Paroxysmal Nocturnal Hemoglobinuria and the Complement System: Recent Insights and Novel Anticomplement Strategies

  • Antonio M. RisitanoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 735)


Paroxysmal nocturnal hemoglobinuria (PNH) is a hematological disorder characterized by complement-mediated hemolytic anemia, thrombophilia, and bone marrow failure. PNH is due to a somatic, acquired mutation in the X-linked phosphatidylinositol glycan class A (PIG-A) gene, which impairs the membrane expression on affected blood cells of a number of proteins, including the complement regulators CD55 and CD59. The most evident clinical manifestations of PNH arise from dysregulated complement activation on blood cells; in fact, the hallmark of PNH is chronic, complement-mediated, intravascular hemolysis, which results in anemia, hemoglobinuria, fatigue, and other hemolysis-related disabling symptoms. In addition, the peculiar thromboembolic risk typical of PNH patients is thought as secondary to the complement-mediated hemolysis itself and/or to a complement-mediated activation of platelets. Thus, as a complement-mediated disease, PNH was an appropriate medical condition to develop and to investigate therapeutical complement inhibitors. Indeed, the first complement inhibitor eculizumab, a humanized anti-C5 monoclonal antibody, has been proven safe and effective for the treatment of PNH patients. Chronic treatment with eculizumab results in sustained control of intravascular hemolysis, leading to hemoglobin stabilization and transfusion independence in more than half of the patients. However, recent observations have demonstrated that residual anemia may persist in some patients regardless of sustained fluid-phase terminal complement inhibition. Indeed, persistent dysregulated activation of the early phases of the complement cascade on PNH erythrocytes may lead to progressive C3 deposition on affected cells, which become susceptible to subsequent extravascular hemolysis through the reticuloendothelial system. These findings have renewed the interest for the development of novel complement inhibitors which aim to modulate early phases of complement activation, more specifically at the level of C3 activation. As proof of principle of this concept, an anti-C3 monoclonal antibody has been proven effective in vitro to prevent hemolysis of PNH erythrocytes. More intriguingly, a human fusion protein consisting of the iC3b/C3d-binding region of complement receptor 2 and of the inhibitory domain of the CAP regulator factor H has been recently shown effective in inhibiting, in vitro, both intravascular hemolysis of and surface C3-deposition on PNH erythrocytes, and is now under investigation in phase 1 clinical trials.


Paroxysmal Nocturnal Hemoglobinuria Membrane Attack Complex Bone Marrow Failure Complement Cascade Intravascular Hemolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Araten DJ, Nafa K, Pakdeesuwan K et al (1999) Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci USA 96:5209–5214CrossRefGoogle Scholar
  2. Araten DJ, Bessler M, McKenzie S et al (2002) Dynamics of hematopoiesis in paroxysmal nocturnal hemoglobinuria (PNH): no evidence for intrinsic growth advantage of PNH clones. Leukemia 16:2243–2248CrossRefGoogle Scholar
  3. Armstrong C, Schubert J, Ueda E et al (1992) Affected paroxysmal nocturnal hemoglobinuria T lymphocytes harbor a common defect in assembly of N-acetyl-D-glucosamine inositol phospholipid corresponding to that in class A Thy-1-urine lymphoma mutants. J Biol Chem 267:25347–25351Google Scholar
  4. Audebert HJ, Planck J, Eisenburg M et al (2005) Cerebral ischemic infarction in paroxysmal nocturnal hemoglobinuria report of 2 cases and updated review of 7 previously published patients. J Neurol 252:1379–1386CrossRefGoogle Scholar
  5. Brodsky RA, Young NS, Antonioli E et al (2008) Multicenter phase III study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood 114:1840–1847CrossRefGoogle Scholar
  6. Brodsky RA (2009) How I treat paroxysmal nocturnal hemoglobinuria. Blood 113:6522–6527CrossRefGoogle Scholar
  7. Chen G, Zeng W, Maciejewski JP et al (2005) Differential gene expression in hematopoietic progenitors from paroxysmal nocturnal hemoglobinuria patients reveals an apoptosis/immune response in ‘normal’ phenotype cells. Leukemia 19:862–868CrossRefGoogle Scholar
  8. Crosby WH (1951) Paroxysmal nocturnal hemoglobinuria; a classic description by Paul Strübling in 1882, and a bibliography of the disease. Blood 63:270–284Google Scholar
  9. Dameshek W (1967) Riddle: what do aplastic anemia, paroxysmal nocturnal hemoglobinuria (PNH) and “hypoplastic” leukemia have in common? Blood 30:251–254PubMedGoogle Scholar
  10. de Latour RP, Mary JY, Salanoubat C et al (2008) French Association of Young Hematologists Paroxysmal nocturnal hemoglobinuria: natural history of disease subcategories. Blood 112:3099–3106CrossRefGoogle Scholar
  11. Dunn DE, Liu JM, Young NS (2000) Paroxysmal nocturnal hemoglobinuria. In: Young NS (ed) Bone marrow failure syndromes. W.B. Saunders Company, Philadelphia, pp 99–121Google Scholar
  12. Endo M, Ware RE, Vreeke TM et al (1996) Molecular basis of the heterogeneity of expression of glycosyl phosphatidylinositol anchored proteins in paroxysmal nocturnal hemoglobinuria. Blood 87:2546–2557PubMedGoogle Scholar
  13. Ferreira VP, Pangburn MK (2007) Factor H mediated cell surface protection from complement is critical for the survival of PNH erythrocytes. Blood 15(110):1290–1292Google Scholar
  14. Gargiulo L, Lastraioli S, Cerruti G et al (2007) Highly homologous T-cell receptor beta sequences support a common target for autoreactive T cells in most patients with paroxysmal nocturnal hemoglobinuria. Blood 109:5036–5042CrossRefGoogle Scholar
  15. Gralnick HR, Vail M, McKeown LP et al (1995) Activated platelets in paroxysmal nocturnal haemoglobinuria. Br J Haematol 91:697–702CrossRefGoogle Scholar
  16. Grünewald M, Siegemund A, Grünewald A et al (2003) Plasmatic coagulation and fibrinolytic system alterations in PNH: relation to clone size. Blood Coagul Fibrinolysis 14:685–695CrossRefGoogle Scholar
  17. Hall C, Richards S, Hillmen P (2003) Primary prophylaxis with warfarin prevents thrombosis in paroxysmal nocturnal hemoglobinuria (PNH). Blood 102:3587–3591CrossRefGoogle Scholar
  18. Ham TH, Dingle JH (1939) Studies on the destruction of red blood cells. II. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria: certain immunological aspects of the hemolytic mechanism with special reference to serum complement. J Clin Invest 18:657–672CrossRefPubMedPubMedCentralGoogle Scholar
  19. Helley D, de Latour RP, Porcher R et al (2010) French Society of Hematology. Evaluation of hemostasis and endothelial function in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab. Haematologica 95:574–581CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hill A, Richards SJ, Rother RP et al (2007) Erythropoietin treatment during complement inhibition with eculizumab in a patient with paroxysmal nocturnal hemoglobinuria. Haematologica 92:e31, ECR14CrossRefGoogle Scholar
  21. Hill A, Rother RP, Arnold L et al (2010) Eculizumab prevents intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and unmasks low-level extravascular hemolysis occurring through C3 opsonization. Haematologica 95:567–573CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hillmen P, Lewis SM, Bessler M et al (1995) Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 333:1253–1258CrossRefGoogle Scholar
  23. Hillmen P, Hall C, Marsh JC et al (2004) Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 350:552–559CrossRefGoogle Scholar
  24. Hillmen P, Young NS, Schubert J et al (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355:1233–1243CrossRefGoogle Scholar
  25. Hillmen P, Muus P, Duhrsen U et al (2007) Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 110:4123–4128CrossRefGoogle Scholar
  26. Hirose S, Ravi L, Prince GM et al (1992) Synthesis of mannosylglucosaminylinositol phospholipids in normal but not paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci USA 89:6025–6029CrossRefGoogle Scholar
  27. Hoekstra J, Leebeek FW, Plessier A et al (2009) Paroxysmal nocturnal hemoglobinuria in Budd-Chiari syndrome: findings from a cohort study. J Hepatol 51:696–706CrossRefGoogle Scholar
  28. Holers VM (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223:300–316CrossRefGoogle Scholar
  29. Holguin MH, Fredrick LR, Bernshaw NJ et al (1989a) Isolation and characterization of a membrane protein from ­normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 84:7–17CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holguin MH, Wilcox LA, Bernshaw NJ et al (1989b) Relationship between the membrane inhibitor of reactive lysis and the erythrocyte phenotypes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 84:1387–1394CrossRefPubMedPubMedCentralGoogle Scholar
  31. Holguin MH, Martin CB, Bernshaw NJ et al (1992) Analysis of the effects of activation of the alternative pathway of complement on erythrocytes with an isolated deficiency of decay accelerating factor. J Immunol 148:498–502PubMedPubMedCentralGoogle Scholar
  32. Hugel B, Socié G, Vu T et al (1999) Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 93:3451–3456PubMedGoogle Scholar
  33. Jasinski M, Keller P, Fujiwara Y et al (2001) GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells). Blood 98:2248–2255CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karadimitris A, Manavalan JS, Thaler HT et al (2000) Abnormal T-cell repertoire is consistent with immune process underlying the pathogenesis of paroxysmal nocturnal hemoglobinuria. Blood 96:2613–2620Google Scholar
  35. Kawagoe K, Kitamura D, Okabe M et al (1996) Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87:3600–3606PubMedPubMedCentralGoogle Scholar
  36. Keller P, Payne JL, Tremml G et al (2001) FES-Cre targets phosphatidylinositol glycan class A (PIGA) inactivation to hematopoietic stem cells in the bone marrow. J Exp Med 194:581–589CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kelly RJ, Hill A, Arnold LM et al (2011) Long-term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. Blood 117:6786–6792CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kinoshita T, Medof ME, Silber R et al (1985) Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 162:75–92CrossRefGoogle Scholar
  39. Kunstling TR, Rosse WF (1969) Erythrocyte acetylcholinesterase deficiency in paroxysmal nocturnal hemoglobinuria (PNH). A comparison of the complement-sensitive and insensitive populations. Blood 33:607–616PubMedGoogle Scholar
  40. Lewis SM, Dacie JV (1967) The aplastic anaemia–paroxysmal nocturnal haemoglobinuria syndrome. Br J Haematol 13:236–251CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lindorfer MA, Pawluczkowycz AW, Peek EM et al (2010) A novel approach to preventing the hemolysis of paroxysmal nocturnal hemoglobinuria: both complement-mediated cytolysis and C3 deposition are blocked by a monoclonal antibody specific for the alternative pathway of complement. Blood 115:2283–2291CrossRefPubMedPubMedCentralGoogle Scholar
  42. Louwes H, Vellenga E, de Wolf JT (2001) Abnormal platelet adhesion on abdominal vessels in asymptomatic patients with paroxysmal nocturnal hemoglobinuria. Ann Hematol 80:573–576CrossRefPubMedPubMedCentralGoogle Scholar
  43. Luzzatto L, Notaro R (2003) Paroxysmal nocturnal hemoglobinuria. In: Handin RI, Lux SE, Stossel TP (eds) Blood, principles and practice of hematology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 319–334Google Scholar
  44. Luzzatto L, Bessler M, Rotoli B (1997) Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise? Cell 88:1–4CrossRefPubMedPubMedCentralGoogle Scholar
  45. Luzzatto L, Risitano AM, Notaro R (2010) Paroxysmal nocturnal hemoglobinuria and eculizumab. Haematologica 95:523–526CrossRefPubMedPubMedCentralGoogle Scholar
  46. Maciejewski JP, Sloand EM, Sato T et al (1997) Impaired hematopoiesis in paroxysmal nocturnal hemoglobinuria/aplastic anemia is not associated with a selective proliferative defect in the glycosylphosphatidylinositol-anchored protein-deficient clone. Blood 89:1173–1181PubMedGoogle Scholar
  47. Mahoney JF, Urakaze M, Hall S et al (1992) Defective glycosylphosphatidylinositol anchor synthesis in paroxysmal nocturnal hemoglobinuria granulocytes. Blood 79:1400–1403PubMedPubMedCentralGoogle Scholar
  48. Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28:184–192CrossRefGoogle Scholar
  49. Matis LA, Rollins SA (1995) Complement-specific antibodies: designing novel anti-inflammatories. Nat Med 1:839–842CrossRefPubMedPubMedCentralGoogle Scholar
  50. Medof ME, Gottlieb A, Kinoshita T et al (1987) Relationship between decay accelerating factor deficiency, diminished acetylcholinesterase activity, and defective terminal complement pathway restriction in paroxysmal nocturnal hemoglobinuria erythrocytes. J Clin Invest 80:165–174CrossRefPubMedPubMedCentralGoogle Scholar
  51. Meri S, Morgan BP, Davies A et al (1990) Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71:1–9PubMedPubMedCentralGoogle Scholar
  52. Merry AH, Rawlinson VI, Uchikawa M et al (1989) Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor). Br J Haematol 73:248–253CrossRefGoogle Scholar
  53. Miyata T, Takeda J, Iida Y et al (1993) The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 259:1318–1320CrossRefGoogle Scholar
  54. Mold C, Walter EI, Medof ME (1990) The influence of membrane components on regulation of alternative pathway activation by decay-accelerating factor. J Immunol 145:3836–3841PubMedGoogle Scholar
  55. Motoyama N, Okada N, Yamashina M et al (1992) Paroxysmal nocturnal hemoglobinuria due to hereditary nucleotide deletion in the HRF20 (CD59) gene. Eur J Immunol 22:2669–2673CrossRefGoogle Scholar
  56. Moyo VM, Mukhina GL, Garrett ES et al (2004) Natural history of paroxysmal nocturnal haemoglobinuria using modern diagnostic assays. Br J Haematol 126:133–138CrossRefGoogle Scholar
  57. Müller-Eberhard HJ (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57:321–347CrossRefGoogle Scholar
  58. Nicholson-Weller A (1992) Decay accelerating factor (CD55). Curr Top Microbiol Immunol 178:7–30PubMedGoogle Scholar
  59. Nicholson-Weller A, Burge J, Fearon DT et al (1982) Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 129:184–189Google Scholar
  60. Nicholson-Weller A, March JP, Rosenfeld SI et al (1983) Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci USA 80:5066–5070CrossRefGoogle Scholar
  61. Ninomiya H, Hasegawa Y, Nagasawa T et al (1997) Excess soluble urokinase-type plasminogen activator receptor in the plasma of patients with paroxysmal nocturnal hemoglobinuria inhibits cell-associated fibrinolytic activity. Int J Hematol 65:285–291CrossRefGoogle Scholar
  62. Nishimura J, Inoue N, Wada H et al (1997) A patient with paroxysmal nocturnal hemoglobinuria bearing four independent PIG-A mutant clones. Blood 89:3470–3476PubMedGoogle Scholar
  63. Nishimura J Ji, Hirota T, Kanakura Y et al (2002) Long-term support of hematopoiesis by a single stem cell clone in patients with paroxysmal nocturnal hemoglobinuria. Blood 99:2748–2751CrossRefGoogle Scholar
  64. Nishimura J, Kanakura Y, Ware RE et al (2004) Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine (Baltimore) 83:193–207CrossRefGoogle Scholar
  65. Oni BS, Osunkoya BO, Luzzatto L (1970) Paroxysmal nocturnal hemoglobinuria: evidence for monoclonal origin of abnormal red cells. Blood 36:145–152PubMedGoogle Scholar
  66. Orphanet (2004) Paroxysmal nocturnal hemoglobinuria, 1-12-2004. Ref Type: Internet CommunicationGoogle Scholar
  67. Pangburn MK, Müller-Eberhard HJ (1983) Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann N Y Acad Sci 421:291–298CrossRefGoogle Scholar
  68. Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154:856–867CrossRefGoogle Scholar
  69. Pangburn MK, Schreiber RD, Trombold JS et al (1983a) Paroxysmal nocturnal hemoglobinuria: deficiency in factor H-like functions of the abnormal erythrocytes. J Exp Med 157:1971–1980CrossRefGoogle Scholar
  70. Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1983b) Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 80:5430–5434CrossRefGoogle Scholar
  71. Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1983c) C3b deposition during activation of the alternative complement pathway and the effect of deposition on the activating surface. J Immunol 131:1930–1935PubMedGoogle Scholar
  72. Parker CJ, Ware RE (2003) Paroxysmal nocturnal hemoglobinuria. In: Greer J et al (eds) Wintrobe’s clinical hematology, 11th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1203–1221Google Scholar
  73. Parker CJ, Baker PJ, Rosse WF (1982) Increased enzymatic activity of the alternative pathway convertase when bound to the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 69:337–346CrossRefPubMedPubMedCentralGoogle Scholar
  74. Parker C, Omine M, Richards S, International PNH Interest Group et al (2005) Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 106:3699–3709CrossRefPubMedPubMedCentralGoogle Scholar
  75. Poggi A, Negrini S, Zocchi MR et al (2005) Patients with paroxysmal nocturnal hemoglobinuria have a high frequency of peripheral-blood T cells expressing activating isoforms of inhibiting superfamily receptors. Blood 106: 2399–2408CrossRefGoogle Scholar
  76. Ricklin D, Lambris JD (2008) Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol 632:273–292PubMedPubMedCentralGoogle Scholar
  77. Risitano AM, Maciejewski JP, Green S et al (2004) In vivo dominant immune responses in aplastic anemia patients: molecular tracking of putatively pathogenic T cells by TCRβ-CDR3 sequencing. Lancet 364:353–363CrossRefGoogle Scholar
  78. Risitano AM, Marando L, Seneca E et al (2008) Hemoglobin normalization after splenectomy in a paroxysmal nocturnal hemoglobinuria patient treated by eculizumab. Blood 112:449–451CrossRefGoogle Scholar
  79. Risitano AM, Notaro R, Marando L et al (2009a) Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood 113:4094–4100CrossRefPubMedPubMedCentralGoogle Scholar
  80. Risitano AM, Holers VM, Rotoli B (2009b) TT30, a novel regulator of the complement alternative pathway (CAP), inhibits hemolysis of paroxysmal nocturnal hemoglobinuria (PNH) erythrocytes and prevents upstream C3 binding on their surface in an in vitro model. Blood 114:158aGoogle Scholar
  81. Risitano AM, Notaro R, Luzzatto L et al (2010) Paroxysmal nocturnal hemoglobinuria: hemolysis before and after eculizumab. N Engl J Med 363:2270–2272CrossRefGoogle Scholar
  82. Risitano AM, Notaro R, Pascariello C et al (2012) The complement receptor 2/factor H fusion protein TT30 protects paroxysmal nocturnal hemoglobinuria erythrocytes from complement mediated hemolysis and C3 fragment. May 2012, [Epub ahead of print]CrossRefGoogle Scholar
  83. Rosse WF (1971) The life-span of complement-sensitive and -insensitive red cells in paroxysmal nocturnal hemoglobinuria. Blood 37:556–562PubMedGoogle Scholar
  84. Rosse WF, Dacie JV (1966) Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. I. The sensitivity of PNH red cells to lysis by complement and specific antibody. J Clin Invest 45:736–748CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rother RP, Bell L, Hillmen P et al (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rother RP, Rollins SA, Mojcik CF et al (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rotoli B, Luzzatto L (1989) Paroxysmal nocturnal haemoglobinuria. Baillieres Clin Haematol 2:113–138CrossRefGoogle Scholar
  88. Rotoli B, Robledo R, Luzzatto L (1982) Decreased number of circulating BFU-Es in paroxysmal nocturnal hemoglobinuria. Blood 60:157–159PubMedGoogle Scholar
  89. Schafer A, Wiesmann F, Neubauer S et al (2004) Rapid regulation of platelet activation in vivo by nitric oxide. Circulation 109:1819–1822CrossRefGoogle Scholar
  90. Scheinberg P, Marte M, Nunez O et al (2010) Paroxysmal nocturnal hemoglobinuria clones in severe aplastic anemia patients treated with horse anti-thymocyte globulin plus cyclosporine. Haematologica 95:1075–1080CrossRefPubMedPubMedCentralGoogle Scholar
  91. Selvaraj P, Rosse WF, Silber R et al (1988) The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 333:565–567CrossRefGoogle Scholar
  92. Shin ML, Hänsch G, Hu VW et al (1986) Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol 136:1777–1782PubMedGoogle Scholar
  93. Sica M, Pascariello C, Rondelli T et al (2010) In vitro complement protein 5 (C5) blockade recapitulates the complement protein 3 (C3) binding to GPI-negative erythrocytes observed in paroxysmal nocturnal hemoglobinuria (PNH) patients on eculizumab. Haematologica 95(s2):196(a)Google Scholar
  94. Simak J, Holada K, Risitano AM et al (2004) Elevated counts of circulating endothelial membrane microparticles in paroxysmal nocturnal hemoglobinuria indicate inflammatory status and ongoing stimulation of vascular endothelium. Br J Hematol 125:804–813CrossRefGoogle Scholar
  95. Sloand EM, Pfannes L, Scheinberg P et al (2008) Increased soluble urokinase plasminogen activator receptor (suPAR) is associated with thrombosis and inhibition of plasmin generation in paroxysmal nocturnal hemoglobinuria (PNH) patients. Exp Hematol 36:1616–1624CrossRefPubMedPubMedCentralGoogle Scholar
  96. Socie G, Mary JY, de Gramont A et al (1996) Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet 348:573–577CrossRefGoogle Scholar
  97. Sugimori C, Chuhjo T, Feng X et al (2006) Minor population of CD55-CD59-blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood 107:1308–1314CrossRefGoogle Scholar
  98. Takahashi M, Takeda J, Hirose S et al (1993) Deficient biosynthesis of N-acetylglucosaminyl-phosphatidylinositol, the first intermediate of glycosyl phosphatidylinositol anchor biosynthesis, in cell lines established from patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 177:517–521CrossRefGoogle Scholar
  99. Takeda J, Miyata T, Kawagoe K et al (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711CrossRefGoogle Scholar
  100. Tremml G, Dominguez C, Rosti V et al (1999) Increased sensitivity to complement and a decreased red blood cell life span in mice mosaic for a nonfunctional Piga gene. Blood 94:2945–2954PubMedGoogle Scholar
  101. van Beers EJ, Schaap MC, Berckmans RJ, CURAMA Study Group et al (2009) Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 94:1513–1519CrossRefPubMedPubMedCentralGoogle Scholar
  102. van der Schoot CE, Huizinga TW, van’t Veer-Korthof ET et al (1990) Deficiency of glycosyl-phosphatidylinositol-linked membrane glycoproteins of leukocytes in paroxysmal nocturnal hemoglobinuria, description of a new diagnostic cytofluorometric assay. Blood 76:1853–1859PubMedGoogle Scholar
  103. Whaley K, Ruddy S (1976) Modulation of the alternative complement pathway by β1H globulin. J Exp Med 144:1147–1163CrossRefGoogle Scholar
  104. Wiedmer T, Hall SE, Ortel TL et al (1993) Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 82:1192–1196PubMedGoogle Scholar
  105. Wilcox LA, Ezzell JL, Bernshaw NJ et al (1991) Molecular basis of the enhanced susceptibility of the erythrocytes of paroxysmal nocturnal hemoglobinuria to hemolysis in acidified serum. Blood 78:820–829PubMedGoogle Scholar
  106. Yamashina M, Ueda E, Kinoshita T et al (1990) Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med 323:1184–1189CrossRefGoogle Scholar
  107. Young NS, Maciejewski JP (2000) Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: this little PIG-A goes “Why? Why? Why?”. J Clin Invest 106:637–641CrossRefPubMedPubMedCentralGoogle Scholar
  108. Young NS, Calado RT, Scheinberg P (2006) Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 108:2509–2519CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Hematology, Department of Biochemistry and Medical BiotechnologiesFederico II University of NaplesNaplesItaly

Personalised recommendations