Advertisement

Fosmidomycin as an Antimalarial Agent

  • Jochen Wiesner
  • Armin Reichenberg
  • Martin Hintz
  • Regina Ortmann
  • Martin Schlitzer
  • Serge Van Calenbergh
  • Steffen Borrmann
  • Bertrand Lell
  • Peter G. Kremsner
  • David Hutchinson
  • Hassan JomaaEmail author
Chapter

Abstract

The isoprenoid biosynthesis of Plasmodium falciparum, the causative agent of malignant tertiana malaria, solely depends on the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway [also known as the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway]. The enzymes of the MEP pathway of P. falciparum are located in a plastid-like organelle called the apicoplast. The growth of P. falciparum parasites is rapidly inhibited by fosmidomycin, an inhibitor of DXP reductoisomerase. The antimalarial activity of fosmidomycin has been substantiated in several clinical phase II studies. Most thoroughly, the treatment of malaria patients with a drug combination consisting of fosmidomycin and clindamycin has been investigated. With this combination, cure rates of approximately 90% were achieved after 3 days of treatment. In vitro studies revealed improved antimalarial activity of several fosmidomycin derivatives. At present, the compound FR-900098 represents the most promising derivative with respect to its low toxicity and proven activity in the P. vinckei mouse model.

Keywords

Apicoplast Apicomplexa Clinical studies Drug development DXP reductoisomerase Fosmidomycin Malaria MEP pathway Plasmodium falciparum 

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedGoogle Scholar
  2. Altincicek B, Duin EC, Reichenberg A et al (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440PubMedGoogle Scholar
  3. Aulabaugh A, Schloss JV (1990) Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry 29:2824–2830PubMedGoogle Scholar
  4. Baumeister S, Wiesner J, Reichenberg A et al (2011) Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. PLoS One 6(5):e19334PubMedGoogle Scholar
  5. Borrmann S, Adegnika AA, Matsiegui PB et al (2004a) Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children. J Infect Dis 189:901–908PubMedGoogle Scholar
  6. Borrmann S, Issifou S, Esser G et al (2004b) Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J Infect Dis 190:1534–1540PubMedGoogle Scholar
  7. Borrmann S, Adegnika AA, Moussavou F et al (2005) Short-course regimens of artesunate-fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 49:3749–3754PubMedGoogle Scholar
  8. Borrmann S, Lundgren I, Oyakhirome S et al (2006) Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother 50:2713–2718PubMedGoogle Scholar
  9. Bracchi-Ricard V, Nguyen KT, Zhou Y et al (2001) Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396:162–170PubMedGoogle Scholar
  10. Bronner S, Renault C, Hintz M et al (2004) Determination of fosmidomycin in human serum and urine by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 806:255–261PubMedGoogle Scholar
  11. Cassera MB, Gozzo FC, D’Alexandri FL et al (2004) The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 279:51749–51759PubMedGoogle Scholar
  12. Cavalier-Smith T (2002) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 5:612–619PubMedGoogle Scholar
  13. Chakrabarti D, Azam T, DelVecchio C et al (1998) Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol 94:175–184PubMedGoogle Scholar
  14. Chakrabarti D, Da Silva T, Barger J et al (2002) Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 277:42066–42073PubMedGoogle Scholar
  15. Cheoymang A, Hudchinton D, Kioy D et al (2007) Bioassay for determination of fosmidomycin in plasma and urine: application for pharmacokinetic dose optimisation. J Microbiol Methods 69:65–69PubMedGoogle Scholar
  16. Clark RL, White TE, Clode SA et al (2004) Developmental toxicity of artesunate and an artesunate combination in the rat and rabbit. Birth Defects Res B Dev Reprod Toxicol 71:380–394PubMedGoogle Scholar
  17. Clastre M, Goubard A, Prel A et al (2007) The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. Exp Parasitol 116:375–384PubMedGoogle Scholar
  18. Couto AS, Kimura EA, Peres VJ et al (1999) Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. Biochem J 341:629–637PubMedGoogle Scholar
  19. Crawford MJ, Thomsen-Zieger N, Ray M et al (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25:3214–3222PubMedGoogle Scholar
  20. Dahl EL, Shock JL, Shenai BR et al (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50:3124–3131PubMedGoogle Scholar
  21. Davis TM, Hung TY, Sim IK et al (2005) Piperaquine: a resurgent antimalarial drug. Drugs 65:75–87PubMedGoogle Scholar
  22. de Macedo CS, Uhrig ML, Kimura EA et al (2002) Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum. FEMS Microbiol Lett 207:13–20PubMedGoogle Scholar
  23. de Macedo CS, Shams-Eldin H, Smith TK et al (2003) Inhibitors of glycosylphosphatidylinositol anchor biosynthesis. Biochimie 85:465–472PubMedGoogle Scholar
  24. Dellicour S, Hall S, Chandramohan D et al (2007) The safety of artemisinins during pregnancy: a pressing question. Malar J. doi: 10.1186/1475-2875-6-15
  25. Desjardins RE, Canfield CJ, Haynes JD et al (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16:710–718PubMedGoogle Scholar
  26. Devreux V, Wiesner J, Goeman JL et al (2006) Synthesis and biological evaluation of cyclopropyl analogues of fosmidomycin as potent Plasmodium falciparum growth inhibitors. J Med Chem 49:2656–2660PubMedGoogle Scholar
  27. Devreux V, Wiesner J, Jomaa H et al (2007) Divergent strategy for the synthesis of α-aryl-substituted fosmidomycin analogues. J Org Chem 72:3783–3789PubMedGoogle Scholar
  28. Fast NM, Kissinger JC, Roos DS et al (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426PubMedGoogle Scholar
  29. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409PubMedGoogle Scholar
  30. Fujisaki S, Ohnuma S, Horiuchi T et al (1996) Cloning of a gene from Escherichia coli that confers resistance to fosmidomycin as a consequence of amplification. Gene 175:83–87PubMedGoogle Scholar
  31. Giessmann D, Heidler P, Haemers T et al (2008) Towards new antimalarial drugs: synthesis of non-hydrolyzable phosphate mimics as feed for a predictive QSAR study on 1-deoxy-d-xylulose-5-phosphate reductoisomerase inhibitors. Chem Biodivers 5:643–656PubMedGoogle Scholar
  32. Goodman CD, McFadden GI (2008) Fatty acid synthesis in protozoan parasites: unusual pathways and novel drug targets. Curr Pharm Des 14:901–916PubMedGoogle Scholar
  33. Gräwert T, Kaiser J, Zepeck F et al (2004) IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855PubMedGoogle Scholar
  34. Greenwood B (2008) Progress in malaria control in endemic areas. Travel Med Infect Dis 6:173–176PubMedGoogle Scholar
  35. Grellier P, Valentin A, Millerioux V et al (1994) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob Agents Chemother 38:1144–1148PubMedGoogle Scholar
  36. Griffith KS, Lewis LS, Mali S et al (2007) Treatment of malaria in the United States: a systematic review. JAMA 297:2264–2277Google Scholar
  37. Guerra CA, Gikandi PW, Tatem AJ et al (2008) The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5:e38PubMedGoogle Scholar
  38. Haemers T, Wiesner J, Van Poecke S et al (2006) Synthesis of α-substituted fosmidomycin analogues as highly potent Plasmodium falciparum growth inhibitors. Bioorg Med Chem Lett 16:1888–1891PubMedGoogle Scholar
  39. Haemers T, Wiesner J, Giessmann D et al (2008) Synthesis of β- and γ-oxa isosteres of fosmidomycin and FR900098 as antimalarial candidates. Bioorg Med Chem 16:3361–3371PubMedGoogle Scholar
  40. He CY, Shaw MK, Pletcher CH et al (2001) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20:330–339PubMedGoogle Scholar
  41. Hemmi K, Takeno H, Hashimoto M et al (1982) Studies on phosphonic acid antibiotics. IV. Synthesis and antibacterial activity of analogs of 3-(N-acetyl-N-hydroxyamino)-propylphosphonic acid (FR-900098). Chem Pharm Bull(Tokyo) 30:111–118Google Scholar
  42. Henriksson LM, Unge T, Carlsson J et al (2007) Structures of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282:19905–19916PubMedGoogle Scholar
  43. Iguchi E, Okuhara M, Kohsaka M (1980) Studies on new phosphonic acid antibiotics. II. Taxonomic studies on producing organisms of the phosphonic acid and related compounds. J Antibiot (Tokyo) 33:19–23Google Scholar
  44. Jomaa H, Wiesner J, Sanderbrand S et al (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576PubMedGoogle Scholar
  45. Jones KL, Donegan S, Lalloo DG (2007) Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev 4:CD005967PubMedGoogle Scholar
  46. Kamiya T, Hashimoto M, Hemmi K, Takeno H (1980) Hydroxyaminohydrocarbon-phosphonic acids. Fujisawa Pharmaceutical Co. Ltd. U.S. Patent Application No. 4,206,156, 3 June 1980Google Scholar
  47. Kamuro Y, Kawai T, Kakiuchi T (1991) Herbicidal methods and compositions comprising fosmidomycin. Fujisawa Pharmaceutical Co. Ltd. U.S. Patent Application No. 5,002,602, 26 March 1991Google Scholar
  48. Katayama N, Tsubotani S, Nozaki Y et al (1990) Fosfadecin and fosfocytocin, new nucleotide antibiotics produced by bacteria. J Antibiot (Tokyo) 43: 238–246Google Scholar
  49. Kimmel J, Ogun SA, de Macedo CS et al (2003) Glycosylphosphatidyl-inositols in murine malaria: Plasmodium yoelii yoelii. Biochimie 85:473–481PubMedGoogle Scholar
  50. Kohler S, Delwiche CF, Denny PW et al (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275:1485–1489PubMedGoogle Scholar
  51. Kojo H, Shigi Y, Nishida M (1980) FR-31564, a new phosphonic acid antibiotic: bacterial resistance and membrane permeability. J Antibiot (Tokyo) 33:44–48Google Scholar
  52. Koppisch AT, Fox DT, Blagg BS et al (2002) E. coli MEP synthase: steady-state kinetic analysis and substrate binding. Biochemistry 41:236–243PubMedGoogle Scholar
  53. Kuemmerle HP, Murakawa T, Soneoka K et al (1985a) Fosmidomycin: a new phosphonic acid antibiotic. Part I: Phase I tolerance studies. Int J Clin Pharmacol Ther Toxicol 23:515–520PubMedGoogle Scholar
  54. Kuemmerle HP, Murakawa T, Sakamoto H et al (1985b) Fosmidomycin, a new phosphonic acid antibiotic. Part II: 1. Human pharmacokinetics. 2. Preliminary early phase IIa clinical studies. Int J Clin Pharmacol Ther Toxicol 23:521–528PubMedGoogle Scholar
  55. Kuntz L, Tritsch D, Grosdemange-Billiard C et al (2005) Isoprenoid biosynthesis as a target for antibacterial and antiparasitic drugs: phosphonohydroxamic acids as inhibitors of deoxyxylulose phosphate reducto-isomerase. Biochem J 386:127–135PubMedGoogle Scholar
  56. Kuroda Y, Okuhara M, Goto T et al (1980) Studies on new phosphonic acid antibiotics. IV. Structure determination of FR-33289, FR-31564 and FR-32863. J Antibiot (Tokyo) 33:29–35Google Scholar
  57. Kurz T, Schlüter K, Kaula U et al (2006) Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of Fosmidomycin and FR900098. Bioorg Med Chem 14:5121–5135PubMedGoogle Scholar
  58. Kuzuyama T, Shizimu T, Takahashi S et al (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway of isoprenoid biosynthesis. Tetrahedron Lett 39:7913–7916Google Scholar
  59. Lell B, Kremsner PG (2002) Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob Agents Chemother 46:2315–2320PubMedGoogle Scholar
  60. Lell B, Ruangweerayut R, Wiesner J et al (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738PubMedGoogle Scholar
  61. Looareesuwan S, Kyle DE, Viravan C et al (1996) Clinical study of pyronaridine for the treatment of acute uncomplicated falciparum malaria in Thailand. Am J Trop Med Hyg 54:205–209PubMedGoogle Scholar
  62. Mac Sweeney A, Lange R, Fernandes RP et al (2005) The crystal structure of E.coli 1-deoxy-d-xylulose 5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345:115–127PubMedGoogle Scholar
  63. Mazumdar J, Striepen B (2007) Make it or take it: fatty acid metabolism of apicomplexan parasites. Eukaryot Cell 6:1727–1735PubMedGoogle Scholar
  64. Mbaya B, Rigomier D, Edorh GG et al (1990) Isoprenoid metabolism in Plasmodium falciparum during the intraerythrocytic phase of malaria. Biochem Biophys Res Commun 173:849–854PubMedGoogle Scholar
  65. Medicines for Malaria Venture (2008) http://www.mmv.org/article.php3?id_article=459. Accessed 18 July 2008
  66. Meinnel T (2000) Peptide deformylase of eukaryotic protists: a target for new antiparasitic agents? Parasitol Today 16:165–168PubMedGoogle Scholar
  67. Mine Y, Kamimura T, Nonoyama S et al (1980) In vitro and in vivo antibacterial activities of FR-31564, a new phosphonic acid antibiotic. J Antibiot (Tokyo) 33:36–43Google Scholar
  68. Missinou MA, Borrmann S, Schindler A et al (2002) Fosmidomycin for malaria. Lancet 360:1941–1942PubMedGoogle Scholar
  69. Missinou MA, Lell B, Kremsner PG (2003) Uncommon asymptomatic Plasmodium falciparum infections in Gabonese children. Clin Infect Dis 36:1198–1202PubMedGoogle Scholar
  70. Murakawa T, Sakamoto H, Fukada S et al (1982) Pharmacokinetics of fosmidomycin, a new phosphonic acid antibiotic. Antimicrob Agents Chemother 21:224–230PubMedGoogle Scholar
  71. Na-Bangchang K, Ruengweerayut R, Karbwang J et al (2007) Pharmacokinetics and pharmacodynamics of fosmidomycin monotherapy and combination therapy with clindamycin in the treatment of multidrug resistant falciparum malaria. Malaria J. doi: 10.1186/1475-2875-6-70
  72. Neu HC, Kamimura T (1981) In vitro and in vivo antibacterial activity of FR-31564, a phosphonic acid antimicrobial agent. Antimicrob Agents Chemother 19:1013–1023PubMedGoogle Scholar
  73. Neu HC, Kamimura T (1982) Synergy of fosmidomycin (FR-31564) and other antimicrobial agents. Antimicrob Agents Chemother 22:560–563PubMedGoogle Scholar
  74. Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77(6 Suppl):181–192PubMedGoogle Scholar
  75. Okuhara M, Kuroda Y, Goto T et al (1980a) Studies on new phosphonic acid antibiotics. I. FR-900098, isolation and characterization. J Antibiot (Tokyo) 33:13–17Google Scholar
  76. Okuhara M, Kuroda Y, Goto T et al (1980b) Studies on new phosphonic acid antibiotics. III. Isolation and characterization of FR-31564, FR-32863 and FR-33289. J Antibiot (Tokyo) 33(24)Google Scholar
  77. Ortmann R, Wiesner J, Reichenberg A et al (2003) Acyloxyalkyl ester prodrugs of FR900098 with improved in vivo anti-malarial activity. Bioorg Med Chem Lett 13:2163–2166PubMedGoogle Scholar
  78. Ortmann R, Wiesner J, Reichenberg A et al (2005) Alkoxycarbonyloxyethyl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Arch Pharm (Weinheim) 338:305–314Google Scholar
  79. Oyakhirome S, Issifou S, Pongratz P et al (2007) Randomized controlled trial of fosmidomycin-­clindamycin versus sulfadoxine-pyrimethamine in the treatment of Plasmodium falciparum malaria. Antimicrob Agents Chemother 51:1869–1871PubMedGoogle Scholar
  80. Patterson DR (1987) Herbicidal hydroxyamino phosphonic acids and derivatives. Rohm and Haas Corp. U.S. Patent Application No. 4,693,742, 15 Sept 1987Google Scholar
  81. Preiser P, Williamson DH, Wilson RJ (1995) tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res 23:4329–4336PubMedGoogle Scholar
  82. Ralph SA, van Dooren GG, Waller RF et al (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216PubMedGoogle Scholar
  83. Ramya TN, Mishra S, Karmodiya K et al (2007) Inhibitors of nonhousekeeping functions of the apicoplast defy delayed death in Plasmodium falciparum. Antimicrob Agents Chemother 51:307–316PubMedGoogle Scholar
  84. Reichenberg A, Wiesner J, Weidemeyer C et al (2001) Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Bioorg Med Chem Lett 11:833–835PubMedGoogle Scholar
  85. Reuter K, Sanderbrand S, Jomaa H et al (2002) Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277:5378–5384PubMedGoogle Scholar
  86. Rietz PJ, Skelton FS, Folkers K (1967) Occurrence of ubiquinones-8 and -9 in Plasmodium lophurae. Int Z Vitaminforsch 37:405–411PubMedGoogle Scholar
  87. Rohdich F, Eisenreich W, Wungsintaweekul J et al (2001) Biosynthesis of terpenoids. 2C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. Eur J Biochem 268:3190–3197PubMedGoogle Scholar
  88. Rohdich F, Hecht S, Gärtner K et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163PubMedGoogle Scholar
  89. Rohdich F, Zepeck F, Adam P et al (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591PubMedGoogle Scholar
  90. Röhrich RC, Englert N, Troschke K et al (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 579:6433–6438PubMedGoogle Scholar
  91. Sakamoto Y, Furukawa S, Ogihara H et al (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67:2030–2033PubMedGoogle Scholar
  92. Schlitzer M (2008) Antimalarial drugs – what is in use and what is in the pipeline. Arch Pharm (Weinheim) 341:149–163Google Scholar
  93. Shigi Y (1989) Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. J Antimicrob Chemother 24:131–145PubMedGoogle Scholar
  94. Silber K, Heidler P, Kurz T et al (2005) AFMoC enhances predictivity of 3D QSAR: a case study with DXP-reductoisomerase. J Med Chem 48:3547–3563PubMedGoogle Scholar
  95. Skelton FS, Lunan KD, Folkers K et al (1969) Biosynthesis of ubiquinones by malarial parasites. I. Isolation of [14C]ubiquinones from cultures of rhesus monkey blood infected with Plasmodium knowlesi. Biochemistry 8:1284–1287PubMedGoogle Scholar
  96. Steinbacher S, Kaiser J, Eisenreich W et al (2003) Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-d-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development. J Biol Chem 278:18401–18407PubMedGoogle Scholar
  97. Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7:167–173PubMedGoogle Scholar
  98. Tahar R, Basco LK (2007) Molecular epidemiology of malaria in Cameroon. XXV. In vitro activity of fosmidomycin and its derivatives against fresh clinical isolates of Plasmodium falciparum and sequence analysis of 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Am J Trop Med Hyg 77:214–220PubMedGoogle Scholar
  99. Takahashi S, Kuzuyama T, Watanabe H et al (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884PubMedGoogle Scholar
  100. Tonkin CJ, Foth BJ, Ralph SA et al (2008) Evolution of malaria parasite plastid targeting sequences. Proc Natl Acad Sci USA 105:4781–4785PubMedGoogle Scholar
  101. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675PubMedGoogle Scholar
  102. Tsuchiya T, Ishibashi K, Terakawa M et al (1982) Pharmacokinetics and metabolism of fosmidomycin, a new phosphonic acid, in rats and dogs. Eur J Drug Metab Pharmacokinet 7:59–64PubMedGoogle Scholar
  103. van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30:596–630PubMedGoogle Scholar
  104. Vial HJ, Philippot JR, Wallach DF (1984) A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and P. falciparum. Mol Biochem Parasitol 13:53–65PubMedGoogle Scholar
  105. Vollmer M, Thomsen N, Wiek S et al (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276:5483–5490PubMedGoogle Scholar
  106. Wiesner J, Jomaa H (2007) Isoprenoid biosynthesis of the apicoplast as drug target. Curr Drug Targets 8:3–13PubMedGoogle Scholar
  107. Wiesner J, Seeber F (2005) The plastid-derived organelle of protozoan human parasites as a target of established and emerging drugs. Expert Opin Ther Targets 9:23–44PubMedGoogle Scholar
  108. Wiesner J, Hintz M, Altincicek B et al (2000) Plasmodium falciparum: detection of the deoxyxylulose 5-phosphate reductoisomerase activity. Exp Parasitol 96:182–186PubMedGoogle Scholar
  109. Wiesner J, Henschker D, Hutchinson DB et al (2002) In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob Agents Chemother 46:2889–2894PubMedGoogle Scholar
  110. Wiesner J, Kettler K, Sakowski J et al (2004) Farnesyltransferase inhibitors inhibit the growth of malaria parasites in vitro and in vivo. Angew Chem Int Ed Engl 43:251–254PubMedGoogle Scholar
  111. Wiesner J, Ortmann R, Jomaa H et al (2007) Double ester prodrugs of FR900098 display enhanced in-vitro antimalarial activity. Arch Pharm (Weinheim) 340:667–669Google Scholar
  112. Wiesner J, Reichenberg A, Heinrich S et al (2008) The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 14:855–871PubMedGoogle Scholar
  113. Wilson RJ, Denny PW, Preiser PR et al (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172PubMedGoogle Scholar
  114. Wilson RJ, Rangachari K, Saldanha JW et al (2003) Parasite plastids: maintenance and functions. Philos Trans R Soc Lond B Biol Sci 358:155–162PubMedGoogle Scholar
  115. Wolff M, Seemann M, Tse Sum Bui B et al (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe-4S] protein. FEBS Lett 541:115–120PubMedGoogle Scholar
  116. Woo YH, Fernandes RP, Proteau PJ (2006) Evaluation of fosmidomycin analogs as inhibitors of the Synechocystis sp. PCC6803 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Bioorg Med Chem 14:2375–2385PubMedGoogle Scholar
  117. Wunderlich F, Fiebig S, Vial H et al (1991) Distinct lipid compositions of parasite and host cell plasma membranes from Plasmodium chabaudi-infected erythrocytes. Mol Biochem Parasitol 44:271–277PubMedGoogle Scholar
  118. Yajima S, Hara K, Iino D et al (2007) Structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion, NADPH and the antimalarial drug fosmidomycin. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:466–470PubMedGoogle Scholar
  119. Zeidler J, Schwender J, Müller C et al (1998) Inhibition of the non-mevalonate 1-deoxy-d-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch C 53:980–986Google Scholar
  120. Zhu G, Marchewka MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315–321PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jochen Wiesner
    • 1
  • Armin Reichenberg
    • 2
  • Martin Hintz
    • 2
  • Regina Ortmann
    • 2
  • Martin Schlitzer
    • 2
  • Serge Van Calenbergh
    • 2
  • Steffen Borrmann
    • 2
  • Bertrand Lell
    • 2
  • Peter G. Kremsner
    • 2
  • David Hutchinson
    • 2
  • Hassan Jomaa
    • 2
    Email author
  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IME, BioresourcesGiessenGermany
  2. 2.Institut für Klinische Immunologie und TransfusionsmedizinJustus-Liebig-Universität GießenGießenGermany

Personalised recommendations