Advertisement

Computing optimal Strokes for Low Reynolds Number Swimmers

  • Antonio Desimone
  • Luca Heltai
  • FranÇois Alouges
  • Aline Lefebvre-Lepot
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 155)

Abstract

We discuss connections between low-Reynolds-number swimming and geometric control theory, and present a general algorithm for the numerical computation of energetically optimal strokes. As an illustration of our approach, we show computed motility maps and optimal strokes for two model swimmers.

Key words

Biopropulsion in water and in air low-Reynolds-number motions control theory and feedback locomotion motility maps 

References

  1. 1.
    Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low Reynolds number swimmers: an example. J Nonlinear Sci 18:277MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alouges F, DeSimone A, Lefebvre A (2009) Optimal strokes for axisymmetric microswimmers. Eur Phys J E 28:279CrossRefGoogle Scholar
  3. 3.
    Alouges F, DeSimone A, Heltai L (2011) Numerical strategies for stroke optimization of axisymmetric microswimmers. Math Model Method Appl Sci 21:361MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Avron JE, Kenneth O, Oakmin DH (2005) Pushmepullyou: an efficient micro-swimmer. New J Phys 7:234CrossRefGoogle Scholar
  5. 5.
    Jurdjevic V (1997) Geometric control theory. Cambridge University Press, Cambridge/New YorkzbMATHGoogle Scholar
  6. 6.
    Lighthill MJ (1952) On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math 2:109MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9): 096601MathSciNetCrossRefGoogle Scholar
  8. 8.
    Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds numbers: three linked spheres. Phys Rev E 69:062901CrossRefGoogle Scholar
  9. 9.
    Purcell EM (1977) Life at low Reynolds numbers. Am J Phys 45:3CrossRefGoogle Scholar
  10. 10.
    Shapere A, Wilczek F (1987) Self-propulsion at low Reynolds numbers. Phys Rev Lett 58:2051CrossRefGoogle Scholar
  11. 11.
    Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond Ser A 209:447zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Antonio Desimone
    • 1
  • Luca Heltai
    • 1
  • FranÇois Alouges
    • 2
  • Aline Lefebvre-Lepot
    • 2
  1. 1.SISSATriesteItaly
  2. 2.CMAP UMR 7641, École Polytechnique CNRSPalaiseau CedexFrance

Personalised recommendations