Modified Constitutive Relation Error Strategy for Elastic Properties Identification

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


The aim of this paper is to present an inverse approach dedicated to the exploitation of full-field measurements, to identify elastic properties of heterogeneous materials, such as composites. The method is based on the modified constitutive relation error principle and could be split in two steps. The first one consists in defining mechanical fields from the available theoretical and experimental data, for a fixed set of mechanical parameters, by the minimization of a criterion allowing a compromise between constitutive equation and measurements adequacy. The second step takes the form of minimizing a cost function defined by using these fields, to identify the sought material properties. Moreover, the robustness of the method was tested on some numerical examples where white Gaussian perturbations were added to displacement values to simulate an experimental errors.


Modified constitutive relation error Identification Full-field measurements 


  1. 1.
    Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244CrossRefGoogle Scholar
  2. 2.
    Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties – a review. Strain 42:69–80CrossRefGoogle Scholar
  3. 3.
    Kobayashi A (1993) Handbook on experimental mechanics, Wiley, New YorkGoogle Scholar
  4. 4.
    Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Identification from measurements of mechanical fields. Exp Mech 48:381–402CrossRefGoogle Scholar
  5. 5.
    Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: The elastic case. Comput Meth Appl Mech Eng 196:1968–1983MATHCrossRefGoogle Scholar
  6. 6.
    Ladevèze P, Reynier M, Maya N (1994) Error on the constitutive relation in dynamics. In: Bui HD, Tanaka M (ed) Inverse problems in engineering. pp 251–256Google Scholar
  7. 7.
    Calloch S, Dureisseix D, Hild F (2002) Model validation in the presence of uncertain experimental data. Eng Comput 21(8):808–833Google Scholar
  8. 8.
    Deraemaeker A, Ladevèze P, Romeuf T (2002) Identification de modèles de comportement de matériaux solides: utilisation d’essais et de calculs. Technologies et Formations 100:36–41Google Scholar
  9. 9.
    Latourte F (2007) Identification Des Paramètres d’une loi élastoplastique de Prager et calcul de champs de contrainte dans des matériaux hétérogènes. Ph.D. thesis, Université de Montpellier 2Google Scholar
  10. 10.
    Florentin E, Lubineau G (2010) Identification of the parameters of an elastic material model using the constitutive equation gap method. Comput Mech 46:521–531MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Claire D, Hild F, Roux S (2002) Identification of damage fields using kinematic measurements. C R Mecanique 330:729–734MATHCrossRefGoogle Scholar
  12. 12.
    Ben Azzouna M, Périé J-N, Guimard J-M, Hild F, Roux S (2011) On the identification and validation of an anisotropic damage model by using full-field measurements. Int J Damage Mech 20(8):1130–1150CrossRefGoogle Scholar
  13. 13.
    Ben Azzouna M, Feissel P, Villon P (2011) Identification à partir de mesures de champs – application de l’erreur en relation de comportement modifiée. In: 10th Colloque national en Calcul des structures – giensGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  1. 1.Roberval LaboratoryUniversity of Technology of Compiègne, Centre de Recherches de RoyallieuCompiègneFrance

Personalised recommendations