Chronic Pain Following Spinal Cord Injury

  • Radi Masri
  • Asaf Keller
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Most patients with insults to the spinal cord or central nervous system suffer from excruciating, unrelenting, chronic pain that is largely resistant to treatment. This condition affects a large percentage of spinal cord injury patients, and numerous patients with multiple sclerosis, stroke and other conditions. Despite the recent advances in basic science and clinical research the pathophysiological mechanisms of pain following spinal cord injury remain unknown. Here we describe a novel mechanism of loss of inhibition within the thalamus that may predispose for the development of this chronic pain and discuss a potential treatment that may restore inhibition and ameliorate pain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National spinal cord injury statistical center. Https://www.nscisc.uab.edu/Google Scholar
  2. 2.
    Christopher & dana reeve foundation. Paralysis statistics. Http://www.christopherreeve.org/site/c.mtkzkgmwkwg/b.5184189/k.5587/paralysis_facts__figures.htmGoogle Scholar
  3. 3.
    Van Hedel HJ, Dietz V. Rehabilitation of locomotion after spinal cord injury. Restor Neurol Neurosci 2010; 28(1):123–134.PubMedGoogle Scholar
  4. 4.
    Abramson C, Mcbride K, Konnyu K et al. Sexual health outcome measures for individuals with a spinal cord injury: A systematic review. Spinal Cord 2008; 46(5):320–324.PubMedGoogle Scholar
  5. 5.
    Persu C, Caun V, Dragomiriteanu I et al. Urological management of the patient with traumatic spinal cord injury. J Med Life 2009; 2(3):296–302.PubMedGoogle Scholar
  6. 6.
    Yezierski RP. Pain following spinal cord injury: Pathophysiology and central mechanisms. Prog Brain Res 2000; 129:429–449.PubMedGoogle Scholar
  7. 7.
    Merskey H, Bogduk N. Classification of Chronic Pain. Seattle: IASP Press, 1994.Google Scholar
  8. 8.
    Holmes G. Pain of central origin. In: Osler W, ed. Contributions to Medical and Biological Research. New York: Hoeber, 1919; 235–246.Google Scholar
  9. 9.
    Siddall P, Mcclelland J, Rutkowski S et al. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003; 103(3):249–257.PubMedGoogle Scholar
  10. 10.
    Woolsey R. Chronic pain following spinal cord injury. J Am Paraplegia Soc 1986; 9(3–4):39–41.PubMedGoogle Scholar
  11. 11.
    Nepomuceno C, Fine P, Richards J et al. Pain in patients with spinal cord injury. Arch Phys Med Rehabil 1979; 60(12):605–609.PubMedGoogle Scholar
  12. 12.
    Lamid S, Chia J, Kohli A et al. Chronic pain in spinal cord injury: Comparison between inpatients and outpatients. Arch Phys Med Rehabil 1985; 66(11):777–778.PubMedGoogle Scholar
  13. 13.
    Levi R, Hultling C, Nash M et al. The stockholm spinal cord injury study: 1. Medical problems in a regional sci population. Paraplegia 1995; 33(6):308–315.PubMedGoogle Scholar
  14. 14.
    New P, Lim T, Hill S et al. A survey of pain during rehabilitation after acute spinal cord injury. Spinal Cord 1997; 35(10):658–663.PubMedGoogle Scholar
  15. 15.
    Stormer S, Gerner H, Gruninger W et al. Chronic pain/dysaesthesiae in spinal cord injury patients: Results of a multicentre study. Spinal Cord 1997; 35(7):446–455.PubMedGoogle Scholar
  16. 16.
    Bonica JJ. Introduction: semantic, epidemiologic, and educational issues. In: Casey KL, ed. Pain and central nervous system disease: the central pain syndrome. New York: Raven Press, 1991; 13–29.Google Scholar
  17. 17.
    Bonica JJ. History of pain concepts and pain therapy. Mt Sinai J Med 1991; 58(3):191–202.PubMedGoogle Scholar
  18. 18.
    Boivie J. Central Pain. In: McMahon S, Koltzenburg M, eds. Wall and Melzack’s Textbook of Pain. Oxford: Churchill Livingstone, 2005; 1057–1074.Google Scholar
  19. 19.
    Dalyan M, Cardenas D, Gerard B. Upper extremity pain after spinal cord injury. Spinal Cord 1999; 37(3):191–195.PubMedGoogle Scholar
  20. 20.
    Kuhn RA. Functional capacity of the isolated human spinal cord. Brain 1950; 73(1):1–51.PubMedGoogle Scholar
  21. 21.
    Komisaruk B, Gerdes C, Whipple B. ‘Complete’ spinal cord injury does not block perceptual responses to genital self-stimulation in women. Arch Neurol 1997; 54(12):1513–1520.PubMedGoogle Scholar
  22. 22.
    Siddall PJ, Yezierski RP, Loeser JD. Taxonomy and epidemiology of spinal cord injury pain. In: Yezierski RP, Burchiel KJ, eds. Progress in pain research and management. Seattle: IASP Press, 2002; 9–24.Google Scholar
  23. 23.
    Greenspan JD, Ohara S, Sarlani E et al. Allodynia in patients with post-stroke central pain (cpsp) studied by statistical quantitative sensory testing within individuals. Pain 2004; 109(3):357–366.PubMedGoogle Scholar
  24. 24.
    Tasker RR. Meralgia paresthetica. J Neurosurg 1991; 75(1):168.PubMedGoogle Scholar
  25. 25.
    Baliki M, Geha P, Apkarian A. Spontaneous pain and brain activity in neuropathic pain: Functional mri and pharmacologic functional mri studies. Curr Pain Headache Rep 2007; 11(3):171–177.PubMedGoogle Scholar
  26. 26.
    Baastrup C, Finnerup N. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008; 22(6):455–475.PubMedGoogle Scholar
  27. 27.
    Scheff S, Rabchevsky A, Fugaccia I et al. Experimental modeling of spinal cord injury: Characterization of a force-defined injury device. J Neurotrauma 2003; 20(2):179–193.PubMedGoogle Scholar
  28. 28.
    Hulsebosch C, Hains B, Crown E et al. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009; 60(1):202–213.PubMedGoogle Scholar
  29. 29.
    Yoon Y, Dong H, Arends J et al. Mechanical and cold allodynia in a rat spinal cord contusion model. Somatosens Mot Res 2004; 21(1):25–31.PubMedGoogle Scholar
  30. 30.
    Hao J, Xu XJ, Aldskogius H et al. Allodynia-like effects in rat after ischaemic spinal cord injury photochemically induced by laser irradiation. Pain 1991; 45(2):175–185.PubMedGoogle Scholar
  31. 31.
    Hao J, Xu XJ. Treatment of a chronic allodynia-like response in spinally injured rats: Effects of systemically administered excitatory amino acid receptor antagonists. Pain 1996; 66(2–3):279–285.PubMedGoogle Scholar
  32. 32.
    Yezierski RP, Liu S, Ruenes GL et al. Excitotoxic spinal cord injury: Behavioral and morphological characteristics of a central pain model. Pain 1998; 75(1):141–155.PubMedGoogle Scholar
  33. 33.
    Caudle R, Perez F, King C et al. N-methyl-d-aspartate receptor subunit expression and phosphorylation following excitotoxic spinal cord injury in rats. Neurosci Lett 2003; 349(1):37–40.PubMedGoogle Scholar
  34. 34.
    Christensen M, Everhart A, Pickelman J et al. Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain 1996; 68(1):97–107.PubMedGoogle Scholar
  35. 35.
    Christensen M, Hulsebosch C. Chronic central pain after spinal cord injury. J Neurotrauma 1997; 14(8):517–537.PubMedGoogle Scholar
  36. 36.
    Vierck CJ, Greenspan J, Ritz L. Long-term changes in purposive and reflexive responses to nociceptive stimulation following anterolateral chordotomy. J Neurosci 1990; 10(7):2077–2095.PubMedGoogle Scholar
  37. 37.
    Vierckjr C, Light A. Effects of combined hemotoxic and anterolateral spinal lesions on nociceptive sensitivity. Pain 1999; 83(3):447–457.Google Scholar
  38. 38.
    Finnerup NB, Johannesen IL, Sindrup SH et al. Pain and dysesthesia in patients with spinal cord injury: A postal survey. Spinal Cord 2001; 39(5):256–262.PubMedGoogle Scholar
  39. 39.
    Masri R, Quiton R, Lucas J et al. Zona incerta: A role in central pain. J Neurophysiol 2009; 102(1):181–191.PubMedGoogle Scholar
  40. 40.
    Wang G, Thompson S. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: Thalamic hyperexcitability after spinothalamic tract lesions. J Neurosci 2008; 28(46):11959–11969.PubMedGoogle Scholar
  41. 41.
    King T, Vera-Portocarrero L, Gutierrez T et al. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 2009; 12(11):1364–1366.PubMedGoogle Scholar
  42. 42.
