Advertisement

Nanoplasmonic Sensing Combined with Artificial Cell Membranes

  • Magnus P. Jonsson
  • Andreas B. Dahlin
  • Fredrik Höök
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

This chapter is dedicated to nanoplasmonic sensing systems made compatible with studies of artificial cell membranes. After a short motivation to the opportunity of sensors designed for such studies to fill an existing technological gap, we introduce basic features of cell membranes and common mimics of the cell membrane that have been proven useful in various bioanalytical sensing applications.

With suitable examples from the literature, subsequent sections exemplify how nanoplasmonics can be used to study different reactions that are associated with cell membranes. In particular, focus is on unique possibilities provided by different types of nanoplasmonic structures. For example, while discrete nanoplasmonic particles can be used as mobile probes attached to cell membranes, conductive nanoplasmonic hole structures can be used for combined optical and electrical transduction. Examples on how the latter possibility has enabled cell membrane-related reactions to be investigated with nanoplasmonic sensing combined with quartz crystal microbalance with dissipation monitoring are presented. Another key aspect of nanoplasmonic structures is that the plasmonic field (and hence the refractive index sensitivity) is strongest at the sensor surface and decays rapidly away from the surface. We describe how this feature provides a means to monitor structural changes of molecules on the surface, such as the spontaneous rupture of lipid vesicles into a supported lipid bilayer on silicon oxide-coated nanoplasmonic holes.

Keywords

Lipid Bilayer Cetyl Trimethyl Ammonium Bromide Lipid Vesicle Fluorescence Recovery After Photobleaching Thin Gold Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310(5753):1461–5.CrossRefGoogle Scholar
  2. 2.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.CrossRefGoogle Scholar
  3. 3.
    Cooper MA. Advances in membrane receptor screening and analysis. J Mol Recognit. 2004;17(4):286–315.CrossRefGoogle Scholar
  4. 4.
    Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.CrossRefGoogle Scholar
  5. 5.
    Campbell SM, Crowe SM, Mak J. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol. 2001;22(3):217–27.CrossRefGoogle Scholar
  6. 6.
    Fortin DL, et al. Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci. 2004;24(30):6715–23.CrossRefGoogle Scholar
  7. 7.
    Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic. 2004;5(4):255–64.CrossRefGoogle Scholar
  8. 8.
    Alves ID, Park CK, Hruby VJ. Plasmon resonance methods in GPCR signaling and other membrane events. Curr Protein Pept Sci. 2005;6(4):293–312.CrossRefGoogle Scholar
  9. 9.
    Barenholz Y, et al. Simple method for preparation of homogeneous phospholipid vesicles. Biochemistry. 1977;16(12):2806–10.CrossRefGoogle Scholar
  10. 10.
    Hope MJ, et al. Production of large unilamellar vesicles by a rapid extrusion procedure—characterization of size distribution, trapped volume and ability to maintain a membrane-potential. Biochim Biophys Acta. 1985;812(1):55–65.CrossRefGoogle Scholar
  11. 11.
    Patty PJ, Frisken BJ. The pressure-dependence of the size of extruded vesicles. Biophys J. 2003;85(2):996–1004.CrossRefGoogle Scholar
  12. 12.
    Christensen SM, Stamou D. Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter. 2007;3(7):828–36.CrossRefGoogle Scholar
  13. 13.
    Boukobza E, Sonnenfeld A, Haran G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B. 2001;105(48):12165–70.CrossRefGoogle Scholar
  14. 14.
    Svedhem S, et al. Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem. 2003;4(4):339–43.CrossRefGoogle Scholar
  15. 15.
    Yoshina-Ishii C, Boxer SG. Spatially encoded and mobile arrays of tethered lipid vesicles. Biophys J. 2003;84(2):379A.Google Scholar
  16. 16.
    Städler B, et al. Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases. 2006;1(4):142–5.CrossRefGoogle Scholar
  17. 17.
    Yoshina-Ishii C, et al. General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc. 2005;127(5):1356–7.CrossRefGoogle Scholar
  18. 18.
    Pfeiffer I, Höök F. Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc. 2004;126(33):10224–5.CrossRefGoogle Scholar
  19. 19.
    Pfeiffer I, Höök F. Quantification of oligonucleotide modifications of small unilamellar lipid vesicles. Anal Chem. 2006;78(21):7493–8.CrossRefGoogle Scholar
  20. 20.
    Bailey K, et al. G-protein coupled receptor array technologies: site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics. 2009;9(8):2052–63.CrossRefGoogle Scholar
  21. 21.
    Brian AA, McConnell HM. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984;81(19):6159–63.CrossRefGoogle Scholar
  22. 22.
    Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep. 2006;61(10):429–44.CrossRefGoogle Scholar
  23. 23.
    Richter RP, Berat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22(8):3497–505.CrossRefGoogle Scholar
  24. 24.
    McConnell HM, et al. Supported planar membranes in studies of cell-cell recognition in the immune-system. Biochim Biophys Acta. 1986;864(1):95–106.CrossRefGoogle Scholar
  25. 25.
    Richter RP, et al. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Biophys J. 2005;89(5):3372–85.CrossRefGoogle Scholar
  26. 26.
    Rossetti FF, et al. Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir. 2005;21(14):6443–50.CrossRefGoogle Scholar
  27. 27.
    Przybylo M, et al. Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir. 2006;22(22):9096–9.CrossRefGoogle Scholar
  28. 28.
    Urban AS, et al. Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett. 2009;9(8):2903–8.CrossRefGoogle Scholar
  29. 29.
    Salafsky J, Groves JT, Boxer SG. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996;35(47):14773–81.CrossRefGoogle Scholar
  30. 30.
    Horton MR, et al. Structure and dynamics of crystalline protein layers bound to supported lipid bilayers. Langmuir. 2007;23(11):6263–9.CrossRefGoogle Scholar
  31. 31.
    Larsson C, Rodahl M, Höök F. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal Chem. 2003;75(19):5080–7.CrossRefGoogle Scholar
  32. 32.
    Reviakine I, et al. Two-dimensional crystallization of annexin A5 on phospholipid bilayers and monolayers: a solid-solid phase transition between crystal forms. Langmuir. 2001;17(5):1680–6.CrossRefGoogle Scholar
  33. 33.
    Reviakine I, Brisson A. Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers. Langmuir. 2001;17(26):8293–9.CrossRefGoogle Scholar
  34. 34.
    Shi J, et al. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc. 2007;129(18):5954–61.CrossRefGoogle Scholar
  35. 35.
    Axelrod D, et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16(9):1055–69.CrossRefGoogle Scholar
  36. 36.
    Jönsson P, et al. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J. 2008;95(11):5334–48.CrossRefGoogle Scholar
  37. 37.
    Jonsson MP, et al. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007;7(11):3462–8.CrossRefGoogle Scholar
  38. 38.
    Jönsson P, Jonsson MP, Höök F. Sealing of sub-micrometer wells by a shear-driven lipid bilayer. Nano Lett. 2010;10(5):1900–6.CrossRefGoogle Scholar
  39. 39.
    Atanasov V, et al. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug Chem. 2006;17(3):631–7.CrossRefGoogle Scholar
  40. 40.
    Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000;18(2):58–64.CrossRefGoogle Scholar
  41. 41.
    Römer W, Steinem C. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophys J. 2004;86(2):955–65.CrossRefGoogle Scholar
  42. 42.
    McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3(8):1057–62.CrossRefGoogle Scholar
  43. 43.
    Mock JJ, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–9.CrossRefGoogle Scholar
  44. 44.
    Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.CrossRefGoogle Scholar
  45. 45.
    Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.CrossRefGoogle Scholar
  46. 46.
    Baciu CL, et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.CrossRefGoogle Scholar
  47. 47.
    Endo T, et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem. 2006;78(18):6465–75.CrossRefGoogle Scholar
  48. 48.
    Dahlin AB, Jonsson MP, Höök F. Specific self assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater. 2008;20(8):1436–42.CrossRefGoogle Scholar
  49. 49.
    Feuz L, et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano. 2010;4(4):2167–77.CrossRefGoogle Scholar
  50. 50.
    Groves JT, Ulman N, Boxer SG. Micropatterning fluid lipid bilayers on solid supports. Science. 1997;275(5300):651–3.CrossRefGoogle Scholar
  51. 51.
    Dahlin A, et al. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127(14):5043–8.CrossRefGoogle Scholar
  52. 52.
    Hovis JS, Boxer SG. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir. 2001;17(11):3400–5.CrossRefGoogle Scholar
  53. 53.
    Lenhert S, et al. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small. 2007;3(1):71–5.CrossRefGoogle Scholar
  54. 54.
    Shi JJ, Chen JX, Cremer PS. Sub-100 nm patterning of supported bilayers by nanoshaving lithography. J Am Chem Soc. 2008;130(9):2718–9.CrossRefGoogle Scholar
  55. 55.
    Furukawa K, et al. Supported lipid bilayer self-spreading on a nanostructured silicon surface. Langmuir. 2007;23(2):367–71.CrossRefGoogle Scholar
  56. 56.
    Huang SCJ, et al. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires. Nano Lett. 2007;7(11):3355–9.CrossRefGoogle Scholar
  57. 57.
    Jonsson P, et al. Shear-driven motion of supported lipid bilayers in microfluidic channels. J Am Chem Soc. 2009;131(14):5294–7.CrossRefGoogle Scholar
  58. 58.
    Hanarp P, et al. Control of nanoparticle film structure for colloidal lithography. Colloids Surf A. 2003;214(1–3):23–36.CrossRefGoogle Scholar
  59. 59.
    Prikulis J, et al. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 2004;4(6):1003–7.CrossRefGoogle Scholar
  60. 60.
    Jonsson MP, et al. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases. 2008;3(3):FD30–40.CrossRefGoogle Scholar
  61. 61.
    Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuators B. 1999;54(1–2):3–15.CrossRefGoogle Scholar
  62. 62.
    Brolo AG, et al. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir. 2004;20(12):4813–5.CrossRefGoogle Scholar
  63. 63.
    Jonsson MP, Jönsson P, Höök F. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound mass. Anal Chem. 2008;80(21):7988–95.CrossRefGoogle Scholar
  64. 64.
    Haes AJ, et al. A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108(1):109–16.CrossRefGoogle Scholar
  65. 65.
    Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.CrossRefGoogle Scholar
  66. 66.
    Marie R, et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases. 2007;2(1):49–55.CrossRefGoogle Scholar
  67. 67.
    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.CrossRefGoogle Scholar
  68. 68.
    Hall WP, et al. A calcium-modulated plasmonic switch. J Am Chem Soc. 2008;130(18):5836–7.CrossRefGoogle Scholar
  69. 69.
    Sönnichsen C, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23(6):741–5.CrossRefGoogle Scholar
  70. 70.
    Glasmästar K, et al. Protein adsorption on supported phospholipid bilayers. J Colloid Interface Sci. 2002;246(1):40–7.CrossRefGoogle Scholar
  71. 71.
    Lesuffleur A, et al. Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment. In: 31st annual international the conference of the IEEE EMBS. Minneapolis, Minnesota. September 2-6, 2009. p. 1481–4.Google Scholar
  72. 72.
    Larsson EM, et al. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev Sci Instrum. 2009;80(12):125105.CrossRefGoogle Scholar
  73. 73.
    Das A, et al. Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal Chem. 2009;81(10):3754–9.CrossRefGoogle Scholar
  74. 74.
    Galush WJ, et al. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 2009;9(5):2077–82.CrossRefGoogle Scholar
  75. 75.
    Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.CrossRefGoogle Scholar
  76. 76.
    Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.CrossRefGoogle Scholar
  77. 77.
    Rindzevicius T, et al. Nanohole plasmons in optically thin gold films. J Phys Chem C. 2007;111(3):1207–12.CrossRefGoogle Scholar
  78. 78.
    Haes AJ, et al. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108(22):6961–8.CrossRefGoogle Scholar
  79. 79.
    Höök F, Kasemo B. The QCM technique for biomacromolecular recognition: technical and theoretical aspects. In: Wolfbeis OS, editor. The Springer series on chemical sensors and biosensors. Berlin: Springer; 2006.Google Scholar
  80. 80.
    Keller CA, Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998;75(3):1397–402.CrossRefGoogle Scholar
  81. 81.
    Brändén M, Dahlin S, Höök F. Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing. Chemphyschem. 2008;9(17):2480–5.CrossRefGoogle Scholar
  82. 82.
    Sheetz MP, et al. Nanometer-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989;340(6231):284–8.CrossRefGoogle Scholar
  83. 83.
    Sokolov K, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63(9):1999–2004.Google Scholar
  84. 84.
    El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–34.CrossRefGoogle Scholar
  85. 85.
    Xu X-HN, et al. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry. 2004;43(32):10400–13.CrossRefGoogle Scholar
  86. 86.
    El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34(4):257–64.CrossRefGoogle Scholar
  87. 87.
    Jain PK, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2:107–18.CrossRefGoogle Scholar
  88. 88.
    Suzuki KGN, et al. GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol. 2007;177(4):717–30.CrossRefGoogle Scholar
  89. 89.
    Rong G, et al. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 2008;8(10):3386–93.CrossRefGoogle Scholar
  90. 90.
    Rechberger W, et al. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220(1–3):137–41.CrossRefGoogle Scholar
  91. 91.
    Nan XL, Sims PA, Xie XS. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem. 2008;9(5):707–12.CrossRefGoogle Scholar
  92. 92.
    Edel JB, et al. High spatial resolution observation of single-molecule dynamics in living cell membranes. Biophys J. 2005;88(6):L43–5.CrossRefGoogle Scholar
  93. 93.
    Jonsson MP, et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.CrossRefGoogle Scholar
  94. 94.
    Eftekhari F, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11.CrossRefGoogle Scholar
  95. 95.
    Brändén M, et al. Refractive-index based screening of membrane-protein mediated transfer across biological membranes. Biophys J. 2010;99:1–10.CrossRefGoogle Scholar
  96. 96.
    Knoll W, et al. Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases. 2008;3(2):FA125–35.CrossRefGoogle Scholar
  97. 97.
    Sannomiya T, et al. Electrochemistry on a localized surface plasmon resonance sensor. Langmuir. 2009;26(10):7619–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Bionanoscience, Kavli Institute of NanoScienceDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations