Systems Biology of Cell Death in Hepatocytes

  • Rebekka Schlatter
  • Kathrin Schmich
  • Christoph Borner
  • Michael Ederer
  • Irmgard Merfort


The processes of liver regeneration and liver disease are regulated by a complex network of soluble and cell-associated apoptotic and inflammatory signals. To obtain insights into the mechanistic interplay of these signals and to define new therapeutic strategies, the combination of experimental data and mathematical modeling is a promising systems biological approach. Here, we review recent results in death receptor-mediated hepatocyte apoptosis focusing on Fas/CD95 and TNFα-mediated cell death. In this context, we present two complementary approaches of modeling death receptor-mediated cell death in hepatocytes. On the one hand we describe an ODE model of TNFα and FasL sensitising, which was extended by adding the regulation of pJNK and the generation of ROS after combined TNFα and ActD treatment and in which a published NF-κB model was integrated. This model is suitable for the integration of further pathway models, thus contributing to a better understanding of the network. On the other hand a literature-based and in parts experimentally validated comprehensive Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways connected with them is described. In the future, the according mathematical models will be a valuable approach to understand the complex crosstalks and interactions within hepatocytes and between different cells in the liver. Thus, modeling of apoptosis in hepatocytes will proceed on different routes on the way to a functional representation of the whole liver.



This work was funded by the BMBF (German Federal Ministry of Education and Research) within the Virtual Liver Network (


  1. Akazawa Y, Gores GJ (2007) Death receptor-mediated liver injury. Semin Liver Dis 27:327–338PubMedCrossRefGoogle Scholar
  2. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377PubMedCrossRefGoogle Scholar
  3. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40PubMedCrossRefGoogle Scholar
  4. Ben MT, Barash H, Kang TB, Kim JC, Kovalenko A, Gross E, Schuchmann M, Abramovitch R, Galun E, Wallach D (2007) Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology 45:1014–1024CrossRefGoogle Scholar
  5. Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann DW, Kalthoff H, Krammer PH, Eils R (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851PubMedCrossRefGoogle Scholar
  6. Boole G (1854) An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Walter and Maberly, LondonGoogle Scholar
  7. Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C (1998) Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol 275:G387–G392PubMedGoogle Scholar
  8. Callus BA, Moujallad DM, Silke J, Gerl R, Jabbour AM, Ekert PG, Vaux DL (2008) Triggering of apoptosis by Puma is determined by the threshold set by prosurvival Bcl-2 family proteins. J Mol Biol 384:313–323PubMedCrossRefGoogle Scholar
  9. Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6:e1000702PubMedCrossRefGoogle Scholar
  10. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278PubMedCrossRefGoogle Scholar
  11. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613PubMedCrossRefGoogle Scholar
  12. Cheong R, Hoffmann A, Levchenko A (2008) Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 4:192PubMedCrossRefGoogle Scholar
  13. Corazza N, Jakob S, Schaer C, Frese S, Keogh A, Stroka D, Kassahn D, Torgler R, Mueller C, Schneider P, Brunner T (2006) TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Invest 116:2493–2499PubMedCrossRefGoogle Scholar
  14. Costelli P, Aoki P, Zingaro B, Carbo N, Reffo P, Lopez-Soriano FJ, Bonelli G, Argiles JM, Baccino FM (2003) Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 10:997–1004PubMedCrossRefGoogle Scholar
  15. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70PubMedCrossRefGoogle Scholar
  16. Devloo V, Hansen P, Labbe M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65:1025–1051PubMedCrossRefGoogle Scholar
  17. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22:e124–e131PubMedCrossRefGoogle Scholar
  18. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–S53PubMedCrossRefGoogle Scholar
  19. Hatano E (2007) Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol 22(Suppl 1):S43–S44PubMedCrossRefGoogle Scholar
  20. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279PubMedCrossRefGoogle Scholar
  21. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661PubMedCrossRefGoogle Scholar
  22. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  23. Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3:221–227PubMedCrossRefGoogle Scholar
  24. Kaufmann T, Tai L, Ekert PG, Huang DC, Norris F, Lindemann RK, Johnstone RW, Dixit VM, Strasser A (2007) The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129:423–433PubMedCrossRefGoogle Scholar
  25. Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A (2009) Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30:56–66PubMedCrossRefGoogle Scholar
  26. Klamt S, Gilles ED (2004) Minimal cut sets in biochemical reaction networks. Bioinformatics 20:226–234PubMedCrossRefGoogle Scholar
  27. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7:56PubMedCrossRefGoogle Scholar
  28. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with cell netanalyzer. BMC Syst Biol 1:2PubMedCrossRefGoogle Scholar
  29. Klingmuller U, Bauer A, Bohl S, Nickel PJ, Breitkopf K, Dooley S, Zellmer S, Kern C, Merfort I, Sparna T, Donauer J, Walz G, Geyer M, Kreutz C, Hermes M, Gotschel F, Hecht A, Walter D, Egger L, Neubert K, Borner C, Brulport M, Schormann W, Sauer C, Baumann F, Preiss R, MacNelly S, Godoy P, Wiercinska E, Ciuclan L, Edelmann J, Zeilinger K, Heinrich M, Zanger UM, Gebhardt R, Maiwald T, Heinrich R, Timmer J, von WF, Hengstler JG (2006) Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst Biol 153:433–447CrossRefGoogle Scholar
  30. Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795PubMedCrossRefGoogle Scholar
  31. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973PubMedCrossRefGoogle Scholar
  32. Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O, Hacker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wajant H (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380PubMedCrossRefGoogle Scholar
  33. Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21:551–555PubMedCrossRefGoogle Scholar
  34. Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH (2007) Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem 282:13664–13671PubMedCrossRefGoogle Scholar
  35. Lavrik IN, Eils R, Fricker N, Pforr C, Krammer PH (2009) Understanding apoptosis by systems biology approaches. Mol Biosyst 5:1105–1111PubMedCrossRefGoogle Scholar
  36. Legewie S, Bluthgen N, Herzel H (2006) Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol 2:e120PubMedCrossRefGoogle Scholar
  37. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNF-α mediated cell death. Science 305:1471–1474PubMedCrossRefGoogle Scholar
  38. Lin A (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24PubMedCrossRefGoogle Scholar
  39. Lipniacki T, Paszek P, Brasier AR, Luxon B, Kimmel M (2004) Mathematical model of NF-κB regulatory module. J Theor Biol 228:195–215PubMedCrossRefGoogle Scholar
  40. Li-Weber M, Krammer PH (2003) Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 15:145–157PubMedCrossRefGoogle Scholar
  41. Mai Z, Liu H (2009) Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving. J Theor Biol 259:760–769PubMedCrossRefGoogle Scholar
  42. Malhi H, Gores GJ (2008) Cellular and molecular mechanisms of liver injury. Gastroenterology 134:1641–1654PubMedCrossRefGoogle Scholar
  43. Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90:1165–1194PubMedCrossRefGoogle Scholar
  44. McKenzie MD, Carrington EM, Kaufmann T, Strasser A, Huang DC, Kay TW, Allison J, Thomas HE (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic β-cells. Diabetes 57:1284–1292PubMedCrossRefGoogle Scholar
  45. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300PubMedCrossRefGoogle Scholar
  46. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190PubMedCrossRefGoogle Scholar
  47. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-κB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305PubMedCrossRefGoogle Scholar
  48. Mohammed FF, Khokha R (2005) Thinking outside the cell: proteases regulate hepatocyte division. Trends Cell Biol 15:555–563PubMedCrossRefGoogle Scholar
  49. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ 13:730–737PubMedCrossRefGoogle Scholar
  50. Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352PubMedCrossRefGoogle Scholar
  51. Nowak M, Gaines GC, Rosenberg J, Minter R, Bahjat FR, Rectenwald J, MacKay SL, Edwards CK III, Moldawer LL (2000) LPS-induced liver injury in d-galactosamine-sensitized mice requires secreted TNF-α and the TNF-p55 receptor. Am J Physiol Regul Integr Comp Physiol 278:R1202–R1209PubMedGoogle Scholar
  52. O’Dea EL, Kearns JD, Hoffmann A (2008) UV as an amplifier rather than inducer of NF-κB activity. Mol Cell 30:632–641PubMedCrossRefGoogle Scholar
  53. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809PubMedCrossRefGoogle Scholar
  54. Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G (2006) The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13:712–729PubMedCrossRefGoogle Scholar
  55. Papa S, Bubici C, Zazzeroni F, Franzoso G (2009) Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways. Biol Chem 390:965–976PubMedCrossRefGoogle Scholar
  56. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zornig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450PubMedCrossRefGoogle Scholar
  57. Philippi N, Walter D, Schlatter R, Ferreira K, Ederer M, Sawodny O, Timmer J, Borner C, Dandekar T (2009) Modeling system states in liver cells: survival, apoptosis and their modifications in response to viral infection. BMC Syst Biol 3:97PubMedCrossRefGoogle Scholar
  58. Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol 3:279–296CrossRefGoogle Scholar
  59. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3:e163PubMedCrossRefGoogle Scholar
  60. Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S (2009) The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 5:e1000438PubMedCrossRefGoogle Scholar
  61. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687PubMedCrossRefGoogle Scholar
  62. Schlatter R, Conzelmann H, Gilles ED, Sawodny O, Sauter T (2009a) Analysis of an apoptotic core model focused on experimental design using artificial data. IET Syst Biol 3:255–265PubMedCrossRefGoogle Scholar
  63. Schlatter R, Schmich K, Avalos VI, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O (2009b) ON/OFF and beyond-a boolean model of apoptosis. PLoS Comput Biol 5:e1000595PubMedCrossRefGoogle Scholar
  64. Schlatter R, Schmich K, Trefzger J, Sawodny O, Ederer M, Merfort I (2011) Modeling of TNFalpha-induced apoptosis in hepatocytes. PLoS One 6:e18646PubMedCrossRefGoogle Scholar
  65. Schmich K, Schlatter R, Corazza N, Ferreira KS, Ederer M, Brunner T, Borner C, Merfort I (2011) Tumor necrosis factor alpha sensitizes primary murine hepatocytes to Fas/CD95-induced apoptosis in a Bim- and Bid-dependent manner. Hepatology 53:282–292PubMedCrossRefGoogle Scholar
  66. Schungel S, Buitrago-Molina LE, Nalapareddy P, Lebofsky M, Manns MP, Jaeschke H, Gross A, Vogel A (2009) The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology 50:1558–1566PubMedCrossRefGoogle Scholar
  67. Shannon CA (1940) Symbolic analysis of relay and switching circuits. Massachusetts Institute of Technology, Department of Electrical Engineering, CambridgeGoogle Scholar
  68. Stehlik C, De MR, Kumabashiri I, Schmid JA, Binder BR, Lipp J (1998) Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 188:211–216PubMedCrossRefGoogle Scholar
  69. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192PubMedCrossRefGoogle Scholar
  70. Sun B, Karin M (2008) NF-κB signaling, liver disease and hepatoprotective agents. Oncogene 27:6228–6244PubMedCrossRefGoogle Scholar
  71. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847PubMedCrossRefGoogle Scholar
  72. Thomas R (1998) Laws for the dynamics of regulatory networks. Int J Dev Biol 42:479–485PubMedGoogle Scholar
  73. Thomas R, D’Ari R (1990) Biological feedback. CRC, Boca RatonGoogle Scholar
  74. Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497PubMedCrossRefGoogle Scholar
  75. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693PubMedCrossRefGoogle Scholar
  76. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65PubMedCrossRefGoogle Scholar
  77. Walter D, Schmich K, Vogel S, Pick R, Kaufmann T, Hochmuth FC, Haber A, Neubert K, McNelly S, Von WF, Merfort I, Maurer U, Strasser A, Borner C (2008) Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology 48:1942–1953PubMedCrossRefGoogle Scholar
  78. Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703PubMedCrossRefGoogle Scholar
  79. Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermohlen O, Bruning JC, Schutze S, Kronke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163PubMedCrossRefGoogle Scholar
  80. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rebekka Schlatter
    • 1
  • Kathrin Schmich
    • 2
  • Christoph Borner
    • 3
    • 4
    • 5
  • Michael Ederer
    • 1
  • Irmgard Merfort
    • 2
  1. 1.Institute for System DynamicsUniversity of StuttgartStuttgartGermany
  2. 2.Department of Pharmaceutical Biology and BiotechnologyAlbert Ludwigs University FreiburgFreiburgGermany
  3. 3.Institute of Molecular Medicine and Cell ResearchAlbert Ludwigs University FreiburgFreiburgGermany
  4. 4.Spemann Graduate School of Biology and Medicine (SGBM)Albert Ludwigs University FreiburgFreiburgGermany
  5. 5.Bioss—Centre for Biological Signaling StudiesAlbert Ludwigs University FreiburgFreiburgGermany

Personalised recommendations