Individual Plasmonic Nanostructures as Label Free Biosensors

  • Greg Nusz
  • Ashutosh Chilkoti
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter reviews our work and that of other groups in the use of individual plasmonic nanostructures that are presented by a substrate for the label-free detection of biomolecular binding events. This class of single particle nanosensors is based on the local surface plasmon resonance (LSPR) behavior of noble metal nanostructures that enables optical transduction of binding events at their surface into an optical signal [1–5]. The LSPR peak location and intensity are sensitive to the local refractive index surrounding the nanoparticle, which is altered by the binding of biomolecular targets to receptor-functionalized nanostructures, and forms the basis of their utility as label-free biosensors [6].


Local Surface Plasmon Resonance Gold Nanorods Decay Length Electric Field Enhancement Local Surface Plasmon Resonance Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal Biochem. 1998;262:157–76.CrossRefGoogle Scholar
  2. 2.
    Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol. 2004;22:47–52.CrossRefGoogle Scholar
  3. 3.
    Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol. 2003;7:609–15.CrossRefGoogle Scholar
  4. 4.
    Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP. A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron. 2000;15:549–78.CrossRefGoogle Scholar
  5. 5.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.CrossRefGoogle Scholar
  6. 6.
    Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123:1599–603.CrossRefGoogle Scholar
  7. 7.
    Nath N, Chilkoti A. Label free colorimetric biosensing using nanoparticles. J Fluoresc. 2004;14:377–89.CrossRefGoogle Scholar
  8. 8.
    Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74:504–9.CrossRefGoogle Scholar
  9. 9.
    Haes AJ, Stuart DA, Nie SM, Van Duyne RP. Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc. 2004;14:355–67.CrossRefGoogle Scholar
  10. 10.
    Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, et al. Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem. 2003;75:6894–900.CrossRefGoogle Scholar
  11. 11.
    Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127:5043–8.CrossRefGoogle Scholar
  12. 12.
    Marinakos SM, Chen S, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem. 2007;79:5278–83.CrossRefGoogle Scholar
  13. 13.
    Fujiwara K, Watarai H, Itoh H, Nakahama E, Ogawa N. Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem. 2006;386:639–44.CrossRefGoogle Scholar
  14. 14.
    Chen C-D, Cheng S-F, Chau L-K, Wang CRC. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron. 2007;22:926–32.CrossRefGoogle Scholar
  15. 15.
    Gervais T, Jensen KF. Mass transport and surface reactions in microfluidic systems. Chem Eng Sci. 2006;61:1102–21.CrossRefGoogle Scholar
  16. 16.
    Dejardin P, Vasina EN. An accurate simplified data treatment for the initial adsorption kinetics in conditions of laminar convection in a slit: application to protein adsorption. Colloids Surf B Biointerfaces. 2004;33:121–7.CrossRefGoogle Scholar
  17. 17.
    Nair PR, Alam MA. Performance limits of nanobiosensors. Appl Phys Lett. 2006;88:233120.CrossRefGoogle Scholar
  18. 18.
    Cui Y, Wei QQ, Park HK, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293:1289–92.CrossRefGoogle Scholar
  19. 19.
    Gu LQ, Braha O, Conlan S, Cheley S, Bayley H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature. 1999;398:686–90.CrossRefGoogle Scholar
  20. 20.
    Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003;3:727–30.CrossRefGoogle Scholar
  21. 21.
    Bayley H, Martin CR. Resistive-pulse sensing—from microbes to molecules. Chem Rev. 2000;100:2575–94.CrossRefGoogle Scholar
  22. 22.
    Wax A, Sokolov K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon Rev. 2009;3:146–58.CrossRefGoogle Scholar
  23. 23.
    Nusz GJ, Curry AC, Marinakos SM, Wax A, Chilkoti A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano. 2009;3(4):795–806.CrossRefGoogle Scholar
  24. 24.
    Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science. 2007;317:783–7.CrossRefGoogle Scholar
  25. 25.
    Curry A, Nusz G, Chilkoti A, Wax A. Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors. Appl Opt. 2007;46:1931–9.CrossRefGoogle Scholar
  26. 26.
    Gillis EH, Gosling JP, Sreenan JM, Kane M. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J Immunol Methods. 2002;267:131–8.CrossRefGoogle Scholar
  27. 27.
    Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.CrossRefGoogle Scholar
  28. 28.
    Mitchell JS, Wu YQ, Cook CJ, Main L. Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal Biochem. 2005;343:125–35.CrossRefGoogle Scholar
  29. 29.
    Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3:2834–40.CrossRefGoogle Scholar
  30. 30.
    Kreuzer MP, Quidant R, Salvador JP, Marco MP, Badenes G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal Bioanal Chem. 2008;391:1813–20.CrossRefGoogle Scholar
  31. 31.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–9.CrossRefGoogle Scholar
  32. 32.
    Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003;3:485–91.CrossRefGoogle Scholar
  33. 33.
    Schultz DA, Mock JJ, Schultz S, Smith DR. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A. 2000;97:996–1001.CrossRefGoogle Scholar
  34. 34.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 2008;8(8):2245–52.CrossRefGoogle Scholar
  35. 35.
    Sonnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett. 2000;77:2949–51.CrossRefGoogle Scholar
  36. 36.
    Curry A, Hwang WL, Wax A. Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture. Opt Express. 2006;14:6535–42.CrossRefGoogle Scholar
  37. 37.
    Curry AC, Crow M, Wax A. Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles. J Biomed Opt. 2008;13(1):014022.CrossRefGoogle Scholar
  38. 38.
    Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3:935–8.CrossRefGoogle Scholar
  39. 39.
    Liu GL, Doll JC, Lee LP. High-speed multispectral imaging of nanoplasmonic array. Opt Express. 2005;13:8520–5.CrossRefGoogle Scholar
  40. 40.
    Rodriguez-Fernandez J, Novo C, Myroshnychenko V, Funston AM, Sanchez-Iglesias A, Pastoriza-Santos I, et al. Spectroscopy, imaging, and modeling of individual gold decahedra. J Phys Chem C. 2009;113:18623–31.CrossRefGoogle Scholar
  41. 41.
    McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3:1057–62.CrossRefGoogle Scholar
  42. 42.
    Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem. 2008;80:984–9.CrossRefGoogle Scholar
  43. 43.
    Curry A, Nusz G, Chilkoti A, Wax A. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt Express. 2005;13:2668–77.CrossRefGoogle Scholar
  44. 44.
    Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem. 1998;262:137–56.CrossRefGoogle Scholar
  45. 45.
    Prescott SW, Mulvaney P. Gold nanorod extinction spectra. J Appl Phys. 2006;99:123504.CrossRefGoogle Scholar
  46. 46.
    Kreibig U, Gartz M, Hilger A. Mie resonances: sensors for physical and chemical cluster interface properties. Ber Bunsen Gesellsch Phys Chem Chem Phys. 1997;101:1593–604.CrossRefGoogle Scholar
  47. 47.
    Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76:5370–8.CrossRefGoogle Scholar
  48. 48.
    Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, et al. Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett. 2004;4:1853–7.CrossRefGoogle Scholar
  49. 49.
    Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124:10596–604.CrossRefGoogle Scholar
  50. 50.
    Chumanov G, Sokolov K, Gregory BW, Cotton TM. Colloidal metal films as a substrate for surface-enhanced spectroscopy. J Phys Chem. 1995;99:9466–71.CrossRefGoogle Scholar
  51. 51.
    Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.CrossRefGoogle Scholar
  52. 52.
    Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5:2335–9.CrossRefGoogle Scholar
  53. 53.
    Baciu CL, Becker J, Janshoff A, Sonnichsen C. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8:1724–8.CrossRefGoogle Scholar
  54. 54.
    Hernandez FJ, Dondapati SK, Ozalp VC, Pinto A, O’Sullivan CK, Klar TA, et al. Label free optical sensor for avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics. 2009;2:227–31.CrossRefGoogle Scholar
  55. 55.
    Xu XD, Cortie MB. Shape change and color gamut in gold nanorods, dumbbells, and dog bones. Adv Funct Mater. 2006;16:2170–6.CrossRefGoogle Scholar
  56. 56.
    Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14:5636–48.CrossRefGoogle Scholar
  57. 57.
    Haes AJ, Van Duyne RP, Zou SL, Schatz GC. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:6961–8.CrossRefGoogle Scholar
  58. 58.
    Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004;120:357–66.CrossRefGoogle Scholar
  59. 59.
    Imura K, Okamoto H, Nagahra T. Plasmon mode imaging of single gold nanorods. J Am Chem Soc. 2004;126:12730–1.CrossRefGoogle Scholar
  60. 60.
    Kuwata H, Tamaru H, Esumi K, Miyano K. Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett. 2003;83:4625–7.CrossRefGoogle Scholar
  61. 61.
    Miller MM, Lazarides AA. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J Opt A Pure Appl Opt. 2006;8:S239–49.CrossRefGoogle Scholar
  62. 62.
    Neish CS, Martin IL, Henderson RM, Edwardson JM. Direct visualization of ligand-protein interactions using atomic force microscopy. Br J Pharmacol. 2002;135:1943–50.CrossRefGoogle Scholar
  63. 63.
    Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989;243:85–8.CrossRefGoogle Scholar
  64. 64.
    Hendrickson WA, Pahler A, Smith JL, Satow Y, Merritt EA, Phizackerley RP. Crystal-structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989;86:2190–4.CrossRefGoogle Scholar
  65. 65.
    Hinrichsen EL, Feder J, Jossang T. Geometry of random sequential adsorption. J Stat Phys. 1986;44:793–827.CrossRefGoogle Scholar
  66. 66.
    Link S, El-Sayed MA. Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys. 2001;114:2362–8.CrossRefGoogle Scholar
  67. 67.
    Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC. The shape transition of gold nanorods. Langmuir. 1999;15:701–9.CrossRefGoogle Scholar
  68. 68.
    Muskens OL, Bachelier G, Del Fatti N, Vallee F, Brioude A, Jiang XC, et al. Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C. 2008;112:8917–21.CrossRefGoogle Scholar
  69. 69.
    Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26.CrossRefGoogle Scholar
  70. 70.
    Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B. 1999;103:3073–7.CrossRefGoogle Scholar
  71. 71.
    Beeram SR, Zamborini FP. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc. 2009;131:11689.CrossRefGoogle Scholar
  72. 72.
    Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78:4416–23.CrossRefGoogle Scholar
  73. 73.
    Kim DK, Kerman K, Hiep HM, Saito M, Yamamura S, Takamura Y, et al. Label-free optical detection of aptamer-protein interactions using gold-capped. Anal Biochem. 2008;379:1–7.CrossRefGoogle Scholar
  74. 74.
    Frank Jeyson H, Srujan Kumar D, Ozalp VC, Alessandro P, Ciara KOS, Thomas AK, et al. Label free optical sensor for Avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics. 2009;2:227–31.CrossRefGoogle Scholar
  75. 75.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521.CrossRefGoogle Scholar
  76. 76.
    Qavi AJ, Washburn AL, Byeon JY, Bailey RC. Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem. 2009;394:121–35.CrossRefGoogle Scholar
  77. 77.
    Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron. 2007;23:151–60.CrossRefGoogle Scholar
  78. 78.
    Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109:21556–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ColoradoDenverUSA
  2. 2.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  3. 3.Center for Biologically Inspired Materials and Materials SystemsDuke UniversityDurhamUSA

Personalised recommendations