Simulating Vortex Wakes of Flapping Plates

  • J. X. Sheng
  • A. Ysasi
  • D. Kolomenskiy
  • E. Kanso
  • M. Nitsche
  • K. Schneider
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 155)


We compare different models to simulate two-dimensional vortex wakes behind oscillating plates. In particular, we compare solutions using a vortex sheet model and the simpler Brown–Michael model to solutions of the full Navier–Stokes equations obtained using a penalization method. The goal is to determine whether simpler models can be used to obtain good approximations to the form of the wake and the induced forces on the body.

Primary 76B47

Key words

Separated shear flows vortex sheets Brown–Michael penalization method  



The work of AY and EK is supported by the NSF CAREER award CMMI 06-44925 and the grant CCF08-11480.


  1. [1]
    Alben S (2010) Passive and active bodies in vortex-street wakes. J Fluid Mech 642:92–125MathSciNetCrossRefGoogle Scholar
  2. [2]
    Alben S, Shelley M (2005) Coherent locomotion as an attracting state for a free flapping body. PNAS 102:11163–11166CrossRefGoogle Scholar
  3. [3]
    Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81:497–520MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Aref H, Stremler M, Ponta F (2006) Exotic vortex wakes – point vortex solutions. J Fluids Struct 22:929–940CrossRefGoogle Scholar
  5. [5]
    Carbou G, Fabrie P (2003) Boundary layer for a penalization method for viscous incompressible flow. Adv Differ Equ 8:1453–1480MathSciNetMATHGoogle Scholar
  6. [6]
    Cortelezzi L, Leonard A (1993) Point vortex model of the undsteady separated flow past a semi-infinted plate with transverse motion. Fluid Dyn Res 11:264–295CrossRefGoogle Scholar
  7. [7]
    Eldredge JD (2005) Efficient tools for the simulation of flapping wing flows. In: AIAA 2005–0085, Reno, pp 1–11Google Scholar
  8. [8]
    Eldredge JD, Wang C (2010) High-fidelity simulations and low-order modeling of a rapidly pitching plate. In: AIAA 2010–4281, Chicago, pp 1–19Google Scholar
  9. [9]
    Godoy-Diana R, Aider J-L, Wesfreid JE (2008) Transitions in the wake of a flapping foil. Phys Rev E 77:016308CrossRefGoogle Scholar
  10. [10]
    Kanso E (2009) Swimming due to transverse shape deformations. J Fluid Mech 631:127–148MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Kanso E, Marsden JE, Rowley CW, Melli-Huber JB (2005) Locomotion of articulated bodies in a perfect fluid. J Nonlinear Sci 15:255–289MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Kern S, Koumoutsakos P (2006) Simulations of optimized anguilliform swimming. J Exp Biol 209:4841–4857CrossRefGoogle Scholar
  13. [13]
    Krasny R (1989) Desingularization of periodic vortex sheet roll-up. J Comput Phys 65:292–313CrossRefGoogle Scholar
  14. [14]
    Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J Comp Phys 228:5687–5709MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Jones MA (2003) The separated flow of an invisicd fluid around a moving flat plate. J Fluid Mech 496:405–441MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Jones MA, Shelley MJ (2005) Falling cards. J Fluid Mech 540:393–425MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Michelin S, Llewellyn Smith SG (2009) An unsteady point vortex method for coupled fluid-solid problems. Theor Comput Fluid Dyn 23:127–153MATHCrossRefGoogle Scholar
  18. [18]
    Nitsche M, Krasny R (1994) A numerical study of vortex ring formation at the edge of a circular tube. J Fluid Mech 276:139–161MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Pullin DI, Wang ZJ (2004) Unsteady forces on an accelerating plate and applications to hovering insect flight. J Fluid Mech 509:1–21MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Rohr JJ, Fish FE (2004) Strouhal numbers and optimization of swimming by odontocete cetaceans. J Exp Biol 206:1633–1642CrossRefGoogle Scholar
  21. [21]
    Schneider K (2005) Numerical simulation of the transient flow behaviour in chemical reactors using a penalization method. Comput Fluid 34:1223–1238MATHCrossRefGoogle Scholar
  22. [22]
    Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411–423MATHCrossRefGoogle Scholar
  23. [23]
    Shelley M, Alben S (2008) Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys Rev Lett 100:074301CrossRefGoogle Scholar
  24. [24]
    Shukla RK, Eldredge JD (2007) An inviscid model for vortex shedding from a deforming body. Theor Comput Fluid Dyn 21:343–368CrossRefGoogle Scholar
  25. [25]
    Triantafyllou MS, Triantafyllou GS, Gophalkrishnan R (1991) Wake mechanics for thrust generation in oscillation foils. Phys Fluid A 3(12):2835–2837CrossRefGoogle Scholar
  26. [26]
    Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Annu Rev Fluid Mech 32:33–53MathSciNetCrossRefGoogle Scholar
  27. [27]
    Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341MATHCrossRefGoogle Scholar
  28. [28]
    Ysasi A, Kanso E, Newton PK (2011) Wake structure of a deformable Joukowski airfoil. Physica D 240(20):1574–1582MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • J. X. Sheng
    • 1
    • 2
  • A. Ysasi
    • 3
  • D. Kolomenskiy
    • 1
    • 4
  • E. Kanso
    • 3
  • M. Nitsche
    • 5
  • K. Schneider
    • 1
  1. 1.M2P2 CNRS, Aix-Marseille UniversitéMarseilleFrance
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.University of Southern CaliforniaLos AngelesUSA
  4. 4.Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)ToulouseFrance
  5. 5.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations