Adenosine pp 213-232 | Cite as

Adenosine and Other Purinergic Products in Circadian Timing

  • Christine Muheim
  • Steven A. BrownEmail author


The circadian oscillator plays an important role in behavior and metabolic physiology. In turn, adenosine occupies a unique position as both a fundamental neuromodulator and a basic building block of cellular metabolism. Multiple connections exist between the two, both through the direct actions of adenosine and through the cellular signaling cascades regulating and regulated by its availability. Specifically, we show that the circadian clock is connected to adenosine and other purinergic products on three levels. At the level of circadian signaling, the adenosine-derived signaling molecule cAMP is itself a circadian clock component that indirectly induces transcription of many circadian genes, as well as influencing cell cycle timing. At the level of metabolism, AMP kinase, a cellular energy sensor dependent upon AMP, can phosphorylate multiple clock proteins. It phosphorylates cryptochromes and thereby enhances the activity of the inhibitory clock protein complex that contains them. The histone and clock protein deacetylase SIRT1 is also phosphorylated and upregulated by AMPK, leading to increased clock protein degradation and chromatin repression. SIRT1 activity is also regulated by NAD+ cofactors, whose levels are themselves under both circadian and metabolic control. Finally, multiple adenosine receptor subtypes can control clock function. A3 receptors influence mammalian temperature control and therefore possibly the circadian oscillator. A1 receptor transcription can be induced indirectly via glucocorticoids which are under circadian control. In addition, A1 receptors modulate light responsiveness of the circadian clock. Taken together, this intricate regulatory web likely permits a complex dialogue between metabolism and diurnal behavior and physiology that allows organisms to exploit their circadian geophysical environment optimally.


Circadian clock Adenosine Sirtuin Metabolism NAD+ AMPK Food entrainment A1 receptor Suprachiasmatic nucleus 


  1. Amelio AL, Miraglia LJ, Conkright JJ, Mercer BA, Batalov S, Cavett V, Orth AP, Busby J, Hogenesch JB, Conkright MD (2007) A coactivator trap identifies NONO (p54nrb) as a component of the cAMP-signaling pathway. Proc Natl Acad Sci USA 104:20314–20319CrossRefPubMedGoogle Scholar
  2. An S, Irwin RP, Allen CN, Tsai C, Herzog ED (2011) Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 105:2289–2296CrossRefPubMedGoogle Scholar
  3. Antle MC, Steen NM, Mistlberger RE (2001) Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport 12:2901–2905CrossRefPubMedGoogle Scholar
  4. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328CrossRefPubMedGoogle Scholar
  5. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953CrossRefPubMedGoogle Scholar
  6. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137CrossRefPubMedGoogle Scholar
  7. Atkinson SE, Maywood ES, Chesham JE, Wozny C, Colwell CS, Hastings MH, Williams SR (2011) Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. J Biol Rhythms 26:210–220CrossRefPubMedGoogle Scholar
  8. Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB et al (2009) Night/day changes in pineal expression of >600 genes. J Biol Chem 284:7606–7622CrossRefPubMedGoogle Scholar
  9. Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16:196–204PubMedGoogle Scholar
  10. Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism―the epigenetic link. J Cell Sci 123:3837–3848CrossRefPubMedGoogle Scholar
  11. Bernardinelli Y, Magistretti PJ, Chatton J-Y (2004) Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci USA 101:14937–14942CrossRefPubMedGoogle Scholar
  12. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073CrossRefPubMedGoogle Scholar
  13. Besharse J, Dunis D (1983) Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343CrossRefPubMedGoogle Scholar
  14. Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135CrossRefPubMedGoogle Scholar
  15. Brandenburg J, Bobbert AC, Eggelmeyer F (1983) Circadian changes in the response of the rabbit’s retina to flashes. Behav Brain Res 7:113–123CrossRefPubMedGoogle Scholar
  16. Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308:693–696CrossRefPubMedGoogle Scholar
  17. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583CrossRefPubMedGoogle Scholar
  18. Burkeen JF, Womac AD, Earnest DJ, Zoran MJ (2011) Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J Neurosci 31:8432–8440CrossRefPubMedGoogle Scholar
  19. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060CrossRefPubMedGoogle Scholar
  20. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219CrossRefPubMedGoogle Scholar
  21. Card JP (2000) Pseudorabies virus and the functional architecture of the circadian timing system. J Biol Rhythms 15:453–461PubMedGoogle Scholar
  22. Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 5:368–381CrossRefPubMedGoogle Scholar
  23. Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180:631–644CrossRefPubMedGoogle Scholar
  24. Chik CL, Arnason TG, Dukewich WG, Price DM, Ranger A, Ho AK (2007) Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. Endocrinology 148:1465–1472CrossRefPubMedGoogle Scholar
  25. Cuninkova L, Brown SA (2008) Peripheral circadian oscillators. Ann N Y Acad Sci 1129:358–370CrossRefPubMedGoogle Scholar
  26. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961CrossRefPubMedGoogle Scholar
  27. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549CrossRefPubMedGoogle Scholar
  28. Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22CrossRefPubMedGoogle Scholar
  29. Drouyer E, Rieux C, Hut RA, Cooper HM (2007) Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod cone inputs. J Neurosci 27:9623–9631CrossRefPubMedGoogle Scholar
  30. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55CrossRefPubMedGoogle Scholar
  31. Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332:1436–1439CrossRefPubMedGoogle Scholar
  32. Eckel-Mahan KL, Storm DR (2009) Circadian rhythms and memory: not so simple as cogs and gears. EMBO Rep 10:584–591CrossRefPubMedGoogle Scholar
  33. Elliott KJ, Todd Weber E, Rea MA (2001) Adenosine A1 receptors regulate the response of the hamster circadian clock to light. Eur J Pharmacol 414:45–53CrossRefPubMedGoogle Scholar
  34. Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS et al (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679CrossRefPubMedGoogle Scholar
  35. Foley NC, Tong TY, Foley D, LeSauter J, Welsh DK, Silver R (2011) Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci 33:1851–1865CrossRefPubMedGoogle Scholar
  36. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362:364–374CrossRefPubMedGoogle Scholar
  37. Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361CrossRefPubMedGoogle Scholar
  38. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380CrossRefPubMedGoogle Scholar
  39. Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19:91–102CrossRefPubMedGoogle Scholar
  40. Hallworth R, Cato M, Colbert C, Rea MA (2002) Presynaptic adenosine A1 receptors regulate retinohypothalamic neurotransmission in the hamster suprachiasmatic nucleus. J Neurobiol 52:230–240CrossRefPubMedGoogle Scholar
  41. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785CrossRefPubMedGoogle Scholar
  42. Hastings M, O’Neill JS, Maywood ES (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–198CrossRefPubMedGoogle Scholar
  43. Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193CrossRefPubMedGoogle Scholar
  44. Ho AK, Price DM, Dukewich WG, Steinberg N, Arnason TG, Chik CL (2007) Acetylation of histone H3 and adrenergic-regulated gene transcription in rat pinealocytes. Endocrinology 148:4592–4600CrossRefPubMedGoogle Scholar
  45. Imai SI, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800CrossRefPubMedGoogle Scholar
  46. Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307CrossRefPubMedGoogle Scholar
  47. Ishikawa K, Shimanzu T (1976) Daily rhythm of glycogen synthetase and phosphorylase activities in rat liver: influence of food and light. Life Sci 19:1873–1878CrossRefPubMedGoogle Scholar
  48. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523CrossRefPubMedGoogle Scholar
  49. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25CrossRefPubMedGoogle Scholar
  50. Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349(1):20–29CrossRefPubMedGoogle Scholar
  51. Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421CrossRefPubMedGoogle Scholar
  52. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen Z-P, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25CrossRefPubMedGoogle Scholar
  53. Kim J-S, Coon SL, Blackshaw S, Cepko CL, Møller M, Mukda S, Zhao W-Q, Charlton CG, Klein DC (2005) Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem 280:677–684PubMedGoogle Scholar
  54. Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T (1999) Shiftwork and myocardial infarction: a case-control study. Occup Environ Med 56:46–50CrossRefPubMedGoogle Scholar
  55. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440CrossRefPubMedGoogle Scholar
  56. Lamont E, Coutu D, Cermakian N, Boivin D (2010) Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci 47:27–35PubMedGoogle Scholar
  57. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484CrossRefPubMedGoogle Scholar
  58. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638PubMedGoogle Scholar
  59. Lucas RJ, Stirland JA, Darrow JM, Menaker M, Loudon ASI (1999) Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology 140:758–764CrossRefPubMedGoogle Scholar
  60. Mansour HA, Monk TH, Nimgaonkar VL (2005) Circadian genes and bipolar disorder. Ann Med 37:196–205CrossRefPubMedGoogle Scholar
  61. Manzoni OJ, Manabe T, Nicoll RA (1994) Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265:2098–2101CrossRefPubMedGoogle Scholar
  62. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31:8342–8350CrossRefPubMedGoogle Scholar
  63. Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104(4):535–545CrossRefPubMedGoogle Scholar
  64. Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508–534CrossRefPubMedGoogle Scholar
  65. Moons T, Claes S, Martens GJM, Peuskens J, Van Loo KMJ, Van Schijndel JE, De Hert M, van Winkel R (2011) Clock genes and body composition in patients with schizophrenia under treatment with antipsychotic drugs. Schizophr Res 125:187–193CrossRefPubMedGoogle Scholar
  66. Moore R, Speh J, Leak R (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98CrossRefPubMedGoogle Scholar
  67. Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 8:27–33CrossRefPubMedGoogle Scholar
  68. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705CrossRefPubMedGoogle Scholar
  69. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657CrossRefPubMedGoogle Scholar
  70. Nakazato R, Takarada T, Yamamoto T, Hotta S, Hinoi E, Yoneda Y (2011) Selective upregulation of Per1 mRNA expression by ATP through activation of P2X7 purinergic receptors expressed in microglial cells. J Pharmacol Sciences 116, 350–361Google Scholar
  71. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953CrossRefPubMedGoogle Scholar
  72. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558CrossRefPubMedGoogle Scholar
  73. Pattanayek R, Mori T, Xu Y, Pattanayek S, Johnson CH, Egli M (2009) Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of Kinase, ATPase and phosphatase. PLoS One 4:e7529CrossRefPubMedGoogle Scholar
  74. Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, Magrini A (2010) Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med 67:54–57CrossRefPubMedGoogle Scholar
  75. Popoli P, Ferré S, Pezzola A, Reggio R, Scotti de Carolis A, Fuxe K (1996) Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. Eur J Pharmacol 305:123–126CrossRefPubMedGoogle Scholar
  76. Rath MF, Bailey MJ, Kim J-S, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′,5′-monophosphate signaling. Endocrinology 150:803–811CrossRefPubMedGoogle Scholar
  77. Ren H, Stiles GL (1999) Dexamethasone stimulates human A1 adenosine receptor (A1AR) gene expression through multiple regulatory sites in promoter B. Mol Pharmacol 55:309–316PubMedGoogle Scholar
  78. Reppert SM, Weaver DR (2001) Molecular analysis of mammalina circadian rhythms. Annu Rev Physiol 63:647–676CrossRefPubMedGoogle Scholar
  79. Revollo JR, Grimm AA, Imai SI (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763CrossRefPubMedGoogle Scholar
  80. Ribelayga C, Mangel SC (2005) A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina. J Neurosci 25:215–222CrossRefPubMedGoogle Scholar
  81. Ripperger JA, Merrow M (2011) Perfect timing: epigenetic regulation of the circadian clock. FEBS Lett 585:1406–1411CrossRefPubMedGoogle Scholar
  82. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA 105:15593–15598CrossRefPubMedGoogle Scholar
  83. Rüger M, Scheer F (2009) Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord 10:245–260CrossRefPubMedGoogle Scholar
  84. Rust MJ, Golden SS, O’Shea EK (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–223CrossRefPubMedGoogle Scholar
  85. Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260CrossRefPubMedGoogle Scholar
  86. Shibata S (2004) Neural regulation of the hepatic circadian rhythm. Anat Rec A Discov Mol Cell Evol Biol 280A:901–909CrossRefGoogle Scholar
  87. Sigworth LA, Rea MA (2003) Adenosine A1 receptors regulate the response of the mouse circadian clock to light. Brain Res 960:246–251CrossRefPubMedGoogle Scholar
  88. Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493CrossRefPubMedGoogle Scholar
  89. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62CrossRefPubMedGoogle Scholar
  90. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421CrossRefPubMedGoogle Scholar
  91. Um J-H, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, Kim MK, Yamazaki S, Chung JH (2011) AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6:e18450CrossRefPubMedGoogle Scholar
  92. Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH (2007) Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2. J Biol Chem 282:20794–20798CrossRefPubMedGoogle Scholar
  93. Wang H-Y, Huang R-C (2004) Diurnal modulation of the Na+/K+-ATPase and spontaneous firing in the rat retinorecipient clock neurons. J Neurophysiol 92:2295–2301CrossRefPubMedGoogle Scholar
  94. Wang Y-C, Huang R-C (2006) Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109–118CrossRefPubMedGoogle Scholar
  95. Watanabe A, Moriya T, Nisikawa Y, Araki T, Hamada T, Shibata S, Watanabe S (1996) Adenosine A1-receptor agonist attenuates the light-induced phase shifts and fos expression in vivo and optic nerve stimulation-evoked field potentials in the suprachiasmatic nucleus in vitro. Brain Res 740:329–336CrossRefPubMedGoogle Scholar
  96. Westermeier F, Salomón C, González M, Puebla C, Guzmán-Gutiérrez E, Cifuentes F, Leiva A, Casanello P, Sobrevia L (2011) Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes 60:1677–1687CrossRefPubMedGoogle Scholar
  97. Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ (2009) Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30:869–876CrossRefPubMedGoogle Scholar
  98. Yang JN, Wang Y, Garcia-Roves PM, Björnholm M, Fredholm BB (2010) Adenosine A3 receptors regulate heart rate, motor activity and body temperature. Acta Physiol 199:221–230CrossRefGoogle Scholar
  99. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland

Personalised recommendations