Molecular Dynamics Simulations of the Ribosome

Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 1)

Abstract

Structural biology techniques such as crystallography and cryo-EM produce high resolution snap shots of the ribosome at various stages of protein synthesis. Single molecule studies yield time-resolved measurements with low spatial resolution. Currently, there is no experimental technique capable of producing time-resolved trajectories of the ribosome with atomistic resolution. Computer simulations are critical for furthering our understanding of the ribosome because they fill this gap. We review computational studies of the ribosome, including structural modeling, normal mode calculations, coarse grain simulations, and molecular dynamics simulations. Several success stories have occurred, where predictions based on computer simulations were verified experimentally.

References

  1. Auffinger P, LouiseMay S, Westhof E (1999) Molecular dynamics simulations of solvated yeast tRNA(Asp). Biophys J 76:50–64PubMedCrossRefGoogle Scholar
  2. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920PubMedCrossRefGoogle Scholar
  3. Baxter-Roshek JL, Petrov AN, Dinman JD (2007) Optimization of ribosome structure and function by rRNA base modification. PLoS One 2:e174PubMedCrossRefGoogle Scholar
  4. Berk V, Zhang W, Pai RD, Cate JH (2006) Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 103:15830–15834PubMedCrossRefGoogle Scholar
  5. Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:73–77PubMedCrossRefGoogle Scholar
  6. Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Opin Struct Biol 19:103–109PubMedCrossRefGoogle Scholar
  7. Blanchard SC, Kim HD, Gonzalez RL Jr, Puglisi JD, Chu S (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101:12893–12898PubMedCrossRefGoogle Scholar
  8. Blanchard SC, Cooperman BS, Wilson DN (2010) Probing translation with small-molecule inhibitors. Chem Biol 17:633–645PubMedCrossRefGoogle Scholar
  9. Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS (2004) From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 279:17697–17706PubMedCrossRefGoogle Scholar
  10. Bockmann RA, Grubmuller H (2002) Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nat Struct Biol 9:198–202PubMedGoogle Scholar
  11. Carter AP, Clemons WM, Brodersen DE, MorganWarren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348PubMedCrossRefGoogle Scholar
  12. Chacon P, Tama F, Wriggers W (2003) Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. J Mol Biol 326:485–492PubMedCrossRefGoogle Scholar
  13. Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH, Spahn CM (2008) A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 15:910–915PubMedCrossRefGoogle Scholar
  14. Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP, Noller HF, Ha T (2009) Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci USA 106:2571–2576PubMedCrossRefGoogle Scholar
  15. Demeshkina N, Jenner L, Yusupova G, Yusupov M (2010) Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol 20:325–332PubMedCrossRefGoogle Scholar
  16. Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004PubMedCrossRefGoogle Scholar
  17. Dlugosz M, Trylska J (2009) Aminoglycoside association pathways with the 30S ribosomal subunit. J Phys Chem B 113:7322–7330PubMedCrossRefGoogle Scholar
  18. Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF (2007) Observation of intersubunit movement of the ribosome in solution using FRET. J Mol Biol 370:530–540PubMedCrossRefGoogle Scholar
  19. Feldman MB, Terry DS, Altman RB, Blanchard SC (2010) Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 6:244PubMedCrossRefGoogle Scholar
  20. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333PubMedCrossRefGoogle Scholar
  21. Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16S rRNA. J Mol Biol 277:333–345PubMedCrossRefGoogle Scholar
  22. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322PubMedCrossRefGoogle Scholar
  23. Frank J, Sengupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M (2005) The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett 579:959–962PubMedCrossRefGoogle Scholar
  24. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell 113:789–801PubMedCrossRefGoogle Scholar
  25. Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–699PubMedCrossRefGoogle Scholar
  26. Garcia AE, Sanbonmatsu KY (2001) Exploring the energy landscape of a beta hairpin in explicit solvent. Proteins 42:345–354PubMedCrossRefGoogle Scholar
  27. Ge X, Roux B (2010) Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B 114:9525–9539PubMedCrossRefGoogle Scholar
  28. Geggier P, Dave R, Feldman MB, Terry DS, Altman RB, Munro JB, Blanchard SC (2010) Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J Mol Biol 399:576–595PubMedCrossRefGoogle Scholar
  29. Ishida H, Hayward S (2008) Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Biophys J 95:5962–5973PubMedCrossRefGoogle Scholar
  30. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652PubMedCrossRefGoogle Scholar
  31. Kaul M, Pilch DS (2002) Thermodynamics of aminoglycoside-rRNA Rrecognition: the binding of neomycin-class aminoglycosides of the A site of 16S rRNA. Biochemistry 41:7695–7706PubMedCrossRefGoogle Scholar
  32. Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077PubMedCrossRefGoogle Scholar
  33. Li W, Ma B, Shapiro B (2003) Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations. Nucleic Acids Res 31:629–638PubMedCrossRefGoogle Scholar
  34. Lim VI, Curran JF (2001) Analysis of codon: anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA 7:942–957PubMedCrossRefGoogle Scholar
  35. Majumdar ZK, Hickerson R, Noller HF, Clegg RM (2005) Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 351:1123–1145PubMedCrossRefGoogle Scholar
  36. Malhotra A, Tan RK, Harvey SC (1990) Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc Natl Acad Sci USA 87:1950–1954PubMedCrossRefGoogle Scholar
  37. Malhotra A, Tan RK, Harvey SC (1994) Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys J 66:1777–1795PubMedCrossRefGoogle Scholar
  38. Mankin A (2006) Antibiotic blocks mRNA path on the ribosome. Nat Struct Mol Biol 13:858–860PubMedCrossRefGoogle Scholar
  39. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590PubMedCrossRefGoogle Scholar
  40. Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC (2002) Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol 321:215–234PubMedCrossRefGoogle Scholar
  41. Meskauskas A, Dinman JD (2007) Ribosomal protein L3: gatekeeper to the A site. Mol Cell 25:877–888PubMedCrossRefGoogle Scholar
  42. Moazed D, Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–148PubMedCrossRefGoogle Scholar
  43. Munro JB, Altman RB, O’Connor N, Blanchard SC (2007) Identification of two distinct hybrid state intermediates on the ribosome. Mol Cell 25:505–517PubMedCrossRefGoogle Scholar
  44. Munro JB, Altman RB, Tung CS, Cate JH, Sanbonmatsu KY, Blanchard SC (2010a) Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc Natl Acad Sci USA 107:709–714PubMedCrossRefGoogle Scholar
  45. Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC (2010b) A fast dynamic mode of the EF-G-bound ribosome. EMBO J 29:770–781PubMedCrossRefGoogle Scholar
  46. Noel JK, Whitford PC, Sanbonmatsu KY, Onuchic JN (2010) SMOG@ctbp: simplified deployment of structure-based models in GROMACS. Nucleic Acids Res 38(Suppl):W657–W661PubMedCrossRefGoogle Scholar
  47. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902PubMedCrossRefGoogle Scholar
  48. Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline; edeine and IF3. EMBO J 20:1829–1839PubMedCrossRefGoogle Scholar
  49. Ratje R et al (2010) Head swivel on the ribosome facillitates translocation via intra-subunit tRNA hybrid sites. Nature 468:713–716PubMedCrossRefGoogle Scholar
  50. Razga F, Spackova N, Reblova K, Koca J, Leontis NB, Sponer J (2004) Ribosomal RNA kink-turn motif–a flexible molecular hinge. J Biomol Struct Dyn 22:183–194PubMedCrossRefGoogle Scholar
  51. Razga F, Koca J, Sponer J, Leontis NB (2005) Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. Biophys J 88:3466–3485PubMedCrossRefGoogle Scholar
  52. Sanbonmatsu KY (2006) Energy landscape of the ribosomal decoding center. Biochimie 88:1053–1059PubMedCrossRefGoogle Scholar
  53. Sanbonmatsu KY, Garcia AE (2002) Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins 46:225–234PubMedCrossRefGoogle Scholar
  54. Sanbonmatsu KY, Joseph S (2003) Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs. J Mol Biol 328:33–47PubMedCrossRefGoogle Scholar
  55. Sanbonmatsu KY, Joseph S, Tung CS (2005) Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 102:15854–15859PubMedCrossRefGoogle Scholar
  56. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstrom resolution. Cell 102:615–623PubMedCrossRefGoogle Scholar
  57. Schlunzen F, Zarivach R, Harms R, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821PubMedCrossRefGoogle Scholar
  58. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834PubMedCrossRefGoogle Scholar
  59. Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942PubMedCrossRefGoogle Scholar
  60. Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873PubMedCrossRefGoogle Scholar
  61. Sporlein S, Carstens H, Satzger H, Renner C, Behrendt R, Moroder L, Tavan P, Zinth W, Wachtveitl J (2002) Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation. Proc Natl Acad Sci USA 99:7998–8002PubMedCrossRefGoogle Scholar
  62. Tama F, Valle M, Frank J, Brooks CL 3rd (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323PubMedCrossRefGoogle Scholar
  63. Trabuco LG, Schreiner E, Eargle J, Cornish P, Ha T, Luthey-Schulten Z, Schulten K (2010a) The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. J Mol Biol 402:741–760PubMedCrossRefGoogle Scholar
  64. Trabuco LG, Harrison CB, Schreiner E, Schulten K (2010b) Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18:627–637PubMedCrossRefGoogle Scholar
  65. Trylska J, Konecny R, Tama F, Brooks CL 3rd, McCammon JA (2004) Ribosome motions modulate electrostatic properties. Biopolymers 74:423–431PubMedCrossRefGoogle Scholar
  66. Vaiana AC, Sanbonmatsu KY (2009) Stochastic gating and drug-ribosome interactions. J Mol Biol 386:648–661PubMedCrossRefGoogle Scholar
  67. Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal R, Frank J (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–3567PubMedCrossRefGoogle Scholar
  68. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10:899–906PubMedCrossRefGoogle Scholar
  69. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  70. VanLoock MS, Easterwood TR, Harvey SC (1999) Major groove binding of the tRNA/mRNA complex to the 16S ribosomal RNA decoding site. J Mol Biol 285:2069–2078PubMedCrossRefGoogle Scholar
  71. VanLoock MS, Agrawal RK, Gabashvili IS, Qi L, Frank J, Harvey SC (2000) Movement of the decoding region of the 16S ribosomal RNA accompanies tRNA translocation. J Mol Biol 304:507–515PubMedCrossRefGoogle Scholar
  72. Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326:1175–1188PubMedCrossRefGoogle Scholar
  73. Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K, Frank J (2009) Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106:1063–1068PubMedCrossRefGoogle Scholar
  74. Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528–533PubMedCrossRefGoogle Scholar
  75. Wang Y, Rader AJ, Bahar I, Jernigan RL (2004) Global ribosome motions revealed with elastic network model. J Struct Biol 147:302–314PubMedCrossRefGoogle Scholar
  76. Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009a) An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Proteins 75:430–441PubMedCrossRefGoogle Scholar
  77. Whitford PC, Schug A, Saunders J, Hennelly SP, Onuchic JN, Sanbonmatsu KY (2009b) Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. Biophys J 96:L7–L9PubMedCrossRefGoogle Scholar
  78. Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY (2010a) Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. RNA 16:1196–1204PubMedCrossRefGoogle Scholar
  79. Whitford PC, Onuchic JN, Sanbonmatsu KY (2010b) Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome. J Am Chem Soc 132:13170–13171PubMedCrossRefGoogle Scholar
  80. Wintermeyer W, Peske F, Beringer M, Gromadski KB, Savelsbergh A, Rodnina MV (2004) Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem Soc Trans 32:733–737PubMedCrossRefGoogle Scholar
  81. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105:115–126PubMedCrossRefGoogle Scholar
  82. Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394PubMedCrossRefGoogle Scholar
  83. Zhang W, Kimmel M, Spahn CM, Penczek PA (2008) Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–1776PubMedCrossRefGoogle Scholar
  84. Zhang W, Dunkle JA, Cate JH (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–1017PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Theoretical DivisionLos Alamos National Laboratory, Theoretical Biology and Biophysics GroupLos AlamosUSA
  2. 2.Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Center for Theoretical Biological Physics and Department of PhysicsUniversity of California at San DiegoSan DiegoUSA

Personalised recommendations