Advertisement

Nanoplasmonic Sensing for Nanomaterials Science, Catalysis, and Optical Gas Detection

  • Christoph LanghammerEmail author
  • Elin M. Larsson
  • Bengt Kasemo
  • Igor Zoric
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

In this chapter direct and indirect nanoplasmonic sensing approaches for applications in nanomaterials science and catalysis, as well as for gas sensing are discussed. It is illustrated how the typical features of nanoplasmonic sensors, e.g., high local and absolute sensitivity, high temporal resolution, remote readout, simple experimental arrangement, and generic robustness, together with a wide range of possible application conditions make the latter a potentially very powerful experimental tool to study processes on the surface and in the bulk of nanosized systems. The possibility to locally measure temperature at the nanoscale with nanoplasmonic optical calorimetry will also be discussed. Furthermore, numerous examples of nanoplasmonic sensors for gas-sensing applications will be reviewed and the role and potential of novel plasmonic metals will be addressed.

Keywords

Hydrogen Storage Quartz Crystal Microbalance Space Layer Hydride Formation Nanosized System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anker JN, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.CrossRefGoogle Scholar
  2. 2.
    Li Y, Somorjai GA. Nanoscale advances in catalysis and energy applications. Nano Lett. 2010;10(7):2289–95.CrossRefGoogle Scholar
  3. 3.
    Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13.CrossRefGoogle Scholar
  4. 4.
    Zhu J, Cui Y. Photovoltaics: more solar cells for less. Nat Mater. 2010;9:183–4.CrossRefGoogle Scholar
  5. 5.
    Maier SA, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater. 2003;2:229–32.CrossRefGoogle Scholar
  6. 6.
    Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366–77.CrossRefGoogle Scholar
  7. 7.
    Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008;20:2878–87.CrossRefGoogle Scholar
  8. 8.
    Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–8.CrossRefGoogle Scholar
  9. 9.
    Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1:193–212.CrossRefGoogle Scholar
  10. 10.
    Fredriksson H, et al. Hole-mask colloidal lithography. Adv Mater. 2007;19:4297–302.CrossRefGoogle Scholar
  11. 11.
    Langhammer C, Yuan Z, Zoric I, Kasemo B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006;6:833–8.CrossRefGoogle Scholar
  12. 12.
    Langhammer C, Kasemo B, Zoric I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J Chem Phys. 2007;26(19):194702.CrossRefGoogle Scholar
  13. 13.
    Pakizeh T, Langhammer C, Zoric I, Apell P, Kall M. Intrinsic fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 2009;9:882–6.CrossRefGoogle Scholar
  14. 14.
    Bigall NC, et al. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008;8:4588–92.CrossRefGoogle Scholar
  15. 15.
    Wang H, Tam F, Grady NK, Halas NJ. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B. 2005;109:18218–22.CrossRefGoogle Scholar
  16. 16.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7:1947–52.CrossRefGoogle Scholar
  17. 17.
    Duan JL, et al. Surface plasmon resonances of Cu nanowire arrays. J Phys Chem C. 2009;113:13583–7.CrossRefGoogle Scholar
  18. 18.
    Langhammer C, Schwind M, Kasemo B, Zoric I. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 2008;8:1461–71.CrossRefGoogle Scholar
  19. 19.
    Chan GH, Zhao J, Schatz GC, Van Duyne RP. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C. 2008;112:13958–63.CrossRefGoogle Scholar
  20. 20.
    Ekinci Y, Solak HH, Löffler JF. Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys. 2008;104:083107.CrossRefGoogle Scholar
  21. 21.
    Schwind M, Zhdanov VP, Zoric I, Kasemo B. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 2010;10:931–6.CrossRefGoogle Scholar
  22. 22.
    Gao HW, Henzie J, Lee MH, Odom TW. Screening plasmonic materials using pyramidal gratings. Proc Natl Acad Sci U S A. 2008;105:20146–51.CrossRefGoogle Scholar
  23. 23.
    Berube V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energ Res. 2007;31:637–63.CrossRefGoogle Scholar
  24. 24.
    Langhammer C, Zoric I, Kasemo B, Clemens BM. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 2007;7:3122–7.CrossRefGoogle Scholar
  25. 25.
    Isidorsson J, Giebels I, Arwin H, Griessen R. Optical properties of MgH2 measured in situ by ellipsometry and spectrophotometry. Phys Rev B. 2003;68:115112.CrossRefGoogle Scholar
  26. 26.
    Zoric I, Larsson EM, Kasemo B, Langhammer C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv Mater. 2010;22(41):4628–33.CrossRefGoogle Scholar
  27. 27.
    Fukai Y. The Metal-Hydrogen System. Berlin: Springer; 1993.Google Scholar
  28. 28.
    Yeshchenko OA, Dmitruk IM, Alexeenko AA, Dmytruk AM. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys Rev B. 2007;75:085434.CrossRefGoogle Scholar
  29. 29.
    Yeshchenko OA, et al. Surface plasmon as a probe for melting of silver nanoparticles. Nanotechnology. 2009;21(4):045203.CrossRefGoogle Scholar
  30. 30.
    Yeshchenko OA, et al. Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocomposites. J Appl Phys. 2009;105:094326.CrossRefGoogle Scholar
  31. 31.
    Ung T, Liz-Marzan LM, Mulvaney P. Redox catalysis using Ag@SiO2 colloids. J Phys Chem B. 1999;103:6770–3.CrossRefGoogle Scholar
  32. 32.
    Mulvaney P, Pérez-Juste J, Giersig M, Liz-Marzán L, Pecharromán C. Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics. 2006;1:61–6.CrossRefGoogle Scholar
  33. 33.
    Novo C, Funston AM, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol. 2008;3:598–602.CrossRefGoogle Scholar
  34. 34.
    Novo C, Funston AM, Gooding AK, Mulvaney P. Electrochemical charging of single gold nanorods. J Am Chem Soc. 2009;131:14664–6.CrossRefGoogle Scholar
  35. 35.
    Larsson EM, Langhammer C, Zoric I, Kasemo B. Nanoplasmonic probes of catalytic reactions. Science. 2009;326:1091–4.CrossRefGoogle Scholar
  36. 36.
    Langhammer C, Zhdanov VP, Zoric I, Kasemo B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys Rev Lett. 2010;104:135502.CrossRefGoogle Scholar
  37. 37.
    Kobayashi T, Ando M, Haruta M. Enhancing effect of gold deposition in the optical detection of reducing gases in air by metal oxide thin films. Sensor Actuat B. 1993;13–14:545–6.CrossRefGoogle Scholar
  38. 38.
    Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitiation for low-temperature oxidation of hydrogen and carbon monoxide. J Catal. 1989;115:301–9.CrossRefGoogle Scholar
  39. 39.
    Ando M, Kobayashi T, Haruta M. Enhancement in the optical CO sensitivity of NiO film by the deposition of ultrafine gold particles. J Chem Soc Farad T. 1994;90:1011–3.CrossRefGoogle Scholar
  40. 40.
    Ando M, Zehetner J, Kobayashi T, Haruta M. Large optical CO sensitivity of NO2-pretreated Au-NiO composite films. Sensor Actuat B. 1996;35–36:513–6.CrossRefGoogle Scholar
  41. 41.
    Ando M, Kobayashi T, Haruta M. Optical CO detection by use of CuO/Au composite film. Sensor Actuat B. 1995;24–25:851–3.CrossRefGoogle Scholar
  42. 42.
    Ando M, Chabicovsky R, Haruta M. Optical hydrogen sensitivity of nobel metal—tungsten oxide composite films prepared by sputter deposition. Sensor Actuat B. 2001;76:13–7.CrossRefGoogle Scholar
  43. 43.
    Ando M, Kobayashi T, Haruta M. Optical recognition of CO and H2 by use of a gas-sensitive Au-Co3O4 composite film. J Mater Chem. 1997;7:1779–83.CrossRefGoogle Scholar
  44. 44.
    Buso D, et al. Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications. J Mater Chem. 2009;19:2051–7.CrossRefGoogle Scholar
  45. 45.
    Ando M, Kobayashi T, Iijima S, Haruta M. Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sensor Actuat B. 2003;96:589–95.CrossRefGoogle Scholar
  46. 46.
    Manera MG, et al. Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sensor Actuat B: Chem. 2008;132:107–15.CrossRefGoogle Scholar
  47. 47.
    Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA. Development and characterization of Au-YSZ surface plasmon resonance based sensing materials: High temperature detection of CO. J Phys Chem B. 2006;110:13508–11.CrossRefGoogle Scholar
  48. 48.
    Rogers PH, Sirinakis G, Carpenter MA. Direct observations of electrochemical reactions within Au-YSZ thin films via absorption shifts in the an nanoparticle surface plasmon resonance. J Phys Chem C. 2008;112:6749–57.CrossRefGoogle Scholar
  49. 49.
    Rogers PH, Sirinakis G, Carpenter MA. Plasmonic-based detection of NO2 in a harsh environment. J Phys Chem C. 2008;112:8784–90.CrossRefGoogle Scholar
  50. 50.
    Liu M, Pelton M, Guyot-Sionnest P. Reduced damping of surface plasmons at low temperatures. Phys Rev B. 2009;79:035418.CrossRefGoogle Scholar
  51. 51.
    Langhammer C, Larsson EM, Kasemo B, Zoric I. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nano-calorimetry. Nano Lett. 2010;10(9):3529–38.CrossRefGoogle Scholar
  52. 52.
    Langhammer C, Zhdanov VP, Zoric I, Kasemo B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem Phys Lett. 2010;488:62–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christoph Langhammer
    • 1
    Email author
  • Elin M. Larsson
    • 1
  • Bengt Kasemo
    • 1
  • Igor Zoric
    • 1
  1. 1.Department of Applied Physics, Division for Chemical PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations