Advertisement

Influence of Blood Rheology and Outflow Boundary Conditions in Numerical Simulations of Cerebral Aneurysms

  • Susana Ramalho
  • Alexandra B. Moura
  • Alberto M. Gambaruto
  • Adélia SequeiraEmail author
Chapter
Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)

Abstract

Disease in human physiology is often related to cardiovascular mechanics. Impressively, strokes are one of the leading causes of death in developed countries, and they might occur as a result of an aneurysm rupture, which is a sudden event in the majority of cases. On the basis of several autopsy and angiography series, it is estimated that 0.4–6 % of the general population harbors one or more intracranial aneurysms, and on average the incidence of an aneurysmal rupture is of 10 per 100,000 population per year, with tendency to increase in patients with multiple aneurysms [14, 20].

Notes

Acknowledgements

We greatly acknowledge Prof. Jorge Campos and his team from the Faculty of Medicine of the University of Lisbon, for providing us the in vivo rotational CTA scans of a specific patient. This work has been partially funded by FCT (Fundação para a Ciência e a Tecnologia, Portugal) through grants SFRH/BPD/34273/2006 and SFRH/BPD/44478/2008 and through the project UT Austin/CA/0047/2008.

References

  1. 1.
    Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)Google Scholar
  2. 2.
    Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008)CrossRefGoogle Scholar
  3. 3.
    Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Veneziani, A., Tuveri, M., Dubini, G.: Influence of boundary conditions on fluid dynamics in models of the cardiovascular system: A multiscale approach applied to the carotid bifurcation. Comput. Meth. Biomech. Biomed. Eng. 12(1) (2009)Google Scholar
  4. 4.
    Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans.Med. Imag. 24(4), 457–467 (2005)CrossRefGoogle Scholar
  5. 5.
    Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N.: Flow–area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29, 585 (2008)CrossRefGoogle Scholar
  6. 6.
    Formaggia, L., Veneziani, A.: Reduced and multiscale models for the human cardiovascular system. Lecture Notes VKI Lecture Series 7 (2003)Google Scholar
  7. 7.
    Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. Math. Model. Numer. Anal. 41(4), 743–769 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gambaruto, A.M., Peiró, J., Doorly, D.J., Radaelli, A.G.: Reconstruction of shape and its effect on flow in arterial conduits. Int. J. Numer. Meth. Fluid. 57(5), 495–517 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gambaruto, A.M., Janela, J., Moura, A., Sequeira, A.: Sensitivity of hemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology. Math. Biosci. Eng. 8(2), 409–423 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Goljan, E.F.: Rapid Review Pathology. Mosby/Elsevier, Philadelphia (2010)Google Scholar
  11. 11.
    Hassan, T., Timofeev, E.V., Saito, T., Shimizu, H., Ezura, M., Matsumoto, Y., Takayama, K., Tominaga, T., Takahashi, A.: A proposed parent vessel geometry based categorization of saccular intracranial aneurysms: Computational flow dynamics analysis of the risk factors for lesion rupture. J. Neurosurg. Pediatr. 103(4) (2005)Google Scholar
  12. 12.
    Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluid. 22(5), 325–352 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Janela, J., Moura, A., Sequeira, A.: Absorbing boundary conditions for a 3D non-Newtonian fluid–structure interaction model for blood flow in arteries. Int. J. Eng. Sci. 48(11), 1332–1349 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Krex, D., Schackert, H.K., Schackert, G.: Genesis of cerebral aneurysms–an update. Acta Neurochir. 143(5), 429–449 (2001)CrossRefGoogle Scholar
  15. 15.
    Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moura, A.: The geometrical multiscale modelling of the cardiovascular system: Coupling 3D and 1D FSI models. PhD thesis, Politecnico di Milano (2007)Google Scholar
  17. 17.
    Nunes, D., Ramalho, S.: 1D hyperbolic models for blood flow in arteries. Internal Report, CEMAT (2009)Google Scholar
  18. 18.
    Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)zbMATHGoogle Scholar
  19. 19.
    Ramalho, S., Moura, A., Gambaruto, A.M., Sequeira, A.: Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. Int. J. Numer. Meth. Biomed. Eng. 28(6-7), 697–713 (2012)CrossRefGoogle Scholar
  20. 20.
    Rinkel, G.J.E., Djibuti, M., Algra, A., Van Gijn, J.: Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 29(1), 251 (1998)CrossRefGoogle Scholar
  21. 21.
    Robertson, A.M.: Review of Relevant Continuum Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation, pp. 1–62. Birkhäuser, Boston (2008)Google Scholar
  22. 22.
    Robertson, A.M., Sequeira, A., Kameneva, M.V.: Hemorheology. In Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S., editors, Hemodynamical Flows: Modeling, Analysis and Simulation, pages 63–120. Birkhäuser, Boston (2008)Google Scholar
  23. 23.
    Sazonov, I., Yeo, S.Y., Bevan, R.L.T., Xie, X., van Loon, R., Nithiarasu, P.: Modelling pipeline for subject-specific arterial blood flow - a review. Int. J. Numer. Meth. Biomed. Eng. (2011) DOI: 10.1002/cnm.1446.Google Scholar
  24. 24.
    Sequeira, A., Janela, J.: An overview of some mathematical models of blood rheology. In: Pereira, M.S. (ed.) A Portrait of Research at the Technical University of Lisbon, pp. 65–87. Springer, Berlin (2007)CrossRefGoogle Scholar
  25. 25.
    Sequeira, A., Moura, A., Janela, J.: Towards a geometrical multiscale approach to non-Newtonian blood flow simulations. In: Sequeira, A., Rannacher, R. (eds.) Advances in Mathematical Fluid Mechanics - dedicated to G.P. Galdi on his 60th birthday, chapter 295–309. Springer, Berlin (2009)Google Scholar
  26. 26.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imag. 13(1), 146–165 (2004)CrossRefGoogle Scholar
  27. 27.
    Tu, C., Deville, M.: Pulsatile flow of non-Newtonian fluids through arterial stenosis. J. Biomech. 29(7), 899–908 (1996)CrossRefGoogle Scholar
  28. 28.
    Wulandana, R., Robertson, A.M.: An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 4(4), 235–248 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susana Ramalho
    • 1
  • Alexandra B. Moura
    • 1
  • Alberto M. Gambaruto
    • 1
  • Adélia Sequeira
    • 1
    Email author
  1. 1.Department of Mathematics and CEMAT, Instituto Superior TécnicoTechnical University of LisbonLisboaPortugal

Personalised recommendations