    Greiff F. Zur localisation der hemichorea. Archiv fur Psychologie und Nervenkrankheiten 1883; 14:598–624.Google Scholar
  43. 43.
    Edinger L. Giebt es central antstehender schmerzen. Deutche Zeitschrift fur Nervenheilkunde 1891; 1:262–282.Google Scholar
  44. 44.
    Canavero S, Bonicalzi V. Central Pain Syndrome: Pathophysiology, Diagnosis and Management. New York: Cambridge Univ Press, 2007.Google Scholar
  45. 45.
    Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 2007; 6(2):188–191.PubMedGoogle Scholar
  46. 46.
    Dejerine J, Roussy G. Le syndrome thalamique. Rev Neurol 1906; 14:521–532.Google Scholar
  47. 47.
    Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain 1911; 34:102–254.Google Scholar
  48. 48.
    Schmahmann J, Leifer D. Parietal pseudothalamic pain syndrome. Clinical features and anatomic correlates. Arch Neurol 1992; 49(10):1032–1037.PubMedGoogle Scholar
  49. 49.
    Bowsher D. Central pain. Pain Reviews 1995; 2:175–186.Google Scholar
  50. 50.
    Finnerup N, Johannesen I, Fuglsang-Frederiksen A et al. Sensory function in spinal cord injury patients with and without central pain. Brain 2003; 126(Pt 1):57–70.PubMedGoogle Scholar
  51. 51.
    Macgowan D, Janal M, Clark W et al. Central poststroke pain and wallenberg’s lateral medullary infarction: Frequency, character, and determinants in 63 patients. Neurology 1997; 49(1):120–125.PubMedGoogle Scholar
  52. 52.
    Kim J, Greenspan J, Coghill R et al. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 2007; 27(18):4995–5004.PubMedGoogle Scholar
  53. 53.
    Dostrovsky JO. Ascending projection systems. In: McMahon S, Koltzenburg M, eds. Wall and Melzack’s Textbook of Pain. Oxford: Churchill Livingstone, 2005; 187–204.Google Scholar
  54. 54.
    Jones EG. The Thalamus. Cambridge: Cambridge Univ. Press, 2007.Google Scholar
  55. 55.
    Beric A. Post-spinal cord injury pain states. Pain 1997; 72(3):295–298.PubMedGoogle Scholar
  56. 56.
    Liu D, Thangnipon W, Mcadoo D. Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 1991; 547(2):344–348.PubMedGoogle Scholar
  57. 57.
    Christensen M, Hulsebosch C. Spinal cord injury and anti-ngf treatment results in changes in cgrp density and distribution in the dorsal horn in the rat. Exp Neurol 1997; 147(2):463–475.PubMedGoogle Scholar
  58. 58.
    Yezierski RP. Pathophysiology and animal models of spinal cord injury pain. In: Yezierski RP, Burchiel KJ, eds. Progress in pain research and management. Seattle: IASP Press, 2002; 9–24.Google Scholar
  59. 59.
    Lenz F, Tasker R, Dostrovsky J et al. Abnormal single-unit activity recorded in the somatosensory thalamus of a quadriplegic patient with central pain. Pain 1987; 31(2):225–236.PubMedGoogle Scholar
  60. 60.
    Lenz F, Kwan H, Dostrovsky J et al. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 1989; 496(1–2):357–360.PubMedGoogle Scholar
  61. 61.
    Zhao P, Waxman S, Hains B. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007; 27(33):8893–8902.PubMedGoogle Scholar
  62. 62.
    Foerster O. Die Lactungsbahnen des Schmerzgefuhls und die chirurgische Behandlung der Schmerzzustande. Berlin: Urban and Schwarzenberg, 1927.Google Scholar
  63. 63.
    Craig AD. Mechanisms of thalamic pain. In: Henry JL, Panju A, Yashpal K, eds. Central Neuropathic Pain: Focus on Poststroke Pain. Seattle: IASP Press, 2007; 81–99.Google Scholar
  64. 64.
    Weng H, Lee J, Lenz F et al. Functional plasticity in primate somatosensory thalamus following chronic lesion of the ventral lateral spinal cord. Neuroscience 2000; 101(2):393–401.PubMedGoogle Scholar
  65. 65.
    Lenz F, Garonzik I, Zirh T et al. Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations. Neuroscience 1998; 86(4):1065–1081.PubMedGoogle Scholar
  66. 66.
    Dostrovsky JO. The thalamus and human pain. In: Henry JL, Panju A, Yashpal K, eds. Central Neuropathic Pain: Focus on Poststroke Pain. Seattle: IASP Press, 2007; 101–112.Google Scholar
  67. 67.
    Shammah-Lagnado SJ, Negrao N, Ricardo JA. Afferent connections of the zona incerta: A horseradish peroxidase study in the rat. Neuroscience 1985; 15(1):109–134.PubMedGoogle Scholar
  68. 68.
    Craig AD. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 2004; 477(2):119–148.PubMedGoogle Scholar
  69. 69.
    Porro CA, Cavazzuti M, Lui F et al. Independent time courses of supraspinal nociceptive activity and spinally mediated behavior during tonic pain. Pain 2003; 104(1–2):291–301.PubMedGoogle Scholar
  70. 70.
    Yen CT, Fu TC, Chen RC. Distribution of thalamic nociceptive neurons activated from the tail of the rat. Brain Res 1989; 498(1):118–122.PubMedGoogle Scholar
  71. 71.
    Bartho P, Freund TF, Acsady L. Selective gabaergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 2002; 16(6):999–1014.PubMedGoogle Scholar
  72. 72.
    Mitrofanis J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 2005; 130(1):1–15.PubMedGoogle Scholar
  73. 73.
    Power B, Kolmac C, Mitrofanis J. Evidence for a large projection from the zona incerta to the dorsal thalamus. J Comp Neurol 1999; 404(4):554–565.PubMedGoogle Scholar
  74. 74.
    Poggio GF, Mountcastle VB. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bull Johns Hopkins Hosp 1960; 106:266–316.PubMedGoogle Scholar
  75. 75.
    Casey K. Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J Neurophysiol 1966; 29(4):727–750.PubMedGoogle Scholar
  76. 76.
    Apkarian A, Shi T. Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 1994; 14(11 Pt 2):6779–6795.PubMedGoogle Scholar
  77. 77.
    Zhang X, Giesler GJ. Response characterstics of spinothalamic tract neurons that project to the posterior thalamus in rats. J Neurophysiol 2005; 93(5):2552–2564.PubMedGoogle Scholar
  78. 78.
    Trageser JC, Keller A. Reducing the uncertainty: Gating of peripheral inputs by zona incerta. J Neurosci 2004; 24:8911–8915.PubMedGoogle Scholar
  79. 79.
    Trageser JC, Burke KA, Masri RM et al. State-dependent gating of sensory inputs by zona incerta. J Neurophysiol 2006; 96:1456–1463.PubMedGoogle Scholar
  80. 80.
    Lavallee P, Urbain N, Dufresne C et al. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 2005; 25(33):7489–7498.PubMedGoogle Scholar
  81. 81.
    Lucas JM, Ji Y, Masri R. Motor cortex stimulation reduces hyperalgesia in an animal model of central pain. Pain 2011; in press.Google Scholar
  82. 82.
    Quiton R, Masri R, Thompson S et al. Abnormal activity of primary somatosensory cortex in central pain syndrome. J Neurophysiol 2010; 104(3):1717–1725.PubMedGoogle Scholar
  83. 83.
    Bokor H, Frere S, Eyre M et al. Selective gabaergic control of higher-order thalamic relays. Neuron 2005; 45(6):929–940.PubMedGoogle Scholar
  84. 84.
    Apkarian A, Hodge C. Primate spinothalamic pathways: Iii. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 1989; 288(3):493–511.PubMedGoogle Scholar
  85. 85.
    Shaw V, Mitrofanis J. Lamination of spinal cells projecting to the zona incerta of rats. J Neurocytol 2001; 30(8):695–704.PubMedGoogle Scholar
  86. 86.
    Murray P, Masri R, Keller A. Abnormal anterior pretectal nucleus activity contributes to central pain syndrome. J Neurophysiol 2010; 103(6):3044–3053.PubMedGoogle Scholar
  87. 87.
    Barbaresi P, Spreafico R, Frassoni C et al. Gabaergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res 1986; 382(2):305–326.PubMedGoogle Scholar
  88. 88.
    Foix C, Thevenard A, Nicolesco M. Algie faciale dórigine bulbo-trigeminale au cours de la syringomyélie. Troubles sympathiques concomitants. Douleur á type cellulaire. Revue Neurologique 1922; 29:990–999.Google Scholar
  89. 89.
    Liu X, Jones E. Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J Comp Neurol 1999; 414(1):67–79.PubMedGoogle Scholar
  90. 90.
    Bokor H, Frère SGA, Eyre MD et al. Selective gabaergic control of higher-order thalamic relays. Neuron 2005; 45(6):929–940.PubMedGoogle Scholar
  91. 91.
    Finnerup NB, Johannesen IL, Sindrup SH et al. Pharmacological treatment of spinal cord injury pain. In: Yezierski RP, Burchiel KJ, eds. Progress in pain research and management. Seattle: IASP Press, 2002; 341–351.Google Scholar
  92. 92.
    Namba S, Nakao Y, Matsumoto Y et al. Electrical stimulation of the posterior limb of the internal capsule for treatment of thalamic pain. Appl Neurophysiol 1984; 47(3):137–148.PubMedGoogle Scholar
  93. 93.
    Gybels J, Kupers R. Deep brain stimulation in the treatment of chronic pain in man: Where and why? Neurophysiol Clin 1990; 20(5):389–398.PubMedGoogle Scholar
  94. 94.
    Namba S, Nishimoto A. Stimulation of internal capsule, thalamic sensory nucleus (vpm) and cerebral cortex inhibited deafferentation hyperactivity provoked after gasserian ganglionectomy in cat. Acta Neurochir Suppl (Wien) 1988; 42:243–247.Google Scholar
  95. 95.
    Tsubokawa T, Katayama Y, Yamamoto T et al. Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 1991; 14(1):131–134.PubMedGoogle Scholar
  96. 96.
    Sol J, Casaux J, Roux F et al. Chronic motor cortex stimulation for phantom limb pain: Correlations between pain relief and functional imaging studies. Stereotact Funct Neurosurg 2001; 77(1–4):172–176.PubMedGoogle Scholar
  97. 97.
    Ebel H, Rust D, Tronnier V et al. Chronic precentral stimulation in trigeminal neuropathic pain. Acta Neurochir (Wien) 1996; 138(11):1300–1306.Google Scholar
  98. 98.
    Brown J, Pilitsis J. Motor cortex stimulation for central and neuropathic facial pain: A prospective study of 10 patients and observations of enhanced sensory and motor function during stimulation. Neurosurgery 2005; 56(2):290–297; discussion 290-297.PubMedGoogle Scholar
  99. 99.
    Canavero S, Bonicalzi V. Central pain syndrome: Elucidation of genesis and treatment. Expert Rev Neurother 2007; 7(11):1485–1497.PubMedGoogle Scholar
  100. 100.
    Bezard E, Boraud T, Nguyen J et al. Cortical stimulation and epileptic seizure: A study of the potential risk in primates. Neurosurgery 1999; 45(2):346–350.PubMedGoogle Scholar
  101. 101.
    Huang Y, Edwards M, Rounis E et al. Theta burst stimulation of the human motor cortex. Neuron 2005; 45(2):201–206.PubMedGoogle Scholar
  102. 102.
    Lima MC, Fregni F. Motor cortex stimulation for chronic pain: Systematic review and meta-analysis of the literature. Neurology 2008; 70(24):2329–2337.PubMedGoogle Scholar
  103. 103.
    Fontaine D, Hamani C, Lozano A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: Critical review of the literature. Journal of Neurosurgery 2009; 110(2):251–256.PubMedGoogle Scholar
  104. 104.
    Cruccu G, Aziz TZ, Garcia-Larrea L et al. Efns guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 2007; 14(9):952–970.PubMedGoogle Scholar
  105. 105.
    Urbain N, Deschenes M. Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron 2007; 56(4):714–725.PubMedGoogle Scholar
  106. 106.
    Mitrofanis J, Mikuletic L. Organisation of the cortical projection to the zona incerta of the thalamus. J Comp Neurol 1999; 412(1):173–185.PubMedGoogle Scholar
  107. 107.
    Levitt M, Levitt J. The deafferentation syndrome in monkeys: Dysesthesias of spinal origin. Pain 1981; 10(2):129–147.PubMedGoogle Scholar
  108. 108.
    Beattie M, Bresnahan J, Komon J et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 1997; 148(2):453–463.PubMedGoogle Scholar
  109. 109.
    Wieseler J, Ellis AL, Mcfadden A et al. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2010; in press.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Radi Masri
    • 1
    • 2
  • Asaf Keller
    • 2
  1. 1.Department of Endodontics, Prosthodontics and Operative Dentistry, Baltimore College of Dental SurgeryUniversity of Maryland BaltimoreBaltimoreUSA
  2. 2.Department of Anatomy and Neurobiology, Medical SchoolUniversity of Maryland BaltimoreBaltimoreUSA

Personalised recommendations