The Time of Maturity

  • Bernard Fernandez


A variety of new accelerators are aimed at creating beams of increasingly energetic particles. New means of detecting and analyzing particles are invented, mostly due to the development of electronic devices which become numerous, varied and flexible, the fruit of apparently unlimited imagination.


Shell Model Quadrupole Moment Target Nucleus Compound Nucleus Magic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heilbron, J. L. and Seidel, R. W., Lawrence and his laboratory. Vol. 1, University of California Press, Berkeley, 1989.Google Scholar
  2. 2.
    McMillan, E., “The Synchrotron—A Proposed High Energy Particle Accelerator”, Physical Review 68, 143–144 (L), September 1, 1945.Google Scholar
  3. 3.
    Veksler, V. I., “A new method for acceleration of relativistic particles”, Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 43, 329–331, 1944.Google Scholar
  4. 4.
    Richardson, J. R., MacKenzie, K. R., Lofaren, E. J. and Wright, B. T., “Frequency Modulated Cyclotron”, Physical Review 69, 669–670 (L), June 1, 1946.Google Scholar
  5. 5.
    Brobeck, W. M., Lawrence, E. O., MacKenzie, K. R., McMillan, E., Serber, R., Sewell, D. C., Simpson, K. M. and Thornton, R. L., “Initial Performance of the 184-Inch Cyclotron of the University of California”, Physical Review 71, 449–450, April 1947.Google Scholar
  6. 6.
    Livingston, M. S. and Blewett, J. P., Particle Accelerators, McGraw-Hill, New York, 1962.zbMATHGoogle Scholar
  7. 7.
    Oliphant, M. L., Gooden, J. S. and Hide, G. S., “The acceleration of charged particles to very high energies”, Proceedings of the Physical Society 59, 666–677, 1947.Google Scholar
  8. 8.
    Gooden, J., Jensen, H. H. and Symonds, J. L., “Theory of the proton synchrotron”, Proceedings of the Physical Society 59, 677–693, 1947.Google Scholar
  9. 9.
    Kerst, D. W., “Acceleration of Electrons by Magnetic Induction”, Physical Review 58, 841 (L), November 1940.Google Scholar
  10. 10.
    Kerst, D. W. and Serber, R., “Electronics Orbits in the Induction Accelerator”, Physical Review 60, 53–58, July 1941.Google Scholar
  11. 11.
    Kerst, D. W., “A New Induction Accelerator Generating 20 Mev”, Physical Review 61, 93–94 (L), January 1942.Google Scholar
  12. 12.
    Kerst, D. W., Adams, G. D., Koch, H. W. and Robinson, C. S., “Operation of a 300-Mev Betatron”, Physical Review 78, 297 (L), May 1950.Google Scholar
  13. 13.
    Livingston, M. S. and Blewett, J. P., Particle Accelerators, p. 397.Google Scholar
  14. 14.
    Ibid., p. 328.Google Scholar
  15. 15.
    Chodorow, M., Ginzton, E. L., Hansen, W. W., Kyhl, R. L., Neal, R. B. and Panofsky, W. K., “Stanford High-Energy Linear Electron Accelerator (Mark III)”, Review of Scientific Instruments 26, 134–204, February 1955.Google Scholar
  16. 16.
    van de Graaff, R., Trump, J. G. and Buechner, W. W., “Electrostatic Generators for the Acceleration of Charged Particles”, Reports on Progress in Physics 11, 1–18, 1948.Google Scholar
  17. 17.
    Bennett, W. H. and Darby, P. F., “Negative Atomic Hydrogen Ions”, Physical Review 49, 97–99, January 1936.Google Scholar
  18. 18.
    Greinacher, H., “Über einen hydrolischen Zähler für Elementarschtrahlen”, Helvetica Physica Acta 7, 360–367, 1934.Google Scholar
  19. 19.
    Greinacher, H., “Über den hydrolischen Zähler für Elementarstrahlen (II. Mitteilung). Messung des elementaren Photoeffekts an Wasser”, Helvetica Physica Acta 7, 514–519, 1934.Google Scholar
  20. 20.
    Greinacher, H., “Über einen weiteren hydroelektrischen Zähler für Elementarstrahlen und Photo-Elektronen”, Helvetica Physica Acta 8, 89–96, 1935.Google Scholar
  21. 21.
    Chang, W. Y. and Rosenblum, S., “A Simple Counting System for Alpha-Ray Spectra and the Energy Distribution of Po Alpha-Particles”, Physical Review 67, 222–227, April 1945.Google Scholar
  22. 22.
    Madansky, L. and Pidd, R. W., “Characteristics of the Parallel-Plate Counter”, Physical Review 73, 1215–1216, May 1948.Google Scholar
  23. 23.
    Bay, Z., “Electron Multiplier as an Electron Counting Device”, Review of Scientific Instruments 12, 127–133, March 1941.Google Scholar
  24. 24.
    Zworykin, V. K., Morton, G. A. and Malter, L., “The Secondary Emission Multiplier—A New Electronic Device”, Proceedings of the Institute of Radio Engineers 24, 351–375, March 1936.Google Scholar
  25. 25.
    Zworykin, V. K. and Rajchman, J. A., “The Electrostatic Electron Multiplier”, IRE Proceedings 27, 558–566, September 1939.Google Scholar
  26. 26.
    Blau, M. and Dreyfus, B., “The Multiplier Photo-Tube in Radioactive Measurements”, Review of Scientific Instruments 16, 245–248, September 1945.Google Scholar
  27. 27.
    Curran, S. C. and Baker, W. R., “Photoelectric Alpha-Particle Detector”, Review of Scientific Instruments 19, 116, February 1948.Google Scholar
  28. 28.
    Mcintyre, J. A. and Hofstadter, R., “Measurement of Gamma-Ray Energies with One Crystal”, Physical Review 78, 617–619, June 1950.Google Scholar
  29. 29.
    Wilson, A. H., “The Theory of Electronic Semi-Conductors”, Proceedings of the Royal Society, London A133, 458–491, October 1, 1931.Google Scholar
  30. 30.
    Wilson, A. H., “A Note on the Theory of Rectification”, Proceedings of the Royal Society, London A136, 487–498, June 1, 1932.Google Scholar
  31. 31.
    Schottky, W., “Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter”, Zeitschrift für Physik 113, 367–414, May 1939.Google Scholar
  32. 32.
    Schottky, W., “Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter”, Zeitschrift für Physik 118, 539–592, February 1942.Google Scholar
  33. 33.
    Mott, N. F., “The Theory of Crystal Rectifiers”, Proceedings of the Royal Society, London A171, 27–38, May 1, 1939.Google Scholar
  34. 34.
    Bardeen, J. and Brattain, W. H., “The Transistor, A Semi-Conductor Triode”, Physical Review 74, 230–231, July 15, 1948.Google Scholar
  35. 35.
    Riordan, M. and Hoddeson, L., Crystal fire : the invention of the transistor and the birth of the information age, Norton, New York, 1997.Google Scholar
  36. 36.
    Riordan, M., Hoddeson, L. and Herring, C., “The invention of the transistor”, Reviews of Modern Physics 71, S336–S345, March 1999.Google Scholar
  37. 37.
    Riordan, M. and Hoddeson, L., “Crystal fire, p. 159”.Google Scholar
  38. 38.
    McKay, K. G., “The Crystal Conduction Counter”, Physics Today 6, 10–13, May 1953.Google Scholar
  39. 39.
    Röntgen, W. C. and Joffé, A., “Ueber die Elektrizitätsleitung in einiger Kristallen und über den Einfluss der Bestrahlung darauf”, Annalen der Physik, Leipzig 41, 449–498, 1913.Google Scholar
  40. 40.
    van Heerden, P. J., “The Crystal Counter. A New Apparatus in Nuclear Physics for the Investigation of β and γ-rays. Part I”, Physica 16, 505–516, June 1950.Google Scholar
  41. 41.
    Wooldridge, D. E., Ahearn, A. J. and Burton, J. A., “Conductivity Pulses Induced in Diamond by Alpha-Particles”, Physical Review 71, 913 (L), June 15, 1947.Google Scholar
  42. 42.
    Curtiss, L. F. and Brown, B. W., “Diamond as a Gamma-Ray Counter”, Physical Review 72, 643 (L), October 1, 1947.Google Scholar
  43. 43.
    Hofstadter, R., Milton, J. C. D. and Ridgway, S. L., “Behavior of Silver Chloride Crystal Counters”, Physical Review 72, 977–978, November 15, 1947.Google Scholar
  44. 44.
    Chynoweth, A. G., “Conductivity Crystal Counters”, American Journal of Physics 20, 218–226, April 1952.Google Scholar
  45. 45.
    McKay, K. G., “Electron-Hole Production in Germanium by Alpha-Particles”, Physical Review 84, 829–832, November 1951.Google Scholar
  46. 46.
    Mayer, J. W. and Gossick, B. R., “The Use of Au-Ge Broad Area Barrier as Alpha-Particle Spectrometer”, Review of Scientific Instruments 27, 407–408 (L), June 1956.Google Scholar
  47. 47.
    McKenzie, J. M. and Bromley, D. A., “Observation of Charged-Particle Reaction Products”, Physical Review Letters 2, 303–305, April 1959.Google Scholar
  48. 48.
    Miller, G. L., Gibson, W. M. and Donovan, P., “Semiconductor Particle Detectors”, Annual Review of Nuclear Science 12, 189–220, 1962.Google Scholar
  49. 49.
    Reinganum, M., “Streuung und photographische Wirkung der α-Strahlen”, Physikalische Zeitschrift 12, 1076–1077, December 1, 1911.Google Scholar
  50. 50.
    Blau, M., “Über die photographische Wirkung natürlicher H-Strahlen”, Sitzungsberichte der Akademie der Wissenschaften in Wien 134, 427–436, session of July 9, 1925.Google Scholar
  51. 51.
    Blau, M., “Die photographische Wirkung von H-Strahlen aus Paraffin und Aluminium”, Zeitschrift für Physik 34, 285–295, 1925.Google Scholar
  52. 52.
    Rumbaugh, L. H. and Locher, G. L., “Neutrons and Other Heavy Particles in Cosmic Radiation of the Stratosphere”, Physical Review 49, 855 (L), June 1, 1936.Google Scholar
  53. 53.
    Wilkins, T. R. and St. Helens, H., “Direct Photographic Tracks of Atomic Cosmic-Ray Corpuscles”, Physical Review 49, 403 (L), March 1936.Google Scholar
  54. 54.
    Blau, M. and Wambacher, H., “Vorläufiger Bericht über photographische Ultrastrahluntersuchungen nebst einigen Versuchen über die ‘spontane Neutronemission’. Auftreten von H-Strahlen ähnlichen Bahnen entsprechend mehreren Metern Reichweite in Luft”, Sitzungsberichte der Akademie der Wissenschaften in Wien 146, 469–477, session of July 1, 1937.Google Scholar
  55. 55.
    Blau, M. and Wambacher, H., “Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles”, Nature 140, 585, October 2, 1937.Google Scholar
  56. 56.
    Møller, C., “On the theory of mesons”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 18, No. 6, 1941.Google Scholar
  57. 57.
    Segrè, E., “An Unsuccessful Search for Transuranic Elements”, Physical Review 55, 1104–1105, June 1939.Google Scholar
  58. 58.
    McMillan, E. and Abelson, P. H., “Radioactive Element 93”, Physical Review 57, 1185–1186, June 1940.Google Scholar
  59. 59.
    Seaborg, G. T., The Plutonium story. The journals of professor Glenn T. Seaborg, 1939–1946, Battelle Press, Columbus, 1994.Google Scholar
  60. 60.
    Seaborg, G., McMillan, E. M., Kennedy, J. W. and Wahl, A. C., “Radioactive Element 94 from Deuterons on Uranium”, Physical Review 69, 366–367 (L), April 1, 1946.Google Scholar
  61. 61.
    Seaborg, G., Wahl, A. C. and Kennedy, J. W., “Radioactive Element 94 from Deuterons on Uranium”, Physical Review 69, 367 (L), April 1946.Google Scholar
  62. 62.
    Seaborg, G. and Wahl, A. C., “The Chemical Properties of Elements 94 and 93”, Journal of the American Chemical Society 70, 1128–1134, 1948.Google Scholar
  63. 63.
    von Grosse, A., “The Chemical Properties of Elements 93 and 94”, Journal of the American Chemical Society 57, 440–441, March 1935.Google Scholar
  64. 64.
    Goeppert Mayer, M., “Rare-Earth and Transuranic Elements”, Physical Review 60, 184–187, August 1941.Google Scholar
  65. 65.
    Seaborg, G., “The Chemical and Radioactive Properties of the Heavy Elements”, Chemical and Engineering News 23, 2190–93, December 10, 1945.Google Scholar
  66. 66.
    Seaborg, G., “Place in the Periodic System and Electronic Structure of the Heaviest Elements”, Nucleonics 5, 16–36, November 1949.Google Scholar
  67. 67.
    Snell, A. H., Pleasonton, F. and McCord, R. V., “Radioactive Decay of the Neutron”, Physical Review 78, 310–311, May 1950.Google Scholar
  68. 68.
    Robson, J. M., “Radioactive Decay of the Neutron”, Physical Review 78, 311–312 (L), May 1950.Google Scholar
  69. 69.
    Robson, J. M., “The Radioactive Decay of the Neutron”, Physical Review 83, 349–358, July 15, 1951.Google Scholar
  70. 70.
    Mott, N. F., “The Scattering of Fast Electrons by Atomic Nuclei”, Proceedings of the Royal Society, London A124, 425–442, June 4, 1929.Google Scholar
  71. 71.
    Guth, E., “Über die Wechselwirkung zwischen schnellen Elektronen und Atomkernen”, Anzeiger der Akademie der Wissenschaften in Wien 24, 299–306, session of November 22, 1934.Google Scholar
  72. 72.
    Rose, M. E., “The Charge Distribution in Nuclei and the Scattering of High Energy Electrons”, Physical Review 73, 279–284, February 1948.Google Scholar
  73. 73.
    Elton, L. R. B., “The Effect of Nuclear Structure on the Elastic Scattering of Fast Electrons”, Proceedings of the Physical Society, London A63, 1115–1124, October 1950.Google Scholar
  74. 74.
    Lyman, E. M., Hanson, A. O. and Scott, M. B., “Scattering of 15.7-Mev Electrons by Nuclei”, Physical Review 84, 626–634, November 15, 1951.Google Scholar
  75. 75.
    Pidd, R. W., Hammer, C. L. and Raka, E. C., “High-Energy Electron Scattering by Nuclei”, Physical Review 92, 436–437, October 1953.Google Scholar
  76. 76.
    Hofstadter, R., Fechter, H. R. and McIntyre, J., “Scattering of High-Energy Electrons and the Method of Nuclear Recoil”, Physical Review 91, 422–423, July 15, 1953.Google Scholar
  77. 77.
    Hofstadter, R., “Electron Scattering and Nuclear Structure”, Reviews of Modern Physics 28, 214–254, 1956.Google Scholar
  78. 78.
    Hofstadter, R. and McAllister, R. W., “Electron Scattering from the Proton”, Physical Review 98, 217–218, April 1955.Google Scholar
  79. 79.
    McAllister, R. W. and Hofstadter, R., “Elastic Scattering of 188-MeV Electrons from the Proton and the Alpha Particle”, Physical Review 102, 851–856, May 1956.Google Scholar
  80. 80.
    Wigner, E. P., “On the Structure of Nuclei beyond Oxygen”, Physical Review 51, 947–958, June 1937.Google Scholar
  81. 81.
    Wigner, E. P. and Feenberg, E., “Symmetry properties of nuclear levels”, Reports on Progress in Physics 8, 274–317, 1941.Google Scholar
  82. 82.
    Goeppert Mayer, M., “On Closed Shells in Nuclei”, Physical Review 74, 235–239, August 1948.Google Scholar
  83. 83.
    Barkas, W. H., “The Analysis of Nuclear Binding Energies”, Physical Review 55, 691–698, April 1939.Google Scholar
  84. 84.
    Goeppert Mayer, M., “The Shell Model”, in Nobel Lectures, Physics 1963–1970, Elsevier, Amsterdam, 1972.Google Scholar
  85. 85.
    Goeppert Mayer, M., “On Closed Shells in Nuclei. II”, Physical Review 75, 1969–1970 (L), June 1949.Google Scholar
  86. 86.
    Waenke, H. and Arnold, J. R., “Hans Suess 1909–1993”, Biographical Memoirs of the National Academy of Sciences 87, 3–20, 2005.Google Scholar
  87. 87.
    Jensen, J. H. D., “Glimpses at the History of the Nuclear Structure Theory”, in Nobel Lectures, Physics 1963–1970, Elsevier, Amsterdam, 1972.Google Scholar
  88. 88.
    Jensen, J. H. D., “The History of the Theory of Structure of the Atomic Nucleus”, Science 147, 1419–1423, March 19, 1965.Google Scholar
  89. 89.
    Suess, H. E., Haxel, O. and Jensen, J. H. D., “Zur Interpretation der ausgezeichneten Nucleonenzahlen im Bau der Atomkerne”, Naturwissenschaften 36, 153–155, July 1949.Google Scholar
  90. 90.
    Jensen, J. H. D., Sueß, H. E. and Haxel, O., “Modelmäßige Deutung der ausgezeichneten Nucleonenzahlen im Kernbau”, Naturwissenschaften 36, 155–156, July 1949.Google Scholar
  91. 91.
    Haxel, O., Jensen, J. H. D. and Suess, H. E., “On the “Magic Numbers” in Nuclear Structure”, Physical Review 75, 1766, June 1, 1949.Google Scholar
  92. 92.
    Haxel, O., Jensen, J. H. D. and Suess, H. E., “Modellmäßige Deutung der ausgezeichneten Nukleonenzahlen im Kernbau”, Zeitschrift für Physik 128, 295–311, 1950.Google Scholar
  93. 93.
    Haxel, O., Jensen, J. H. D. and Suess, H. E., “Das Schalenmodel des Atomkerns”, Ergebnisse der Exakten Naturwissenschaften 26, 244–290, 1952.Google Scholar
  94. 94.
    Bethe, H. A. and Bacher, R. F., “Nuclear Physics. A. Stationary States of Nuclei”, Reviews of Modern Physics 8, 82–229, April 1936.Google Scholar
  95. 95.
    Fermi, E., Nuclear physics, The University of Chicago Press, Chicago, 1949, p. 168.Google Scholar
  96. 96.
    Weisskopf, V. F., “Nuclear Models”, Science 113, 101–102, January 26, 1951.Google Scholar
  97. 97.
    Feenberg, E., “Nuclear Shell Structure and Isomerism”, Physical Review 75, 320–22 (L), January 15, 1949.Google Scholar
  98. 98.
    Schmidt, T., “Über die magnetischen Momente der Atomkerne”, Zeitschrift für Physik 106, 358–361, 1937.Google Scholar
  99. 99.
    Feenberg, E. and Hammack, K. C., “Nuclear Shell Structure”, Physical Review 75, 1877–1893, June 15, 1949.Google Scholar
  100. 100.
    Nordheim, L. W., “On Spins, Moments, and Shells in Nuclei”, Physical Review 75, 1894–1901, June 1949.Google Scholar
  101. 101.
    Goeppert-Mayer, M. and Jensen, J. H. D., Elementary theory of nuclear shell structure, John Wiley, New York, 1955.zbMATHGoogle Scholar
  102. 102.
    Cook, L. G., McMillan, E. M., Peterson, J. M. and Sewell, D. C., “Total Cross Sections of Nuclei for 90-Mev Neutrons”, Physical Review 72, 1264–1265, December 1947.Google Scholar
  103. 103.
    Serber, R., “Nuclear Reactions at High Energies”, Physical Review 72, 1114–1115, December 1947.Google Scholar
  104. 104.
    Bethe, H. A., “A Continuum Theory of the Compound Nucleus”, Physical Review 57, 1125–1144, June 15, 1940.Google Scholar
  105. 105.
    Fernbach, S., Serber, R. and Taylor, T. B., “The Scattering of High Energy Neutrons by Nuclei”, Physical Review 75, 1352–1355, May 1949.Google Scholar
  106. 106.
    Burkig, J. W. and Wright, B. T., “Survey Experiment on Elastic Scattering”, Physical Review 82, 451–452, May 1951.Google Scholar
  107. 107.
    Richardson, R. E., Ball, W. P., Leith, C. E. and Moyer, B. J., “Elastic Scattering of 340-Mev Protons”, Physical Review 83, 859–860 (L), August 1951.Google Scholar
  108. 108.
    Gatha, K. M. and Riddell, Jr., R. J., “An Investigation into the Nuclear Scattering of High Energy Protons”, Physical Review 86, 1035–1039, June 1952.Google Scholar
  109. 109.
    Gugelot, P. C., “Some Data on the Elastic Scattering of 18.3-Mev Protons”, Physical Review 87, 525–526, August 1952.Google Scholar
  110. 110.
    Le Levier, R. E. and Saxon, D. S., “An Optical Model for Nucleon-Nuclei Scattering”, Physical Review 87, 40–41, July 1952.Google Scholar
  111. 111.
    Cohen, B. L. and Neidigh, R. V., “Angular Distributions of 22-Mev Protons Elastically Scattered by Various Elements”, Physical Review 93, 282–287, January 15, 1954.Google Scholar
  112. 112.
    Dayton, I. E., “The Elastic Scattering of 18-Mev Protons by Al, Fe, Ni, and Cu”, Physical Review 95, 754–758, August 1954.Google Scholar
  113. 113.
    Chase, D. M. and Rohrlich, F., “Elastic Scattering of Protons by Nuclei”, Physical Review 94, 81–86, April 1954.Google Scholar
  114. 114.
    Woods, R. D. and Saxon, D. D., “Diffuse Surface Optical Model for Nucleon-Nuclei Scattering”, Physical Review 95, 577–578, July 1954.Google Scholar
  115. 115.
    Williams, M. R., A history of computing technology, Prentice-Hall, Englewood Cliffs, N.J., 1985.Google Scholar
  116. 116.
    Bohr, N., Peierls, R. and Placzek, G., “Nuclear Reactions in the Continuous Energy Region”, Nature 144, 200–201, July 29, 1939.Google Scholar
  117. 117.
    Helmholz, A. C., McMillan, E. M. and Sewell, D. C., “Angular Distribution of Neutrons from Targets Bombarded by 190-Mev Deuterons”, Physical Review 72, 1003–1007, December 1947.Google Scholar
  118. 118.
    Serber, R., “The Production of High Energy Neutrons by Stripping”, Physical Review 72, 1008–1016, December 1947.Google Scholar
  119. 119.
    Peaslee, D. C., “Deuteron-Induced Reactions”, Physical Review 74, 1001–1013, November 1948.Google Scholar
  120. 120.
    Burrows, H. B., Gibson, W. M. and Rotblat, J., “Angular Distributions of Protons from the Reaction O16(d, p)O17”, Physical Review 80, 1095, December 15, 1950.Google Scholar
  121. 121.
    Butler, S. T., “On Angular Distributions from (d, p) and (d, n) Nuclear Reactions”, Physical Review 80, 1095–1096 (L), December 15, 1950.Google Scholar
  122. 122.
    Holt, J. R. and Young, C. T., “The Angular Distribution of Protons from the Reaction 27Al(d,p)28Al”, Proceedings of the Physical Society 63, 833–838, August 1950.Google Scholar
  123. 123.
    Butler, S. T., “Angular distributions from (d,p) and (d,n) nuclear reactions”, Proceedings of the Royal Society, London A208, 559–579, September 24, 1951.Google Scholar
  124. 124.
    Rotblat, J., “The Spins and Parities of the 3.7-3.9-Mev Doublet in C13”, Physical Review 83, 1271–1272, September 1951.Google Scholar
  125. 125.
    Daitch, P. B. and French, J. B., “The Born Approximation Theory of (d, p) and (d, n) Reactions”, Physical Review 87, 900–901 (L), September 1952.Google Scholar
  126. 126.
    Horowitz, J. and Messiah, A. M. L., “The Mechanism of Stripping Reactions”, Physical Review 92, 1326–1327, December 1, 1953.Google Scholar
  127. 127.
    Horowitz, J. and Messiah, A. M. L., “Sur les réactions (d, p) et (d, n)”, Journal de Physique et Le Radium 14, 695–706, December 1953.Google Scholar
  128. 128.
    Francis, N. C. and Watson, K. M., “The Theory of the Deuteron Stripping Reactions”, Physical Review 93, 313–317, January 15 1954.Google Scholar
  129. 129.
    Tobocman, W., “Theory of the (d, p) Reaction”, Physical Review 94, 1655–1663, June 1954.Google Scholar
  130. 130.
    Tobocman, W. and Kalos, M. H., “Numerical Calculation of (d, p) Angular Distributions”, Physical Review 97, 132–136, January 1, 1955.Google Scholar
  131. 131.
    Thomas, R. G., “Collision Matrices for the Compound Nucleus”, Physical Review 97, 224–237, January 1955.Google Scholar
  132. 132.
    Mott, N. F. and Massey, H. S. W., The Theory of atomic collisions, Clarendon Press, Oxford, 1933. p. 100.zbMATHGoogle Scholar
  133. 133.
    Bethe, H. A., “Nuclear Physics. B. Nuclear Dynamics, Theoretical”, Reviews of Modern Physics 9, 69–244, April 1937.Google Scholar
  134. 134.
    Bothe, W. and Horn, W., “Die Sekundärstrahlung harter γ-Strahlen”, Zeitschrift für Physik 88, 683–698, 1934.Google Scholar
  135. 135.
    Bothe, W. and Gentner, W., “Die Streu- und Sekundärstrahlung harter γ-Strahlen”, Naturwissenschaften 24, 171—172, March 13, 1936.Google Scholar
  136. 136.
    Baldwin, G. C. and Koch, H. W., “Threshold Measurements on the Nuclear Photo-Effect”, Physical Review 67, 1–11, January 1945.Google Scholar
  137. 137.
    Baldwin, G. C. and Klaiber, G. S., “Photo-Fission in Heavy Elements”, Physical Review 71, 3–10, January 1, 1947.Google Scholar
  138. 138.
    McElhinney, J., Hanson, A. O., Becker, R. A., Duffield, R. B. and Diven, B. C., “Thresholds for Several Photo-Nuclear Reactions”, Physical Review 75, 542–554, February 1949.Google Scholar
  139. 139.
    Goldhaber, M. and Teller, E., “On Nuclear Dipole Vibrations”, Physical Review 74, 1046–1049, November 1, 1948.Google Scholar
  140. 140.
    Gordy, W., “Relation of Nuclear Quadrupole Moment to Nuclear Shell Structure”, Physical Review 76, 139–140 (L), July 1949.Google Scholar
  141. 141.
    Townes, C. H., Foley, H. M. and Low, W., “Nuclear Quadrupole Moments and Nuclear Shell Structure”, Physical Review 76, 1415–1416 (L), November 1949.Google Scholar
  142. 142.
    Rainwater, J., “Nuclear Energy Level Argument for a Spheroidal Nuclear Model”, Physical Review 79, 432–434 (L), August 1950.Google Scholar
  143. 143.
    Bohr, A., “On the Quantization of Angular Momenta in Heavy Nuclei”, Physical Review 81, 134–138, January 1951.Google Scholar
  144. 144.
    Bohr, A., “The Coupling of Nuclear Surface Oscillations to the Motion of Individual Nucleons.”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 26, No. 14, 1–40, 1952.Google Scholar
  145. 145.
    Bohr, A. and Mottelson, B. R., “Beta-Decay and the Shell Model, and the Influence of Collective Motion on Nuclear Transitions”, Physica 18, 1066–1078, December 1952.Google Scholar
  146. 146.
    Goldhaber, M. and Sunyar, A. W., “Classification of Nuclear Isomers”, Physical Review 83, 906–918, September 1, 1951.Google Scholar
  147. 147.
    Scharff-Goldhaber, G., “Excited States of Even-Even Nuclei”, Physica 18, 1105–1109, December 1952.Google Scholar
  148. 148.
    Asaro, F. and Perlman, I., “First Excited States of Even-Even Nuclides in the Heavy Element Region”, Physical Review 87, 393–394, July 1952.Google Scholar
  149. 149.
    Curie, I., “Étude du rayonnement γ de l’ionium”, Journal de Physique et Le Radium 10, 381–386, December 1949.Google Scholar
  150. 150.
    Rasetti, F. and Booth, E. C., “Gamma-Ray Spectrum of Ionium (Th230)”, Physical Review 91, 315–318, July 1953.Google Scholar
  151. 151.
    Goldhaber, M. and Hill, R. D., “Nuclear Isomerism and Shell Structure”, Reviews of Modern Physics 24, 179–239, July 1952.Google Scholar
  152. 152.
    Scharff-Goldhaber, G., “Excited States of Even-Even Nuclei”, Physical Review 90, 587–602, May 1953.Google Scholar
  153. 153.
    Bohr, A. and Mottelson, B. R., “Interpretation of Isomeric Transitions of Electric Quadrupole Type”, Physical Review 89, 316–317 (L), January 1953.Google Scholar
  154. 154.
    Bohr, A. and Mottelson, B. R., “Rotational States in Even-Even Nuclei”, Physical Review 90, 717–719, May 1953.Google Scholar
  155. 155.
    Bohr, A. and Mottelson, B. R., “Collective and Invidual Aspects of Nuclear Structure”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 27, No. 16, 1–175, 1953.Google Scholar
  156. 156.
    Nilsson, S. G., “Binding States of Individual Nucleons in Strongly Deformed Nuclei”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 29, No. 16, 1–68, 1955.MathSciNetGoogle Scholar
  157. 157.
    Weisskopf, V. F., “Excitation of Nuclei by Bombardment with Charged Particles”, Physical Review 53, 1018 (L), June 1938.Google Scholar
  158. 158.
    Ter-Martirosyan, K. A., “Excitation of Nuclei by the Coulomb field of Charged Particles”, Zhurnal Eksperimental’ noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics) 22, 284–296, 1952. English translation in Kurt Alder and Aage Winther, eds., Coulomb excitation, a collection of reprints, pp. 15–19.Google Scholar
  159. 159.
    Alder, K. and Winther, A., “The Theory of Coulomb Excitation of Nuclei”, Physical Review 91, 1578–1579 (L), September 1953.Google Scholar
  160. 160.
    Huus, T. and Zupanči č, Č., “Excitation of Nuclear Rotational States by the Electric Field of Impinging Particles”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 28, No. 1, 1–19, 1953.Google Scholar
  161. 161.
    Alder, K., Bohr, A., Huus, T., Mottelson, B. R. and Winther, A., “Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions”, Reviews of Modern Physics 28, 432–542, October 1956.Google Scholar
  162. 162.
    Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 16, 1–32, 1944.Google Scholar
  163. 163.
    Seaborg, G. T. and Perlman, I., “Table of Isotopes”, Reviews of Modern Physics 20, 585–667, 1948.Google Scholar
  164. 164.
    Hollander, J. M., Perlman, I. and Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 25, 469–651, 1953.Google Scholar
  165. 165.
    Strominger, D., Hollander, J. M. and Seaborg, G. T., “Table of Isotopes”, Reviews of Modern Physics 30, 585–904, 1958.Google Scholar
  166. 166.
    Hoisington, L. E., Share, S. S. and Breit, G., “Effects of Shape of Potential Energy Wells Detectable by Experiments on Proton-Proton Scattering”, Physical Review 56, 884–890, November 1939.Google Scholar
  167. 167.
    Yukawa, H. and Sakata, S., “Mass and Mean Life-Time of the Meson”, Nature 143, 761–762, May 6, 1939.Google Scholar
  168. 168.
    Nordheim, L. W., “Lifetime of the Yukawa Particle”, Physical Review 55, 506 (L), March 1939.Google Scholar
  169. 169.
    Bethe, H. A. and Nordheim, L. W., “On the Theory of Meson Decay”, Physical Review 57, 998–1006, June 1940.Google Scholar
  170. 170.
    Tomonaga, S.-I. and Araki, G., “Effect of the Nuclear Coulomb Field on the Capture of Slow Mesons”, Physical Review 58, 90–91, July 1940.Google Scholar
  171. 171.
    Conversi, M., Pancini, E. and Piccioni, O., “On the Disintegration of Negative Mesons”, Physical Review 71, 209–210 (L), February 1947.Google Scholar
  172. 172.
    Sakata, S. and Inoue, T., “On the Correlations between Mesons and Yukawa Particles”, Progress of Theoretical Physics. 1, 143–149, November-December 1946.Google Scholar
  173. 173.
    Tanikawa, Y., “On the Cosmic-Ray Meson and the Nuclear Meson”, Progress of Theoretical Physics 2, 220–221, November–December 1947.Google Scholar
  174. 174.
    Marshak, R. E. and Bethe, H. A., “On the Two-Meson Hypothesis”, Physical Review 72, 506–509, September 1947.Google Scholar
  175. 175.
    Lattes, C. M. G., Muirhead, H., Occhialini, G. P. S. and Powell, C. F., “Processes Involving Charged Mesons”, Nature 159, 694–697, May 24, 1947.Google Scholar
  176. 176.
    Lattes, C. M. G., Occhialini, G. P. S. and Powell, C. F., “Observation of the Tracks of Slow Mesons in Photographic Emulsions”, Nature 160, I : pp. 453–456, October 4; II : pp. 486–492, October 11, 1947.Google Scholar
  177. 177.
    Gardner, E. and Lattes, C. M. G., “Production of Mesons by the 184-Inch Berkeley Cyclotron”, Science 107, 270–271, March 12, 1948.Google Scholar
  178. 178.
    Richardson, J. R., “The Lifetime of the Heavy Meson”, Physical Review 74, 1720–1721, December 1948.Google Scholar
  179. 179.
    Steinberger, J., Panofsky, W. K. and Steller, J., “Evidence for the Production of Neutral Mesons by Photons”, Physical Review 78, 802–805, June 15, 1950.Google Scholar
  180. 180.
    Kemmer, N., “The Charge-Dependence of Nuclear Forces”, Proceedings of the Cambridge Philosophical Society 34, 354–364, session of May 16, 1938.Google Scholar
  181. 181.
    Kemmer, N., “Quantum theory of Einstein-Bose particles and nuclear interactions”, Proceedings of the Royal Society, London A166, 127–153, 1938.Google Scholar
  182. 182.
    Frölich, H., Heitler, W. and Kemmer, N., “On the nuclear forces and the magnetic moment of the neutron and the proton”, Proceedings of the Royal Society, London A166, 154–177, 1938.Google Scholar
  183. 183.
    Panofsky, W. K., Aamodt, R. L. and Hadley, J., “The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium”, Physical Review 81, 565–574, February 1951.Google Scholar
  184. 184.
    Peierls, R., “The Development of our Ideas on the Nuclear Forces”, in Nuclear Physics in retrospect, edited by Stuewer, R. H., pp. 183–211, University of Minnesota Press, 1979.Google Scholar
  185. 185.
    Chamberlain, O. and Wiegand, C., “Proton-Proton Scattering at 340 Mev”, Physical Review 79, 81–85, July 1950.Google Scholar
  186. 186.
    Jastrow, R., “On the Nucleon-Nucleon Interaction”, Physical Review 81, 165–170, January 1951.Google Scholar
  187. 187.
    Blatt, J. M. and Weisskopf, V. F., Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952, p. 777.zbMATHGoogle Scholar
  188. 188.
    Johnson, M. H. and Teller, E., “Classical Field Theory of Nuclear Forces”, Physical Review 98, 783–787, May 1955.Google Scholar
  189. 189.
    Brueckner, K. A., Eden, R. J. and Francis, N. C., “High-Energy Reactions and the Evidence for Correlations in the Nuclear Ground-State Wave Function”, Physical Review 98, 1445–1455, June 1955.Google Scholar
  190. 190.
    Brueckner, K. A., Levinson, C. A. and Mahmoud, H. M., “Two-Body Forces and Nuclear Saturation. I. Central Forces”, Physical Review 95, 217–228, July 1954.Google Scholar
  191. 191.
    Brueckner, K. A., Eden, R. J. and Francis, N. C., “Nuclear Energy Level Fine Structure and Configuration Mixing”, Physical Review 99, 76–87, July 1955.Google Scholar
  192. 192.
    Brueckner, K. A., Eden, R. J. and Francis, N. C., “Theory of Neutron Reactions with Nuclei at Low Energy”, Physical Review 100, 891–900, November 1955.Google Scholar
  193. 193.
    Bethe, H. A., “Nuclear Many-Body Problem”, Physical Review 103, 1353–1390, September 1956.Google Scholar
  194. 194.
    Goldstone, J., “Derivation of the Brueckner many-body theory”, Proceedings of the Royal Society, London A239, 267–279, February 26, 1957.Google Scholar
  195. 195.
    Feynman, R. P., “The Theory of Positrons”, Physical Review 76, 749–759, September 15, 1949.Google Scholar
  196. 196.
    Amsterdam Nuclear Reactions Conference, Physica 22, 941–1123, 1956.Google Scholar
  197. 197.
    Lipkin, H. J. (editor), Proceedings of the Rehovoth Conference on Nuclear Structure held at the Weizmann Institute of Science, Rehovoth, september 8–14, 1957, North Holland, Amsterdam, 1958.Google Scholar
  198. 198.
    Gugenberger, P. (editor), Comptes rendus du congrès international de physique nucléaire, Interactions nucléaires aux basses énergies et structure des noyaux, Paris, 2–7 juillet 1958, Dunod, Paris, 1959.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bernard Fernandez
    • 1
  1. 1.VanvesFrance

Personalised recommendations