Prenyldiphosphate Synthases and Gibberellin Biosynthesis

  • Chris C. N. van SchieEmail author
  • Michel A. Haring
  • Robert C. Schuurink


Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, geranylgeranyl diphosphate synthase (GGPS) is suggested to use isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to generate the GGPP that is used by CPS.

In this chapter we will provide data to show that actually the activity of geranyl diphosphate synthase (GPS) is required in both tomato (Solanum lycopersicum) and Arabidopsis thaliana for the biosynthesis of gibberellins. This finding indicates that GGPS uses GPP and IPP as substrates to produce the GGPP precursor for gibberellin biosynthesis. We will also argue that the pool of GGPP that is used for the biosynthesis of gibberellins is different from those GGPP pools that are used for other terpenoid-based molecules. Through analysis of Arabidopsis microarray data we attempt to predict which member of the GGPS gene family is actually involved in gibberellin precursor biosynthesis.


Terpene Gibberellin Tomato Arabidopsis Terpenoid precursors 



We thank Dr. Petra Bleeker for critically reading the manuscript.


  1. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172PubMedCrossRefGoogle Scholar
  2. Aharoni A, Giri AP, Deuerlein S et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884PubMedCrossRefGoogle Scholar
  3. Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208PubMedCrossRefGoogle Scholar
  4. Besser K, Harper A, Welsby N et al (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514PubMedCrossRefGoogle Scholar
  5. Bohlmann J, Martin D, Oldham NJ, Gershenzon J (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase. Arch Biochem Biophys 375:261–269PubMedCrossRefGoogle Scholar
  6. Bouvier F, Suire C, D’Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252PubMedCrossRefGoogle Scholar
  7. Burke C, Croteau R (2002a) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136PubMedCrossRefGoogle Scholar
  8. Burke C, Croteau R (2002b) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149PubMedCrossRefGoogle Scholar
  9. Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA 96:13062–13067PubMedCrossRefGoogle Scholar
  10. Cervantes-Cervantes M, Gallagher CE, Zhu CF, Wurtzel ET (2006) Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol 141:220–231PubMedCrossRefGoogle Scholar
  11. Chang YJ, Kim BR, Kim SU (2005) Metabolic flux analysis of diterpene biosynthesis pathway in rice. Biotechnol Lett 27:1375–1380PubMedCrossRefGoogle Scholar
  12. Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494PubMedCrossRefGoogle Scholar
  13. Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966PubMedCrossRefGoogle Scholar
  14. Clastre M, Bantignies B, Feron G, Soler E, Ambid C (1993) Purification and characterization of geranyl diphosphate synthase from Vitis vinifera L. cv Muscat de Frontignan cell cultures. Plant Physiol 102:205–211PubMedGoogle Scholar
  15. Cookson PJ, Kiano JW, Shipton CA et al (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217:896–903PubMedCrossRefGoogle Scholar
  16. Croteau R, Purkett PT (1989) Geranyl pyrophosphate synthase: characterization of the enzyme and evidence that this chain-length specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis). Arch Biochem Biophys 271:524–535PubMedCrossRefGoogle Scholar
  17. Cunillera N, Arró M, Delourme D, Karst F, Boronat A, Ferrer A (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780PubMedCrossRefGoogle Scholar
  18. Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem 272:15381–15388PubMedCrossRefGoogle Scholar
  19. Cunillera N, Boronat A, Ferrer A (2000) Spatial and temporal patterns of GUS expression directed by 5’ regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Mol Biol 44:747–758PubMedCrossRefGoogle Scholar
  20. Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim Biophys Acta 920:140–148CrossRefGoogle Scholar
  21. Ducluzeau A-L, Wamboldt Y, Elowsky CG, Mackenzie SA, Schuurink RC, Basset GJC (2012) Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J 69:366–375Google Scholar
  22. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  23. Faldt J, Arimura G, Gershenzon J, Takabayashi J, Bohlmann J (2003) Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216:745–751PubMedGoogle Scholar
  24. Feng S, Martinez C, Gusmaroli G et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479PubMedCrossRefGoogle Scholar
  25. Ferrer A, Closa M, Vranova E, Bortolotti C, Bigler L, Arró M, Gruissem W (2010) The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant J 63:512–525CrossRefGoogle Scholar
  26. Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y, Sun TP (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839PubMedCrossRefGoogle Scholar
  27. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701CrossRefGoogle Scholar
  28. Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960PubMedCrossRefGoogle Scholar
  29. Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  30. Guhling O, Hobl B, Yeats T, Jetter R (2006) Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis. Arch Biochem Biophys 448:60–72PubMedCrossRefGoogle Scholar
  31. Haralampidis K, Bryan G, Qi X, Papadopoulou K, Bakht S, Melton R, Osbourn A (2001) A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc Natl Acad Sci USA 98:13431–13436PubMedCrossRefGoogle Scholar
  32. Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75:31–49PubMedGoogle Scholar
  33. Heide L, Berger U (1989) Partial purification and properties of geranyl pyrophosphate synthase from Lithospermum erythrorhizon cell cultures. Arch Biochem Biophys 273:331–338PubMedCrossRefGoogle Scholar
  34. Herde M, Gärtner K, Köllner TG et al (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168PubMedCrossRefGoogle Scholar
  35. Hsiao YY, Jeng MF, Tsai WC et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55:719–733PubMedCrossRefGoogle Scholar
  36. Hsieh FL, Chang TH, Ko TP, Wang AH (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090PubMedCrossRefGoogle Scholar
  37. Huang M, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, Gershenzon J, Tholl D (2010) Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol 153:1293–1310Google Scholar
  38. Laferrière A, Beyer P (1991) Purification of geranylgeranyl diphosphate synthase from Sinapis alba etioplasts. Biochim Biophys Acta 1077:167–172CrossRefGoogle Scholar
  39. Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948PubMedCrossRefGoogle Scholar
  40. Laskaris G, van der Heijden R, Verpoorte R (2000) Purification and partial characterisation of geranylgeranyl diphosphate synthase, from Taxus baccata cell cultures – An enzyme that regulates taxane biosynthesis. Plant Sci 153:97–105PubMedCrossRefGoogle Scholar
  41. Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010) Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc Natl Acad Sci USA 107:21205–21210PubMedCrossRefGoogle Scholar
  42. Liang PH, Ko TP, Wang AH (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354PubMedCrossRefGoogle Scholar
  43. Lindgren LO, Stålberg KG, Höglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785PubMedCrossRefGoogle Scholar
  44. Manzano D, Busquets A, Closa M et al (2006) Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. Plant Mol Biol 61:195–213PubMedCrossRefGoogle Scholar
  45. Masferrer A, Arró M, Manzano D et al (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132PubMedCrossRefGoogle Scholar
  46. Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056PubMedCrossRefGoogle Scholar
  47. Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS, Kamiya Y (2002) Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. Planta 215:339–344PubMedCrossRefGoogle Scholar
  48. Otomo K, Kanno Y, Motegi A et al (2004) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem 68:2001–2006PubMedCrossRefGoogle Scholar
  49. Prisic S, Peters RJ (2007) Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol 144:445–454PubMedCrossRefGoogle Scholar
  50. Reiter RS, Coomber SA, Bourett TM, Bartley GE, Scolnik PA (1994) Control of leaf and chloroplast development by the Arabidopsis gene pale cress. Plant Cell 6:1253–1264PubMedGoogle Scholar
  51. Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116PubMedCrossRefGoogle Scholar
  52. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106(26):10865–10870Google Scholar
  53. Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57PubMedCrossRefGoogle Scholar
  54. Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655PubMedCrossRefGoogle Scholar
  55. Silverstone AL, Chang C, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19PubMedCrossRefGoogle Scholar
  56. Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R, Sharma M, Ahuja PS, Kumar S (2010) Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-mgeranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston]. BMC Mol Biol 2010, 11:88 ( Scholar
  57. Sommer A, Severin K, Camara B, Heide L (1995) Intracellular localization of geranyl pyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. Phytochemistry 38:623–627CrossRefGoogle Scholar
  58. Sun TP, Kamiya Y (1997) Regulation and cellular localization of ent-kaurene synthesis. Physiol Plant 101:701–708CrossRefGoogle Scholar
  59. Takaya A, Zhang YW, Asawatreratanakul K et al (2003) Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis. Biochim Biophys Acta 1625:214–220PubMedCrossRefGoogle Scholar
  60. Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16:977–992PubMedCrossRefGoogle Scholar
  61. Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771PubMedCrossRefGoogle Scholar
  62. Van Poecke RM, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928PubMedCrossRefGoogle Scholar
  63. van Schie CCN, Haring MA, Schuurink RC (2007a) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263PubMedCrossRefGoogle Scholar
  64. van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC (2007b) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J 52:752–762PubMedCrossRefGoogle Scholar
  65. Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919PubMedCrossRefGoogle Scholar
  66. Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta 1529:33–48PubMedCrossRefGoogle Scholar
  67. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447PubMedCrossRefGoogle Scholar
  68. Yamaguchi S, Kamiya Y, Sun TP (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453PubMedCrossRefGoogle Scholar
  69. Zhu XF, Suzuki K, Saito T et al (1997) Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol Biol 35:331–341PubMedCrossRefGoogle Scholar
  70. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Chris C. N. van Schie
    • 1
    Email author
  • Michel A. Haring
    • 2
  • Robert C. Schuurink
    • 2
  1. 1.Division of Biological SciencesUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Plant PhysiologySwammerdam Institute for Life SciencesAmsterdamThe Netherlands

Personalised recommendations