Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance

  • Hassan Masoud
  • Alexander AlexeevEmail author
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 155)


We use fully-coupled three-dimensional computer simulations to examine aerodynamics of elastic wings oscillating at resonance. Wings are modeled as planar elastic plates plunging sinusoidally at a low Reynolds number. The wings are tilted from horizontal, thereby generating asymmetric flow patterns and non-zero net aerodynamic forces. Our simulations reveal that resonance oscillations of elastic wings drastically enhance aerodynamic lift, thrust, and efficiency. We show that flexible wings driven at resonance by a simple harmonic stroke generate lift comparable to that of small insects that employ a significantly more complicated stroke kinematics. The results of our simulations point to the feasibility of using flexible resonant wings with a simple stroke for designing efficient microscale flying vehicles.

Key words

Low Reynolds number flapping flight flexible wing resonance lattice Boltzmann model MAV 


  1. [1]
    Ellington CP (1984) The aerodynamics of hovering insect flight. Part 2. Morphological parameters. Philos Trans R Soc B 305(1122):17–40Google Scholar
  2. [2]
    Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRefGoogle Scholar
  3. [3]
    Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208CrossRefGoogle Scholar
  4. [4]
    Lehmann FO (2008) When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol 211(2):224–233CrossRefGoogle Scholar
  5. [5]
    Shyy W, Lian Y, Tang J, Liu H, Trizila P, Stanford B, Bernal L, Cesnik C, Friedmann P, Ifju P (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24(4):351–373CrossRefGoogle Scholar
  6. [6]
    Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103(11):118102–118104CrossRefGoogle Scholar
  7. [7]
    Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42(2):129–172CrossRefGoogle Scholar
  8. [8]
    Zbikowski R (2002) On aerodynamic modelling of an insect-like flapping wring in hover for micro air vehicles. Philos Trans R Soc A 360(1791):273–290CrossRefGoogle Scholar
  9. [9]
    Wood RJ (2008) The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot 24(2):341–347CrossRefGoogle Scholar
  10. [10]
    Ellington CP (1984) The aerodynamics of hovering insect flight. Part 3. Kinematics. Philos Trans R Soc B 305(1122):41–78Google Scholar
  11. [11]
    Watman D, Furukawa T (2008) A system for motion control and analysis of high-speed passively twisting flapping wings. In: Proceedings of the IEEE international conference robotics, Pasadena, pp 1576–1581Google Scholar
  12. [12]
    Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212(1):95–105CrossRefGoogle Scholar
  13. [13]
    Michelin S, Smith SGL (2009) Resonance and propulsion performance of a heaving flexible wing. Phys Fluids 21(7):071902CrossRefGoogle Scholar
  14. [14]
    Masoud H, Alexeev A (2010) Resonance of flexible flapping wings at low Reynolds number. Phys Rev E 81(5):056304CrossRefGoogle Scholar
  15. [15]
    Spagnolie SE, Moret L, Shelley MJ, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22(4):041903CrossRefGoogle Scholar
  16. [16]
    Liu L, Fang Z, He Z (2008) Optimization design of flapping mechanism and wings for flapping-wing MAVs. Intell Robot Appl 5314:245–255CrossRefGoogle Scholar
  17. [17]
    Thiria B, Godoy-Diana R (2010) How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E 82(1):015303CrossRefGoogle Scholar
  18. [18]
    Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22(11):111902CrossRefGoogle Scholar
  19. [19]
    Ho S, Nassef H, Pornsinsirirak N, Tai YC, Ho CM (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39(8):635–681CrossRefGoogle Scholar
  20. [20]
    Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45(10):2448–2457CrossRefGoogle Scholar
  21. [21]
    Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir Biomim 4(1):015002CrossRefGoogle Scholar
  22. [22]
    Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22(7):071703CrossRefGoogle Scholar
  23. [23]
    Qi DW, Liu YM, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow. Phys Fluid 22(9):091901CrossRefGoogle Scholar
  24. [24]
    Masoud H, Alexeev A (2010) Modeling magnetic microcapsules that crawl in microchannels. Soft Matter 6(4):794–799CrossRefGoogle Scholar
  25. [25]
    Alexeev A, Verber R, Balazs AC (2006) Designing compliant substrates to regulate the motion of vesicles. Phys Rev Lett 96(14):148103CrossRefGoogle Scholar
  26. [26]
    Alexeev A, Verberg R, Balazs AC (2005) Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38(24):10244–10260CrossRefGoogle Scholar
  27. [27]
    Alexeev A, Yeomans JM, Balazs AC (2008) Designing synthetic, pumping cilia that switch the flow direction in microchannels. Langmuir 24(21):12102–12106CrossRefGoogle Scholar
  28. [28]
    Alexeev A, Balazs AC (2007) Designing smart systems to selectively entrap and burst microcapsules. Soft Matter 3(12):1500–1505CrossRefGoogle Scholar
  29. [29]
    Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22(16):6739–6742CrossRefGoogle Scholar
  30. [30]
    Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluid 13(11):3452–3459CrossRefGoogle Scholar
  31. [31]
    Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordzbMATHGoogle Scholar
  32. [32]
    Chen H, Filippova O, Hoch J, Molvig K, Shock R, Teixeira C, Zhang R (2006) Grid refinement in lattice Boltzmann methods based on volumetric formulation. Phys A 362(1):158–167CrossRefGoogle Scholar
  33. [33]
    Zhu G, Alexeev A, Balazs AC (2007) Designing constricted microchannels to selectively entrap soft particles. Macromolecules 40(14):5176–5181CrossRefGoogle Scholar
  34. [34]
    Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207zbMATHCrossRefGoogle Scholar
  35. [35]
    Shih CC, Buchanan HJ (1971) Drag on oscillating flat plates in liquids at low Reynolds numbers. J. Fluid Mech 48(2):229–239CrossRefGoogle Scholar
  36. [36]
    Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440CrossRefGoogle Scholar
  37. [37]
    Van Eysden CA, Sader JE (2007) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys 101(4):044908CrossRefGoogle Scholar
  38. [38]
    Berman GJ, Wang ZJ (2007) Energy-minimizing kinematics in hovering insect flight. J Fluid Mech 582:153–168MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRefGoogle Scholar
  40. [40]
    Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRefGoogle Scholar
  41. [41]
    Bronson JR, Pulskamp JS, Polcawich RG, Kroninger CM, Wetzel ED (2009) PZT MEMS actuated flapping wings for insect-inspired robotics. In: Proceedings of the IEEE 22nd international conference micro electro mechanical systems, Sorrento, pp 1047–1050Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations