Complement-Targeted Therapeutics in Periodontitis

  • George HajishengallisEmail author
  • John D. Lambris
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 735)


Periodontitis is a prevalent oral chronic inflammatory disease which, in severe forms, may exert a major impact on systemic health. Clinical and histological observations, as well as experimental animal studies, suggest involvement of the complement system in periodontitis. However, the precise roles of the various complement components and pathways in periodontitis have only recently started to be elucidated. In this chapter, we review recent progress in the field and discuss the potential of complement-targeted therapeutics in the treatment of periodontitis.


Periodontal Tissue Complement Pathway Gingival Crevicular Fluid Lectin Pathway Periodontitis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armitage GC (2002) Classifying periodontal diseases – a long-standing dilemma. Periodontol 2000 30:9–23CrossRefGoogle Scholar
  2. Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C, Gerard NP (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285:7633–7644CrossRefGoogle Scholar
  3. Beikler T, Peters U, Prior K, Eisenacher M, Flemmig TF (2008) Gene expression in periodontal tissues following treatment. BMC Med Genomics 1:30CrossRefGoogle Scholar
  4. Brown LJ, Johns BA, Wall TP (2002) The economics of periodontal diseases. Periodontol 2000 29:223–234CrossRefGoogle Scholar
  5. Brown JH, Whitham TG, Morgan Ernest SK, Gehring CA (2001) Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643–650CrossRefGoogle Scholar
  6. Burns E, Bachrach G, Shapira L, Nussbaum G (2006) Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol 177:8296–8300CrossRefGoogle Scholar
  7. Chai L, Song Y-Q, Zee K-Y, Leung WK (2010) Single nucleotide polymorphisms of complement component 5 and periodontitis. J Periodont Res 45:301–308CrossRefGoogle Scholar
  8. Chang M, Rowland CM, Garcia VE, Schrodi SJ, Catanese JJ, van der Helm-van Mil AH, Ardlie KG, Amos CI, Criswell LA, Kastner DL, Gregersen PK, Kurreeman FA, Toes RE, Huizinga TW, Seldin MF, Begovich AB (2008) A large-scale rheumatoid arthritis genetic study identifies association at chromosome 9q33.2. PLoS Genet 4:e1000107CrossRefGoogle Scholar
  9. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, Goodlett DR, Ernst RK, Darveau RP (2009) Human toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4′-phosphatase activities. Cell Microbiol 11:1587–1599CrossRefGoogle Scholar
  10. Courts FJ, Boackle RJ, Fudenberg HH, Silverman MS (1977) Detection of functional complement components in gingival crevicular fluid from humans with periodontal diseases. J Dent Res 56:327–331CrossRefGoogle Scholar
  11. de Haas CJC, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJB, Heezius ECJM, Poppelier MJJG, Van Kessel KPM, van Strijp JAG (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695CrossRefGoogle Scholar
  12. de Pablo P, Chapple IL, Buckley CD, Dietrich T (2009) Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol 5:218–224CrossRefGoogle Scholar
  13. Delima AJ, Van Dyke TE (2003) Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000 31:55–76CrossRefGoogle Scholar
  14. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50CrossRefGoogle Scholar
  15. Ebenman B, Jonsson T (2005) Using community viability analysis to identify fragile systems and keystone species. Trends Ecol Evol 20:568–575CrossRefGoogle Scholar
  16. Gaffen SL, Hajishengallis G (2008) A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res 87:817–828CrossRefGoogle Scholar
  17. Genco RJ, Van Dyke TE (2010) Prevention: reducing the risk of CVD in patients with periodontitis. Nat Rev Cardiol 7:479–480CrossRefGoogle Scholar
  18. Gibson FC III, Yumoto H, Takahashi Y, Chou HH, Genco CA (2006) Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. J Dent Res 85:106–121CrossRefGoogle Scholar
  19. Graves D (2008) Cytokines that promote periodontal tissue destruction. J Periodontol 79:1585–1591CrossRefGoogle Scholar
  20. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852CrossRefGoogle Scholar
  21. Hajishengallis G (2009a) Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes Infect 11:637–645CrossRefGoogle Scholar
  22. Hajishengallis G (2009b) Toll gates to periodontal host modulation and vaccine therapy. Periodontol 2000 51:181–207CrossRefGoogle Scholar
  23. Hajishengallis G (2010) Complement and periodontitis. Biochem Pharmacol 80:1992–2001CrossRefGoogle Scholar
  24. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163CrossRefGoogle Scholar
  25. Hajishengallis G, Lambris JD (2011) Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 11:187–200CrossRefGoogle Scholar
  26. Hajishengallis G, Shakhatreh M-AK, Wang M, Liang S (2007) Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J Immunol 179:2359–2367CrossRefGoogle Scholar
  27. Hajishengallis G, Wang M, Liang S, Triantafilou M, Triantafilou K (2008) Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci USA 105:13532–13537CrossRefGoogle Scholar
  28. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA (2011) Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10:497–506CrossRefGoogle Scholar
  29. Harboe M, Mollnes TE (2008) The alternative complement pathway revisited. J Cell Mol Med 12:1074–1084CrossRefGoogle Scholar
  30. Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, Schirin-Sokhan R, Wilkens G, Geier A, Lorenzen J, Kohl J, Gressner AM, Matern S, Lammert F (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37:835–843CrossRefGoogle Scholar
  31. Holers VM (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223:300–316CrossRefGoogle Scholar
  32. Kanazawa N, Furukawa F (2007) Autoinflammatory syndromes with a dermatological perspective. J Dermatol 34:601–618CrossRefGoogle Scholar
  33. Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL (2005) Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 4:273–279CrossRefGoogle Scholar
  34. Kebschull M, Demmer RT, Papapanou PN (2010) “Gum bug leave my heart alone” – epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res 89:879–902CrossRefGoogle Scholar
  35. Kimura Y, Miwa T, Zhou L, Song W-C (2008) Activator-specific requirement of properdin in the initiation and amplification of the alternative pathway complement. Blood 111:732–740CrossRefGoogle Scholar
  36. Kinane DF, Peterson M, Stathopoulou PG (2006) Environmental and other modifying factors of the periodontal diseases. Periodontol 2000 40:107–119CrossRefGoogle Scholar
  37. Kitsis E, Weissmann G (1991) The role of the neutrophil in rheumatoid arthritis. Clin Orthop Relat Res 265:63–72Google Scholar
  38. Krauss JL, Potempa J, Lambris JD, Hajishengallis G (2010) Complementary tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol 2000 52:141–162CrossRefGoogle Scholar
  39. Kumpf O, Schumann RR (2008) Genetic influence on bloodstream infections and sepsis. Int J Antimicrob Agents 32(Suppl 1):S44–S50CrossRefGoogle Scholar
  40. Lange D, Schroeder HE (1971) Cytochemistry and ultrastructure of gingival sulcus cells. Helv Odontol Acta 15:65–86Google Scholar
  41. Liang S, Krauss JL, Domon H, McIntosh ML, Hosur KB, Qu H, Li F, Tzekou A, Lambris JD, Hajishengallis G (2011) The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J Immunol 186:869–877CrossRefGoogle Scholar
  42. Newman HN (1980) Neutrophils and IgG at the host-plaque interface on children’s teeth. J Periodontol 51:642–651CrossRefGoogle Scholar
  43. Niekrash CE, Patters MR (1986) Assessment of complement cleavage in gingival fluid in humans with and without periodontal disease. J Periodont Res 21:233–242CrossRefGoogle Scholar
  44. Nikolopoulou-Papaconstantinou AA, Johannessen AC, Kristoffersen T (1987) Deposits of immunoglobulins, complement, and immune complexes in inflamed human gingiva. Acta Odontol Scand 45:187–193CrossRefGoogle Scholar
  45. Nussbaum G, Shapira L (2011) How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol 38:49–59CrossRefGoogle Scholar
  46. Okroj M, Heinegard D, Holmdahl R, Blom AM (2007) Rheumatoid arthritis and the complement system. Ann Med 39:517–530CrossRefGoogle Scholar
  47. Okuda K, Kimizuka R, Abe S, Kato T, Ishihara K (2005) Involvement of periodontopathic anaerobes in aspiration pneumonia. J Periodontol 76:2154–2160CrossRefGoogle Scholar
  48. Patters MR, Niekrash CE, Lang NP (1989) Assessment of complement cleavage in gingival fluid during experimental gingivitis in man. J Clin Periodontol 16:33–37CrossRefGoogle Scholar
  49. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820CrossRefGoogle Scholar
  50. Popadiak K, Potempa J, Riesbeck K, Blom AM (2007) Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 178:7242–7250CrossRefGoogle Scholar
  51. Potempa J, Pike RN (2009) Corruption of innate immunity by bacterial proteases. J Innate Immun 1:70–87CrossRefGoogle Scholar
  52. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  53. Rautemaa R, Meri S (1996) Protection of gingival epithelium against complement-mediated damage by strong expression of the membrane attack complex inhibitor protectin (CD59). J Dent Res 75:568–574CrossRefGoogle Scholar
  54. Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275CrossRefGoogle Scholar
  55. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797CrossRefGoogle Scholar
  56. Roberts A, Shah M, Chapple IL (2003) C-1 esterase inhibitor dysfunction localised to the periodontal tissues: clues to the role of stress in the pathogenesis of chronic periodontitis? J Clin Periodontol 30:271–277CrossRefGoogle Scholar
  57. Scannapieco FA, Dasanayake AP, Chhun N (2010) Does periodontal therapy reduce the risk for systemic diseases? Dent Clin North Am 54:163–181CrossRefGoogle Scholar
  58. Schenkein HA, Genco RJ (1977) Gingival fluid and serum in periodontal diseases. II. Evidence for cleavage of complement components C3, C3 proactivator (factor B) and C4 in gingival fluid. J Periodontol 48:778–784CrossRefGoogle Scholar
  59. Schroeder HE, Listgarten MA (1997) The gingival tissues: the architecture of periodontal protection. Periodontol 2000 13:91–120CrossRefGoogle Scholar
  60. Seppanen M, Lokki ML, Notkola IL, Mattila K, Valtonen V, Nieminen A, Vesanen M, Asikainen S, Meri S (2007) Complement and c4 null alleles in severe chronic adult periodontitis. Scand J Immunol 65:176–181CrossRefGoogle Scholar
  61. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361CrossRefGoogle Scholar
  62. Simpson JL, Phipps S, Gibson PG (2009) Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. Pharmacol Ther 124:86–95CrossRefGoogle Scholar
  63. Slaney JM, Curtis MA (2008) Mechanisms of evasion of complement by Porphyromonas gingivalis. Front Biosci 13:188–196CrossRefGoogle Scholar
  64. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144CrossRefGoogle Scholar
  65. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179:2600–2608CrossRefGoogle Scholar
  66. Tonetti MS, D’Aiuto F, Nibali L, Donald A, Storry C, Parkar M, Suvan J, Hingorani AD, Vallance P, Deanfield J (2007) Treatment of periodontitis and endothelial function. N Engl J Med 356:911–920CrossRefGoogle Scholar
  67. Vitkov L, Klappacher M, Hannig M, Krautgartner WD (2010) Neutrophil fate in gingival crevicular fluid. Ultrastruct Pathol 34:25–30CrossRefGoogle Scholar
  68. Wagner E, Frank MM (2010) Therapeutic potential of complement modulation. Nat Rev Drug Discov 9:43–56CrossRefGoogle Scholar
  69. Wang M, Shakhatreh M-AK, James D, Liang S, S-i N, Yoshimura F, Demuth DR, Hajishengallis G (2007) Fimbrial proteins of Porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J Immunol 179:2349–2358CrossRefGoogle Scholar
  70. Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, Triantafilou M, Triantafilou K, Lambris JD, Hajishengallis G (2010) Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal 3:ra11PubMedPubMedCentralGoogle Scholar
  71. Ward PA (2009) Functions of C5a receptors. J Mol Med 87:375–378CrossRefGoogle Scholar
  72. Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE (1992) Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267:18902–18907PubMedGoogle Scholar
  73. Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G, Lambris JD, Wetsel RA, Miwa T, Song WC (2007) Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110:228–236CrossRefGoogle Scholar
  74. Zhang X, Schmudde I, Laumonnier Y, Pandey MK, Clark JR, Konig P, Gerard NP, Gerard C, Wills-Karp M, Kohl J (2010) A critical role for C5L2 in the pathogenesis of experimental allergic asthma. J Immunol 185:6741–6752CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Microbiology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory Medicine, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations