Skip to main content

Performance of Nanoplasmonic Biosensors

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter aims to give an overview of how to optimize the performance of nanoplasmonic sensors. Specific biosensing challenges beyond the capability of current nanoplasmonic sensors will be discussed. Various methods to improve sensor performance will then be introduced, including solving issues related to surface chemistry. We distinguish the concept of signal enhancement, which is related to the choice of nanostructure and surface functionalization, from the concept of noise minimization, which is related to the spectroscopy techniques employed. The concepts of bulk sensitivity, figure of merit, nanostructure performance, and their relation to detection limit are discussed in detail.

The most important points addressed are:

  • The challenges which require the development of nanoplasmonic sensors with better performance are diverse in nature. Different improvements will solve different problems.

  • More effort needs to be put into improving surface functionalization for specific binding, especially if nanoplasmonic sensors are to be useful in medical diagnostics.

  • The sensing performance of a plasmonic nanostructure is best defined in terms of relative intensity changes (e.g., extinction in absorbance units) per refractive index change, because this is what is measured by optical spectroscopy. The signals upon local changes in refractive index also depend on the extension of the plasmonic field.

  • In most sensing situations, except single nanoparticle/hole analysis or imaging applications, extinction spectroscopy in transmission mode will outperform scattering spectroscopy under dark-field illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Healy DA, et al. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 2007;25(3):125–31.

    Article  CAS  Google Scholar 

  2. Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.

    Article  CAS  Google Scholar 

  3. Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.

    Article  CAS  Google Scholar 

  4. Feuz L, et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano. 2010;4(4):2167–77.

    Article  CAS  Google Scholar 

  5. Hibbert DB, Gooding JJ, Erokhin P. Kinetics of irreversible adsorption with diffusion: application to biomolecule immobilization. Langmuir. 2002;18(5):1770–6.

    Article  CAS  Google Scholar 

  6. Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005;5(4):803–7.

    Article  CAS  Google Scholar 

  7. Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol. 2008;26(4):417–26.

    Article  CAS  Google Scholar 

  8. Bendikov TA, et al. Biological sensing and interface design in gold island film based localized plasmon transducers. Anal Chem. 2008;80(19):7487–98.

    Article  CAS  Google Scholar 

  9. Curry A, et al. Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors. Appl Opt. 2007;46(10):1931–9.

    Article  Google Scholar 

  10. Dahlin AB, et al. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem. 2009;81(16):6572–80.

    Article  CAS  Google Scholar 

  11. Nusz GJ, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem. 2008;80(4):984–9.

    Article  CAS  Google Scholar 

  12. Baciu CL, et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.

    Article  CAS  Google Scholar 

  13. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3(8):1057–62.

    Article  CAS  Google Scholar 

  14. Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.

    Article  CAS  Google Scholar 

  15. Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 2008;8(10):3450–5.

    Article  CAS  Google Scholar 

  16. Nair PR, Alam MA. Performance limits of nanobiosensors. Appl Phys Lett. 2006;88(23):233120.

    Article  Google Scholar 

  17. Andersson H, van den Berg A. Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol. 2004;15(1):44–9.

    Article  CAS  Google Scholar 

  18. Eftekhari F, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11.

    Article  CAS  Google Scholar 

  19. Jonsson MP, et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.

    Article  CAS  Google Scholar 

  20. Yanik AA, et al. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett. 2010;96(2):021101.

    Article  Google Scholar 

  21. Green NM. Avidin. 1. The use of [14c] biotin for kinetic studies and for assay. Biochem J. 1963;89(3):585–91.

    CAS  Google Scholar 

  22. Hock B, Seifert M, Kramer K. Engineering receptors and antibodies for biosensors. Biosens Bioelectron. 2002;17(3):239–49.

    Article  CAS  Google Scholar 

  23. Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays. Nat Rev Genet. 2008;9(4):291–302.

    Article  CAS  Google Scholar 

  24. Service RF. Proteomics ponders prime time. Science. 2008;321(5897):1758–61.

    Article  CAS  Google Scholar 

  25. Kabashin AV, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–71.

    Article  CAS  Google Scholar 

  26. Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78(13):4416–23.

    Article  CAS  Google Scholar 

  27. Swann MJ, et al. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal Biochem. 2004;329(2):190–8.

    Article  CAS  Google Scholar 

  28. Song SP, et al. Aptamer-based biosensors. Trac Trends Anal Chem. 2008;27(2):108–17.

    Article  CAS  Google Scholar 

  29. Cooper MA. Advances in membrane receptor screening and analysis. J Mol Recognit. 2004;17(4):286–315.

    Article  CAS  Google Scholar 

  30. Bearinger JP, et al. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater. 2003;2(4):259–64.

    Article  CAS  Google Scholar 

  31. Kenausis GL, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B. 2000;104(14):3298–309.

    Article  CAS  Google Scholar 

  32. Ma HW, et al. “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater. 2004;16(4):338–41.

    Article  CAS  Google Scholar 

  33. Pasche S, et al. Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir. 2003;19(22):9216–25.

    Article  CAS  Google Scholar 

  34. Pasche S, et al. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces. Langmuir. 2005;21(14):6508–20.

    Article  CAS  Google Scholar 

  35. Dahlin AB, Jonsson MP, Hook F. Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater. 2008;20(8):1436–42.

    Article  CAS  Google Scholar 

  36. Haes AJ, et al. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–71.

    Article  CAS  Google Scholar 

  37. Marinakos SM, Chen SH, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem. 2007;79(14):5278–83.

    Article  CAS  Google Scholar 

  38. Huang NP, et al. Biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir. 2002;18(1):220–30.

    Article  CAS  Google Scholar 

  39. Dahlin A, et al. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127(14):5043–8.

    Article  CAS  Google Scholar 

  40. Marie R, et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases. 2007;2(1):49–55.

    Article  CAS  Google Scholar 

  41. Whitney AV, et al. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B. 2005;109(43):20522–8.

    Article  CAS  Google Scholar 

  42. Nenninger GG, Piliarik M, Homola J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas Sci Technol. 2002;13(12):2038–46.

    Article  CAS  Google Scholar 

  43. Becker J, et al. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics. 2010;5(2):161–7.

    Article  CAS  Google Scholar 

  44. Stewart ME, et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci U S A. 2006;103(46):17143–8.

    Article  CAS  Google Scholar 

  45. Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.

    Article  CAS  Google Scholar 

  46. Murray-Methot MP, Ratel M, Masson JF. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J Phys Chem C. 2010;114(18):8268–75.

    Article  CAS  Google Scholar 

  47. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109(46):21556–65.

    Article  CAS  Google Scholar 

  48. Johnson PB, Christy RW. Optical-constants of noble-metals. Phys Rev B. 1972;6(12):4370–9.

    Article  CAS  Google Scholar 

  49. Otte MA, et al. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano. 2010;4(1):349–57.

    Article  CAS  Google Scholar 

  50. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19(4):316–7.

    Article  CAS  Google Scholar 

  51. Langhammer C, et al. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006;6(4):833–8.

    Article  CAS  Google Scholar 

  52. Langhammer C, et al. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 2008;8(5):1461–71.

    Article  CAS  Google Scholar 

  53. Schwind M, et al. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 2010;10(3):931–6.

    Article  CAS  Google Scholar 

  54. Chan GH, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7(7):1947–52.

    Article  CAS  Google Scholar 

  55. Anker JN, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.

    Article  CAS  Google Scholar 

  56. Jonsson MP, et al. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007;7(11):3462–8.

    Article  CAS  Google Scholar 

  57. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93.

    Article  CAS  Google Scholar 

  58. Johnsson B, Lofas S, Lindquist G. Immobilization of proteins to a carboxymethyl dextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors. Anal Biochem. 1991;198(2):268–77.

    Article  CAS  Google Scholar 

  59. Graneli A, Edvardsson M, Hook F. DNA-based formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. Chemphyschem. 2004;5(5):729–33.

    Article  CAS  Google Scholar 

  60. Johansen K, et al. Surface plasmon resonance: instrumental resolution using photo diode arrays. Meas Sci Technol. 2000;11(11):1630–8.

    Article  CAS  Google Scholar 

  61. Hedsten K, et al. Optical label-free nanoplasmonic biosensing using a vertical-cavity surface-emitting laser and charge-coupled device. Anal Chem. 2010;82(4):1535–9.

    Article  CAS  Google Scholar 

  62. Mazzotta F, Wang G, Hägglund C, Höök F, Jonsson MP. Biosensors and Bioelectronics. 2010;(26): 1131–1136. doi:10.1016/j.bios.2010.07.008.

  63. Larsson EM, et al. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007;7(5):1256–63.

    Article  CAS  Google Scholar 

  64. Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.

    Article  CAS  Google Scholar 

  65. Sonnichsen C, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88(7):077402.

    Article  CAS  Google Scholar 

  66. Jain PK, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2(3):107–18.

    Article  CAS  Google Scholar 

  67. Braslavsky I, et al. Objective-type dark-field illumination for scattering from microbeads. Appl Opt. 2001;40(31):5650–7.

    Article  CAS  Google Scholar 

  68. Endo T, et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem. 2006;78(18):6465–75.

    Article  CAS  Google Scholar 

  69. Rong GX, et al. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 2008;8(10):3386–93.

    Article  CAS  Google Scholar 

  70. Scarano S, et al. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010;25(5):957–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas B. Dahlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dahlin, A.B., Jonsson, M.P. (2012). Performance of Nanoplasmonic Biosensors. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_10

Download citation

Publish with us

Policies and ethics