholar
  674. 674.
    Tillman DA (1997) Biomass cofiring guidelines, EPRITR-108952. Foster Wheeler Environmental Corporation for the Electric Power Research Institute, Sacramento, CA, p 107Google Scholar
  675. 675.
    Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14(2):301–304CrossRefGoogle Scholar
  676. 676.
    Shoemaker S, Raymond J, Bruner R (1981) Cellulases: diversity amongst improved Trichoderma strains. In: Hollander A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, pp 89–129CrossRefGoogle Scholar
  677. 677.
    Enari TM (1983) Microbial cellulases, 1st edn. Applied Science, London, pp 183–223Google Scholar
  678. 678.
    Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Dev Ind Microbiol 5:5–20Google Scholar
  679. 679.
    Selig, M. J., W. S. Adney, M. E. Himmel and S. R. Decker. (2009). “The Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes”. Cellulose. 16:711–722Google Scholar
  680. 680.
    Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. (2009). “The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes”. Appl. Biochem. Biotechnol. 155:397–406.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Stephen R. Decker
    • 1
  • John Sheehan
    • 1
  • David C. Dayton
    • 1
  • Joseph J. Bozell
    • 1
  • William S. Adney
    • 1
  • Bonnie Hames
    • 1
  • Steven R. Thomas
    • 1
  • Richard L. Bain
    • 1
  • Stefan Czernik
    • 1
  • Min Zhang
    • 1
  • Michael E. Himmel
    • 1
    Email author
  1. 1.National Renewable Energy LaboratoryNational Bioenergy CenterGoldenUSA

Personalised recommendations