Adenosine pp 385-407 | Cite as

Adenosine Receptors and Alzheimer’s Disease



Alzheimer’s disease (AD) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. The formation of these AD-specific lesions is attributed to the pathological accumulation of either extracellular amyloid beta (Aβ) peptide or intraneuronal hyperphosphorylated Tau protein. The AD brain is also characterized by astrogliosis and inflammation. Sporadic AD results from multiple genetic and environmental risk factors. Prospective, retrospective epidemiological studies and experimental findings have identified chronic caffeine consumption as a protective factor. Caffeine effects would essentially result from modulation of the adenosine system. In this frame, the present review aims to discuss the role of adenosinergic system and in particular involvement of the A2AR in AD pathology and associated cognitive impairments. We also discuss the apparent paradox in regards to A2AR blockade and the aforementioned protective effects versus the disruption of specific biochemical processes that influence hippocampal synaptic plasticity, BDNF/TrkB signaling and acetylcholine release, all being associated with AD physiopathology. As an alternative to targeting specific pathways a more effective option to treat AD may be achieved by utilizing novel treatment strategies that restore adenosine homeostasis in the diseased brain. Thus, prior to exploring the efficacy of A2AR blockade as a therapeutic option for AD, we conclude that a better understanding of adenosine signaling in AD is needed.


Amyloid plaque Brain-derived neurotrophic factor Caffeine Inflammation Neurofibrillary tangle Tau protein 


  1. Agostinho PM, Matos M, Augusto E, Rodrigues A, Cunha RA (2011) Amyloid-beta inhibits the astrocytic glutamate uptake through a mechanism involving adenosine A2A receptor activation. AD/PD meeting, 2011, BarcelonaGoogle Scholar
  2. Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, Albert M, Brandt J, Stern Y (2006) Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 47:867–872PubMedCrossRefGoogle Scholar
  3. Amieva H, Jacqmin-Gadda H, Orgogozo JM, Le Carret N, Helmer C, Letenneur L, Barberger-Gateau P, Fabrigoule C, Dartigues JF (2005) The 9 year cognitive decline before dementia of the Alzheimer type: a prospective population-based study. Brain 128:1093–1101PubMedCrossRefGoogle Scholar
  4. Angulo E, Casado V, Mallol J, Canela EI, Vinals F, Ferrer I, Lluis C, Franco R (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451PubMedCrossRefGoogle Scholar
  5. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952PubMedCrossRefGoogle Scholar
  6. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17:661–680PubMedGoogle Scholar
  7. Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Chao MV, Sebastiao AM (2010) Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: implications for neuromodulation. J Neurosci 30:8468–8480PubMedCrossRefGoogle Scholar
  8. Attems J, Jellinger KA (2006) Hippocampal sclerosis in Alzheimer disease and other dementias. Neurology 66:775PubMedCrossRefGoogle Scholar
  9. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031PubMedCrossRefGoogle Scholar
  10. Beach TG, Sue L, Scott S, Layne K, Newell A, Walker D, Baker M, Sahara N, Yen SH, Hutton M et al (2003) Hippocampal sclerosis dementia with tauopathy. Brain Pathol 13:263–278PubMedCrossRefGoogle Scholar
  11. Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R et al (2011) Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiol Dis 43:486–494PubMedCrossRefGoogle Scholar
  12. Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165:1643–1652PubMedCrossRefGoogle Scholar
  13. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31PubMedCrossRefGoogle Scholar
  14. Blum D, Burnouf S, Martire A, Belarbi K, Laurent C, Muhr-Tailleux A, Van der Jeugd A, Leboucher A, Fernandez-gomez F, Troquier L et al (2011) Impairment of BDNF-mediated hippocampal synaptic facilitation in a transgenic model of Alzheimer’s disease-like Tau pathology. Society for neuroscience meeting, San Diego, 2010Google Scholar
  15. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262PubMedCrossRefGoogle Scholar
  16. Boison D (2011) Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem 11:1068–1086PubMedCrossRefGoogle Scholar
  17. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194PubMedCrossRefGoogle Scholar
  18. Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429:139–142PubMedCrossRefGoogle Scholar
  19. Brown SJ, James S, Reddington M, Richardson PJ (1990) Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem 55:31–38PubMedCrossRefGoogle Scholar
  20. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346PubMedGoogle Scholar
  21. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130PubMedCrossRefGoogle Scholar
  22. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467PubMedCrossRefGoogle Scholar
  23. Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751PubMedCrossRefGoogle Scholar
  24. Checler F (1995) Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 65:1431–1444PubMedCrossRefGoogle Scholar
  25. Cognato GP, Agostinho PM, Hockemeyer J, Muller CE, Souza DO, Cunha RA (2010) Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112:453–462PubMedCrossRefGoogle Scholar
  26. Costa MS, Botton PH, Mioranzza S, Souza DO, Porciuncula LO (2008) Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice. Neuroscience 153:1071–1078PubMedCrossRefGoogle Scholar
  27. Costenla AR, Cunha RA, de Mendonca A (2010) Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis 20(Suppl 1):S25–S34PubMedGoogle Scholar
  28. Cunha RA (2008) Caffeine, adenosine receptors, memory and Alzheimer disease. Med Clin (Barc) 131:790–795CrossRefGoogle Scholar
  29. Cunha RA, Johansson B, van der Ploeg I, Sebastiao AM, Ribeiro JA, Fredholm BB (1994) Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res 649:208–216PubMedCrossRefGoogle Scholar
  30. Cunha RA, Constantino MC, Sebastiao AM, Ribeiro JA (1995) Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6:1583–1588PubMedCrossRefGoogle Scholar
  31. Cunha RA, Almeida T, Ribeiro JA (2001) Parallel modification of adenosine extracellular metabolism and modulatory action in the hippocampus of aged rats. J Neurochem 76:372–382PubMedCrossRefGoogle Scholar
  32. Cunha GM, Canas PM, Oliveira CR, Cunha RA (2006) Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience 141:1775–1781PubMedCrossRefGoogle Scholar
  33. Cunha GM, Canas PM, Melo CS, Hockemeyer J, Muller CE, Oliveira CR, Cunha RA (2008) Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 210:776–781PubMedCrossRefGoogle Scholar
  34. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1PubMedGoogle Scholar
  35. Currais A, Kato K, Canuet L, Ishii R, Tanaka T, Takeda M, Soriano S (2011) Caffeine modulates tau phosphorylation and affects Akt signaling in postmitotic neurons. J Mol Neurosci 43:326–332PubMedCrossRefGoogle Scholar
  36. Dai SS, Li W, An JH, Wang H, Yang N, Chen XY, Zhao Y, Li P, Liu P, Chen JF et al (2010a) Adenosine A2A receptors in both bone marrow cells and non-bone marrow cells contribute to traumatic brain injury. J Neurochem 113:1536–1544PubMedGoogle Scholar
  37. Dai SS, Zhou YG, Li W, An JH, Li P, Yang N, Chen XY, Xiong RP, Liu P, Zhao Y et al (2010b) Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 30:5802–5810PubMedCrossRefGoogle Scholar
  38. Dall’Igna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209PubMedCrossRefGoogle Scholar
  39. Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203:241–245PubMedCrossRefGoogle Scholar
  40. de Mendonca A, Cunha RA (2010) Therapeutic opportunities for caffeine in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimers Dis 20(Suppl 1):S1–S2PubMedGoogle Scholar
  41. de Mendonca A, Ribeiro JA (1994) Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience 62:385–390PubMedCrossRefGoogle Scholar
  42. De Strooper B (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90:465–494PubMedCrossRefGoogle Scholar
  43. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107PubMedCrossRefGoogle Scholar
  44. Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167PubMedCrossRefGoogle Scholar
  45. Dias RB, Ribeiro JA, Sebastiao AM (2010) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22:276–291PubMedCrossRefGoogle Scholar
  46. Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913PubMedCrossRefGoogle Scholar
  47. Diogenes MJ, Costenla AR, Lopes LV, Jeronimo-Santos A, Sousa VC, Fontinha BM, Ribeiro JA, Sebastiao AM (2011) Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 36:1823–1836PubMedCrossRefGoogle Scholar
  48. Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of beta-amyloid peptide toxicity. Genetics 186:857–866PubMedCrossRefGoogle Scholar
  49. Duyckaerts C, Bennecib M, Grignon Y, Uchihara T, He Y, Piette F, Hauw JJ (1997) Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 18:267–273PubMedCrossRefGoogle Scholar
  50. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438PubMedCrossRefGoogle Scholar
  51. Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S167–S174PubMedGoogle Scholar
  52. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91PubMedGoogle Scholar
  53. Espana J, Valero J, Minano-Molina AJ, Masgrau R, Martin E, Guardia-Laguarta C, Lleo A, Gimenez-Llort L, Rodriguez-Alvarez J, Saura CA (2010) beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 30:9402–9410PubMedGoogle Scholar
  54. Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Schmidt AM, Chen JX et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24:1043–1055PubMedCrossRefGoogle Scholar
  55. Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160PubMedCrossRefGoogle Scholar
  56. Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872PubMedCrossRefGoogle Scholar
  57. Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924–933PubMedCrossRefGoogle Scholar
  58. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  59. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270PubMedCrossRefGoogle Scholar
  60. Georgiev V, Johansson B, Fredholm BB (1993) Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res 612:271–277PubMedCrossRefGoogle Scholar
  61. Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M, Canals M, Terasmaa A, Fernandez-Teruel A, Tobena A et al (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56PubMedCrossRefGoogle Scholar
  62. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210PubMedCrossRefGoogle Scholar
  63. Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399PubMedCrossRefGoogle Scholar
  64. Gorlovoy P, Larionov S, Pham TT, Neumann H (2009) Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23:2502–2513PubMedCrossRefGoogle Scholar
  65. Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S et al (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363PubMedCrossRefGoogle Scholar
  66. Grober E, Dickson D, Sliwinski MJ, Buschke H, Katz M, Crystal H, Lipton RB (1999) Memory and mental status correlates of modified Braak staging. Neurobiol Aging 20:573–579PubMedCrossRefGoogle Scholar
  67. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989PubMedCrossRefGoogle Scholar
  68. Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology (Berl) 179:813–825CrossRefGoogle Scholar
  69. Hasko G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516PubMedCrossRefGoogle Scholar
  70. Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91PubMedCrossRefGoogle Scholar
  71. Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D, Gordon MN (2004) Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 190:245–253PubMedCrossRefGoogle Scholar
  72. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406PubMedCrossRefGoogle Scholar
  73. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774PubMedCrossRefGoogle Scholar
  74. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233PubMedCrossRefGoogle Scholar
  75. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397PubMedCrossRefGoogle Scholar
  76. Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113PubMedCrossRefGoogle Scholar
  77. Jin S, Fredholm BB (1997) Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedebergs Arch Pharmacol 355:48–56PubMedCrossRefGoogle Scholar
  78. Johansson B, Georgiev V, Lindstrom K, Fredholm BB (1997) A1 and A2A adenosine receptors and A1 mRNA in mouse brain: effect of long-term caffeine treatment. Brain Res 762:153–164PubMedCrossRefGoogle Scholar
  79. Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D (2002) Coffee consumption and cognitive function among older adults. Am J Epidemiol 156:842–850PubMedCrossRefGoogle Scholar
  80. Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248:9–15PubMedCrossRefGoogle Scholar
  81. Kaplan GB, Greenblatt DJ, Leduc BW, Thompson ML, Shader RI (1989) Relationship of plasma and brain concentrations of caffeine and metabolites to benzodiazepine receptor binding and locomotor activity. J Pharmacol Exp Ther 248:1078–1083PubMedGoogle Scholar
  82. Ke RH, Xiong J, Liu Y, Ye ZR (2009) Adenosine A2a receptor induced gliosis via Akt/NF-kappaB pathway in vitro. Neurosci Res 65:280–285PubMedCrossRefGoogle Scholar
  83. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853PubMedCrossRefGoogle Scholar
  84. Kurt MA, Davies DC, Kidd M (1999) beta-Amyloid immunoreactivity in astrocytes in Alzheimer’s disease brain biopsies: an electron microscope study. Exp Neurol 158:221–228PubMedCrossRefGoogle Scholar
  85. La Rue A (2010) Healthy brain aging: role of cognitive reserve, cognitive stimulation, and cognitive exercises. Clin Geriatr Med 26:99–111PubMedCrossRefGoogle Scholar
  86. Lambert JC, Amouyel P (2011) Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21:295–301PubMedCrossRefGoogle Scholar
  87. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560PubMedCrossRefGoogle Scholar
  88. Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D (2010a) LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 7:56PubMedCrossRefGoogle Scholar
  89. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010b) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562PubMedCrossRefGoogle Scholar
  90. Li Y, Liu L, Barger SW, Griffin WS (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23:1605–1611PubMedGoogle Scholar
  91. Li W, Dai S, An J, Li X, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y (2008) Chronic but not acute treatment with cafeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 151:1198–1207PubMedCrossRefGoogle Scholar
  92. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787PubMedCrossRefGoogle Scholar
  93. Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453PubMedCrossRefGoogle Scholar
  94. Lopes LV, Cunha RA, Ribeiro JA (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203PubMedGoogle Scholar
  95. Lopes LV, Sebastiao AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101PubMedCrossRefGoogle Scholar
  96. Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53:82–94PubMedCrossRefGoogle Scholar
  97. Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382PubMedCrossRefGoogle Scholar
  98. Marques S, Batalha VL, Lopes LV, Outeiro TF (2011) Modulating Alzheimer’s disease through caffeine: a putative link to epigenetics. J Alzheimers Dis 24:161–171PubMedGoogle Scholar
  99. Menendez M (2005) Down syndrome, Alzheimer’s disease and seizures. Brain Dev 27:246–252PubMedCrossRefGoogle Scholar
  100. Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke B, Zilberter Y, Harkany T, Pitkanen A et al (2009) Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 29:3453–3462PubMedCrossRefGoogle Scholar
  101. Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10PubMedCrossRefGoogle Scholar
  102. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83:293–309PubMedCrossRefGoogle Scholar
  103. Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson’s disease. Handb Exp Pharmacol 589–615Google Scholar
  104. Muller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308PubMedCrossRefGoogle Scholar
  105. Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:6208–6220PubMedCrossRefGoogle Scholar
  106. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674PubMedCrossRefGoogle Scholar
  107. Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94:100–102PubMedCrossRefGoogle Scholar
  108. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017PubMedGoogle Scholar
  109. Nygaard TG, Duvoisin RC, Manocha M, Chokroverty S (1989) Seizures in progressive supranuclear palsy. Neurology 39:138–140PubMedCrossRefGoogle Scholar
  110. Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12:872–878PubMedCrossRefGoogle Scholar
  111. Palop JJ, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440PubMedCrossRefGoogle Scholar
  112. Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, Sanz-Anquela JM, Ortega J, Rodriguez M, Gonzalo-Ruiz A (2010) Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 223:410–421PubMedCrossRefGoogle Scholar
  113. Pinna A (2009) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631PubMedCrossRefGoogle Scholar
  114. Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29:10741–10749PubMedCrossRefGoogle Scholar
  115. Prasanthi JR, Dasari B, Marwarha G, Larson T, Chen X, Geiger JD, Ghribi O (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49:1212–1220PubMedCrossRefGoogle Scholar
  116. Rahman A (2009) The role of adenosine in Alzheimer’s disease. Curr Neuropharmacol 7:207–216PubMedCrossRefGoogle Scholar
  117. Rebola N, Sebastiao AM, de Mendonca A, Oliveira CR, Ribeiro JA, Cunha RA (2003) Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 90:1295–1303PubMedCrossRefGoogle Scholar
  118. Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133:79–83PubMedCrossRefGoogle Scholar
  119. Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134PubMedCrossRefGoogle Scholar
  120. Rebola N, Simoes AP, Canas PM, Tome AR, Andrade GM, Barry CE, Agostinho PM, Lynch MA, Cunha RA (2011) Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 117:100–111PubMedCrossRefGoogle Scholar
  121. Ribeiro JA, Sebastiao AM (2010) Modulation and metamodulation of synapses by adenosine. Acta Physiol (Oxf) 199:161–169CrossRefGoogle Scholar
  122. Riksen NP, Rongen GA, Smits P (2009) Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther 121:185–191PubMedCrossRefGoogle Scholar
  123. Ritchie K, Artero S, Touchon J (2001) Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56:37–42PubMedCrossRefGoogle Scholar
  124. Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545PubMedCrossRefGoogle Scholar
  125. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754PubMedCrossRefGoogle Scholar
  126. Rodrigues RJ, Canas PM, Lopes LV, Oliveira CR, Cunha RA (2008) Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiol Aging 29:1597–1601PubMedCrossRefGoogle Scholar
  127. Sasaki A, Kawarabayashi T, Murakami T, Matsubara E, Ikeda M, Hagiwara H, Westaway D, George-Hyslop PS, Shoji M, Nakazato Y (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168PubMedCrossRefGoogle Scholar
  128. Saura J, Angulo E, Ejarque A, Casado V, Tusell JM, Moratalla R, Chen JF, Schwarzschild MA, Lluis C, Franco R et al (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95:919–929PubMedCrossRefGoogle Scholar
  129. Sawyer DA, Julia HL, Turin AC (1982) Caffeine and human behavior: arousal, anxiety, and performance effects. J Behav Med 5:415–439PubMedCrossRefGoogle Scholar
  130. Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616PubMedCrossRefGoogle Scholar
  131. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654PubMedCrossRefGoogle Scholar
  132. Sebastiao AM, Ribeiro JA (1992) Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci Lett 138:41–44PubMedCrossRefGoogle Scholar
  133. Sebastiao AM, Ribeiro JA (2009) Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 7:180–194PubMedCrossRefGoogle Scholar
  134. Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E et al (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5:207–224PubMedCrossRefGoogle Scholar
  135. Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39:398–404PubMedCrossRefGoogle Scholar
  136. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502PubMedCrossRefGoogle Scholar
  137. Simola N, Morelli M, Pinna A (2008) Adenosine A2A receptor antagonists and Parkinson’s disease: state of the art and future directions. Curr Pharm Des 14:1475–1489PubMedCrossRefGoogle Scholar
  138. Smit HJ, Rogers PJ (2000) Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology (Berl) 152:167–173CrossRefGoogle Scholar
  139. Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B (2011) In vitro modelling of Alzheimer’s disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 229:226–237PubMedCrossRefGoogle Scholar
  140. Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575PubMedCrossRefGoogle Scholar
  141. Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632PubMedCrossRefGoogle Scholar
  142. Tebano MT, Martire A, Chiodi V, Ferrante A, Popoli P (2010) Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: a possible key mechanism in the pathophysiology of Huntington’s disease. ScientificWorldJournal 10:1768–1782PubMedCrossRefGoogle Scholar
  143. Thomas RJ (1997) Seizures and epilepsy in the elderly. Arch Intern Med 157:605–617PubMedCrossRefGoogle Scholar
  144. Trinh K, Andrews L, Krause J, Hanak T, Lee D, Gelb M, Pallanck L (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci 30:5525–5532PubMedCrossRefGoogle Scholar
  145. Van der Jeugd A, Ahmed T, Burnouf S, Belarbi K, Hamdame M, Grosjean ME, Humez S, Balschun D, Blum D, Buee L et al (2011) Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem 95:296–304PubMedCrossRefGoogle Scholar
  146. Van Eldik LJ, Griffin WS (1994) S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223:398–403PubMedCrossRefGoogle Scholar
  147. van Gelder BM, Buijsse B, Tijhuis M, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr 61:226–232PubMedCrossRefGoogle Scholar
  148. Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp Neurol 199:438–445PubMedCrossRefGoogle Scholar
  149. Wegiel J, Imaki H, Wang KC, Wronska A, Osuchowski M, Rubenstein R (2003) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 105:393–402PubMedGoogle Scholar
  150. Wei CJ, Li W, Chen JF (2011) Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 1808:1358–1379PubMedCrossRefGoogle Scholar
  151. Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867PubMedGoogle Scholar
  152. Wharton SB, O’Callaghan JP, Savva GM, Nicoll JA, Matthews F, Simpson JE, Forster G, Shaw PJ, Brayne C, Ince PG (2009) Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 27:465–473PubMedCrossRefGoogle Scholar
  153. Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104:17210–17215PubMedCrossRefGoogle Scholar
  154. Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600PubMedCrossRefGoogle Scholar
  155. Wittchen HU, Jacobi F (2005) Size and burden of mental disorders in Europe―a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol 15:357–376PubMedCrossRefGoogle Scholar
  156. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015PubMedGoogle Scholar
  157. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618PubMedCrossRefGoogle Scholar
  158. Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310PubMedCrossRefGoogle Scholar
  159. Yee BK, Singer P, Chen JF, Feldon J, Boison D (2007) Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 26:3237–3252PubMedCrossRefGoogle Scholar
  160. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351PubMedCrossRefGoogle Scholar
  161. Yu L, Shen HY, Coelho JE, Araujo IM, Huang QY, Day YJ, Rebola N, Canas PM, Rapp EK, Ferrara J et al (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346PubMedCrossRefGoogle Scholar
  162. Zhou SJ, Zhu ME, Shu D, Du XP, Song XH, Wang XT, Zheng RY, Cai XH, Chen JF, He JC (2009) Preferential enhancement of working memory in mice lacking adenosine A(2A) receptors. Brain Res 1303:74–83PubMedCrossRefGoogle Scholar
  163. Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol 209:16–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Inserm, U837Lille CedexFrance
  2. 2.UDSL, Jean-ierre Aubert Research Centre, Institut de Médecine Prédictive et de Recherche ThérapeutiqueUniversité Lille-Nord de FranceLilleFrance
  3. 3.CHRU-LilleLilleFrance
  4. 4.Legacy Research InstitutePortlandUSA
  5. 5.Neurosciences UnitInstituto de Medicina MolecularLisbonPortugal
  6. 6.Department NeurologyCHRU-LilleLilleFrance

Personalised recommendations