State-of-the-Art of Cognitive Radio Networks

  • Ahmed Khattab
  • Dmitri Perkins
  • Magdy Bayoumi
Part of the Analog Circuits and Signal Processing book series (ACSP)


The literature of spectrum management in wireless CRNs is affluent and covers various theoretical aspects such as spectrum sensing, spectrum access, and spectrum sharing. The implementation issues and challenges of Opportunistic Spectrum Access have received far less research interest compared to the significant theoretical interest in such a promising communications paradigm. To the best of our knowledge, this book is the first to combine theory and practice as it:
  • Incorporates the practical limitations of contemporary radio transceivers into the theoretical problem formulation, and hence, the outcome solution is a framework that is not vulnerable to the implementation limitations.

  • Targets hardware with realistic features and capabilities (unlike existing implementations that target software-defined radios which provide seamless design flexibility at the expense of poor performance that cannot be used in real-life systems).

Hence, this book presents a first step towards realizing OSA and CRNs based on existing transceiver technologies without the need to wait for the currently-unavailable fully-capable cognitive radios. This book presents a bridge between both the academic and industrial communities interested in distributed ad-hoc CRNs. In this chapter, we overview the state-of-the-art of cognitive radio networking and Opportunistic Spectrum Access both from theoretical and practical points of view.


Cognitive Radio Cognitive Radio Network Dynamic Spectrum Access Opportunistic Spectrum Access Common Control Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Comm. Surv. Tutorials 11(1), 116–130 (2009)CrossRefGoogle Scholar
  2. 2.
    Anandkumar, A., Michael, N., Tang, A.: Opportunistic spectrum access with multiple users: Learning under competition. In: Proceedings of IEEE INFOCOM 2010, San Deigo, CA (2010)Google Scholar
  3. 3.
    Chaporkar, P., Proutiere, A., Asnani, H.: Learning to optimally exploit multi-channel diversity in wireless systems. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)Google Scholar
  4. 4.
    Bhandari, V., Vaidya, N.H.: Capacity of multi-channel wireless networks with random (c, f) assignment. In: Proceedings of ACM Mobihoc 2007, Montreal, Canada (2007)Google Scholar
  5. 5.
    Tian, Z., Giannakis, G.: Compressed sensing for wideband cognitive radios. In: Proceedings of IEEE ICASSP, Honolulu, HI (2007)Google Scholar
  6. 6.
    Liu, H., Krishnamachari, B.: Randomized strategies for multi-user multi-channel opportunity sensing. In: Proceedings of IEEE CCNC Cognitive Radio Networks Workshop, Las Vegas, NV (2008)Google Scholar
  7. 7.
    Liang, Z., Liu, W., Zhou, P., Gao, F.: Randomized multi-user strategy for spectrum sharing in opportunistic spectrum access network. In: Proceedings of IEEE ICC Workshops, Beijing, China (2008)Google Scholar
  8. 8.
    Ahmad, B.I., Tarczynski, A.: Reliable wideband multichannel spectrum sensing using randomized sampling schemes. Signal Process. 90(7), 2232–2242 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lapiccirella, F.E., Ding, Z., Liu, X.: Cognitive spectrum access control based on intrinsic primary ARQ information. In: Proceedings of IEEE ICC 2010, Cape Town, South Africa (2010)Google Scholar
  10. 10.
    Lee, C.H. Haenggi, M.: Delay analysis of spatio-temporal channel access for cognitive networks. In: Proceedings of IEEE ICC 2011, Kyoto, Japan (2011)Google Scholar
  11. 11.
    Wild, B., Ramchandran, K.: Detecting primary receivers for cognitive radio applications. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)Google Scholar
  12. 12.
    Mishra, S.M., Sahai, A., Brodersen, R.W.: Cooperative sensing among cognitive radios. In: Proceedings of IEEE ICC 2006, Istanbul, Turkey (2006)Google Scholar
  13. 13.
    Salameh, H.B., Krunz, M.: Channel access protocols for multihop opportunistic networks: challenges and recent developments. IEEE Networks 23(4), 14–19 (2009)CrossRefGoogle Scholar
  14. 14.
    Akyildiz, I.F., Lee, W.Y., Chowdhury, K.R.: CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks (Elsevier) 7(5), 810–836 (2009)Google Scholar
  15. 15.
    Raman, C., Yates, R.D., Mandayam, N.B.: Scheduling variable rate links via a spectrum server. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)Google Scholar
  16. 16.
    Lotfinezhad, M., Liang, B., Sousa, E.S.: Optimal control of constrained cognitive radio networks with dynamic population size. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)Google Scholar
  17. 17.
    Hosseinabadi, G., Manshaei, M.H., Hubaux, J.P.: Spectrum sharing games of infrastructure-based cognitive radio networks. Tech. rep. (2008)
  18. 18.
    Zhao, Q., Tong, L., Swami, A., Chen, Y.: Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMPD framework. IEEE J. Sel. Area. Comm. 25(3), 589–600 (2007)CrossRefGoogle Scholar
  19. 19.
    Huang, S., Liu, X., Ding, Z.: Opportunistic spectrum access in cognitive radio networks. In: Proceedings of IEEE INFOCOM 2008, Phoenix, AZ (2008)Google Scholar
  20. 20.
    Wang, F., Krunz, M., Cui, S.: Price-based spectrum management in cognitive radio networks. IEEE J. Sel. Top. Signal Process. 2(1), 74–87 (2008)CrossRefGoogle Scholar
  21. 21.
    Xu, H., Li, B.: Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)Google Scholar
  22. 22.
    Salameh, H.B., Krunz, M., Younis, O.: MAC protocol for opportunistic cognitive radio networks with soft guarantees. IEEE Trans. Mobile Comput. 8(10), 1339–1352 (2009)CrossRefGoogle Scholar
  23. 23.
    IEEE Working Group on Wireless Regional Area Networks: Enabling rural broadband wireless access using cognitive radio technology in TV whitespaces. Accessed 25 July 2012
  24. 24.
    Benko, J., Chang, S.Y., Cheong, Y.C., Cordeiro, C., Gao, W., Hu, W., Khalona, R., Kim, C.J., Kim, H.S., Kuffner, S., Laskar, J., Liang, Y.C., Sofer, E.: IEEE802.22-06/0069r2: Draft PHY/MAC specification for IEEE 802.22 (2006)Google Scholar
  25. 25.
    IEEE DySPAN Standards Committee: Dynamic Spectrum Access Networks (DySPAN). Accessed 25 July 2012
  26. 26.
    Mitola III, J.: Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. thesis, KTH Royal Institute of Technology (2000)Google Scholar
  27. 27.
    Mitola III, J.: Cognitive radio for flexible mobile multimedia communication. In: Proceedings of IEEE International Workshop on Mbile Multimedia Communications (MoMuC), San Diego, CA (1999)Google Scholar
  28. 28.
    Ettus Research LLC: Accessed 25 July 2012
  29. 29.
    GNU Radio: Accessed 25 July 2012
  30. 30.
    CROSS: Cognitive Radio Open Source System. Accessed 25 July 2012
  31. 31.
    Yang, L., Zhang, Z., Hou, W., Zhao, B.Y., Zheng, H.: Papyrus: A software platform for distributed dynamic spectrum sharing using SDRs. ACM SIGCOMM Comput. Comm. Rev. 41, 31–37 (2011)zbMATHCrossRefGoogle Scholar
  32. 32.
    Tan, K., Zhang, J., Fang, J., Liu, H., Ye, Y., Wang, S., Zhang, Y., Wu, H., Wang, W., Voelker, G.M.: Sora: High-performance software radio using general-purpose multi-core processors. Comm. ACM 54, 99–107 (2011)CrossRefGoogle Scholar
  33. 33.
    Nychis, G., Hottelier, T., Yang, Z., Seshan, S., Steenkiste, P.: Enabling MAC protocol implementations on software-defined radios. In: Proceedings of USENIX symposium on NSDI, Boston, MA (2009)Google Scholar
  34. 34.
    Sharma, A., Belding, E.M.: FreeMAC: Framework for multi-channel MAC development on 802.11 hardware. In: Proceedings of ACM PRESTO’08 Workshop, Seattle, WA (2008)Google Scholar
  35. 35.
    Lu, M.H., Steenkiste, P., Chen, T.: FlexMAC: A wireless protocol development and evaluation platform based on commodity hardware. In: Proceedings of ACM WiNTECH 2008, San Francisco, CA (2008)Google Scholar
  36. 36.
    Sharma, A., Tiwari, M., Zheng, H.: MadMAC: Building a reconfigurable radio testbed using commodity 802.11 hardware. In: Proceedings of IEEE SECON WSDR, Reston, VA (2006)Google Scholar
  37. 37.
    Doerr, C., Neufeld, M., Fifield, J., Weingart, T., Sicker, D., Grunwald, D.: MultiMAC - an adaptive MAC framework for dynamic radio networking. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)Google Scholar
  38. 38.
    Messerschmitt, D.G.: Rethinking components: From hardware and software to systems. Proc. IEEE 95, 1473–1496 (2007)CrossRefGoogle Scholar
  39. 39.
    Miljanic, Z., Seskar, I., Le, K., Raychaudhuri, D.: The WINLAB network centric cognitive radio platform - WiNC2R. In: Proceedings of CrownComm 2007, Orlando, FL (2007)Google Scholar
  40. 40.
    Marshall, P.: Extending the reach of cognitive radio. Proc. IEEE 97, 612–625 (2009)CrossRefGoogle Scholar
  41. 41.
    DARPA’s Wieless Network after Next Project: Accessed 25 July 2012
  42. 42.
    Ansari, J., Zhang, X., Achtzehn, A., Petrova, M., Mahonen, P.: A flexible mac development framework for cognitive radio systems. In: Wireless Communications and Networking Conference (WCNC), 2011 IEEE, Quintana Roo, Mexico (2011)Google Scholar
  43. 43.
    Rice University WARP Project: Accessed 25 July 2012

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ahmed Khattab
    • 1
  • Dmitri Perkins
    • 2
  • Magdy Bayoumi
    • 2
  1. 1.Department of Electronics and Electrical Communications EngineeringCairo UniversityGizaEgypt
  2. 2.The Center for Advanced Computer StudiesUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations