Skip to main content

Beneficial Effects of Green Tea Catechins on Neurological Disorders

  • Chapter
  • First Online:

Abstract

Green tea is natural dried leaves of the tea plant, Camellia sinensis. This “nonfermented” tea contains more catechins than black tea (oxidized green tea) or oolong tea (partially oxidized tea). The composition of tea leaves depends on a variety of factors, including climate, season, horticultural practices, and the type and age of the plant. Green and black teas contain polyphenols, alkaloids (caffeine, theophylline, and theobromine), flavonols (quercetin, kaempferol, and rutin), amino acids, carbohydrates, proteins, chlorophyll, volatile organic compounds that contribute to tea flavonoid, fluoride, aluminum, minerals, and trace elements (Fig. 5.1). Green tea contains gallic acid (GA), chlorogenic acid, and caffeic acid, and flavonols such as kaempferol, myricetin, and quercetin (USDA data base 2003; Wang and Ho 2009). In contrast, black tea mostly has the polymerized catechins such as theaflavins and thearubigins. Collectively, these studies indicate that green tea is the source of catechins—simple flavonoids whereas black tea is rich in theaflavins and thearubigins, which are generated during the process of oxidation (USDA data base 2003; Wang and Ho 2009). Four major theaflavins have been identified from black tea, including theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate, and theaflavin-3,3′-digallate. Catechins are strong antioxidants that can quench reactive oxygen species (ROS) such as super oxide radical, singlet oxygen, hydroxyl radical, peroxyl radical, nitric oxide, nitrogen dioxide, and peroxynitrite (Feng 2006). Since ancient times, green tea has been considered by the traditional Chinese and Japanese medicine as a healthful beverage. Human studies indicate that green tea not only contributes to a reduction in the risk of cardiovascular disease and some forms of cancer, but also induces antihypertensive effects by suppressing angiotensin I-converting enzyme, body weight control by suppressing the appetite, antibacterial, and antivirasic effects, solar ultraviolet protection, bone mineral density increase, antifibrotic effects, and neuroprotective effects. Green tea also decreases blood pressure (Henry and Stephens-Larson 1984) and blood sugar (Matsumoto et al. 1993). Lipid metabolism studies in animals, tissues, and cells have found that tea extract and catechins reduce triacylglycerol and total cholesterol concentrations (Nanjo et al. 1994; Chan et al. 1999), inhibit hepatic and body fat accumulation (Ishigaki et al. 1991), and stimulate thermogenesis (Dulloo et al. 2000). In addition, green tea boosts metabolism and improves immune function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasmundstad TA, Morland J, Paulsen RE (1995) Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 275:435–441

    PubMed  CAS  Google Scholar 

  • Adachi N, Tomonaga S, Tachibana T, Denbow DM, Furuse M (2006) (−)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur J Pharmacol 531:171–175

    PubMed  CAS  Google Scholar 

  • Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800

    PubMed  CAS  Google Scholar 

  • Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186

    PubMed  CAS  Google Scholar 

  • Anderson RF, Fisher LJ, Hara Y, Harris T, Mak WB, Melton LD, Packer JE (2001) Green tea catechins partially protect DNA from.OH radical induced strand breaks and base damage through fast chemical repair of DNA radicals. Carcinogenesis 22:1189–1193

    PubMed  CAS  Google Scholar 

  • Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B (2004) Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 10:55–62

    PubMed  CAS  Google Scholar 

  • Anton S, Melville L, Rena G (2007) Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 19:378–383

    PubMed  CAS  Google Scholar 

  • Ashida H, Furuyashiki T, Nagayasu H, Bessho H, Sakakaibara H, Hashimoto T, Kanazawa K (2004) Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors 22:135–140

    PubMed  CAS  Google Scholar 

  • Balasubramanian S, Eckert RL (2004) Green tea polyphenol and curcumin inversely regulate human involucrin promoter activity via opposing effects on CCAAT/enhancer-binding protein function. J Biol Chem 279:24007–24014

    PubMed  CAS  Google Scholar 

  • Barras A, Mezzetti A, Richard A, Lazzaroni S, Roux S, Melnyk P, Betbeder D, Monfilliette-Dupont N (2009) Formulation and characterization of polyphenol loaded lipid nanocapsules. Int J Pharm 379:270–277

    PubMed  CAS  Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur J Neurosci 23:55–64

    PubMed  Google Scholar 

  • Beaulieu JM, Julien JP (2003) Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins. J Neurochem 85:248–256

    PubMed  CAS  Google Scholar 

  • Beltz LA, Bayer DK, Moss AL, Simet IM (2006) Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 6:389–406

    PubMed  CAS  Google Scholar 

  • Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    PubMed  CAS  Google Scholar 

  • Blackwell TS, Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17:3–9

    PubMed  CAS  Google Scholar 

  • Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50

    PubMed  CAS  Google Scholar 

  • Calabrese V, Butterfield DA, Stella AM (2003) Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital J Biochem 52:177–181

    PubMed  CAS  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13–21

    PubMed  Google Scholar 

  • Chan PT, Fong WP, Cheung YL, Huang Y, Ho WKK, Chen ZY (1999) Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J Nutr 129:1094–1101

    PubMed  CAS  Google Scholar 

  • Chantre P, Lairon D (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 9:3–8

    PubMed  CAS  Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    PubMed  Google Scholar 

  • Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 53:155–177

    PubMed  CAS  Google Scholar 

  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    PubMed  CAS  Google Scholar 

  • Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149

    PubMed  CAS  Google Scholar 

  • Correale J, Villa A (2004) The neuroprotective role of inflammation in nervous system injuries. J Neurol 251:1304–1316

    PubMed  Google Scholar 

  • Dou QP (2009) Molecular mechanisms of green tea polyphenols. Nutr Cancer 61:827–835

    PubMed  CAS  Google Scholar 

  • Dudka J, Jodynis-Liebert J, Korobowicz E, Szumilo J, Tokarska E, Klepacz R, Murias M (2005) Activity of NADPH-cytochrome P-450 reductase of the human heart, liver and lungs in the presence of (-)-epigallocatechin gallate, quercetin and resveratrol: an in vitro study. Basic Clin Pharmacol Toxicol 97:74–79

    PubMed  CAS  Google Scholar 

  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24:252–258

    PubMed  CAS  Google Scholar 

  • Eisen A (2009) Amyotrophic lateral sclerosis: a 40-year personal perspective. J Clin Neurosci 16:505–512

    PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol epigallocatechin-3-gallate inhibits DNAmethyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    PubMed  CAS  Google Scholar 

  • Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspect of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    PubMed  CAS  Google Scholar 

  • Fassina G, Vene R, Morini M, Minghelli S, Benelli R, Noonan DM, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873

    PubMed  CAS  Google Scholar 

  • Feng WY (2006) Metabolism of green tea catechin catechins: an overview. Curr Drug Metab 7:755–809

    PubMed  CAS  Google Scholar 

  • Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997) CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 94:2927–2932

    PubMed  CAS  Google Scholar 

  • Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    PubMed  CAS  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    PubMed  CAS  Google Scholar 

  • Grossman A, Zeiler B, Sapirstein V (2003) Prion protein interactions with nucleic acid: possible models for prion disease and prion function. Neurochem Res 28:955–963

    PubMed  CAS  Google Scholar 

  • Guo Q, Zhao BL, Li MF, Shen SR, Xin WJ (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochem Biophys Acta 1304:210–222

    PubMed  CAS  Google Scholar 

  • Hashimoto R, Yaita M, Tanaka K, Hara Y, Kojo S (2000) Inhibition of radical reaction of apolipoprotein B-100 and alpha-tocopherol in human plasma by green tea catechins. J Agric Food Chem 48:6380–6383

    PubMed  CAS  Google Scholar 

  • Henry JP, Stephens-Larson P (1984) Reduction of chronic psychosocial hypertension in mice by decaffeinated tea. Hypertension 6:437–444

    PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    PubMed  CAS  Google Scholar 

  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Kim DB, Yun YP, Ryu JH, Lee BM, Kim PY (2000) Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res Bull 53:743–749

    PubMed  CAS  Google Scholar 

  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Yun YP, Lee BM, Kim PY (2001) Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res 888:11–18

    PubMed  CAS  Google Scholar 

  • Hong MH, Kim MH, Chang HJ, Kim NH, Shin BA, Ahn BW, Jung YD (2007) (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-kappaB signaling. Life Sci 80:1957–1965

    PubMed  CAS  Google Scholar 

  • Hou Z, Lambert JD, Chin KV, Yang CS (2004) Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res 555:3–19

    PubMed  CAS  Google Scholar 

  • Hou Z, Sang S, You H, Lee MJ, Hong J, Chin KV, Yang CS (2005) Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidationdependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65:8049–8056

    PubMed  CAS  Google Scholar 

  • Ishigaki A, Tonooka F, Matsumoto N, Hara Y (1991) Suppression of the accumulation of body and liver fat by tea catechin. Organizing Committee of International Symposium on Tea Science, Shizuoka, Japan, pp 309–313

    Google Scholar 

  • Ishii T, Mori T, Tanaka T, Mizuno D, Yamaji R, Kumazawa S, Nakayama T, Akagawa M (2008) Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. Free Radic Biol Med 45:1384–1394

    PubMed  CAS  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011) (-)-Epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 13:300–309

    PubMed  CAS  Google Scholar 

  • Jankun J, Selman SH, Swiercz R, Skrypczak-Jankun E (1997) Why drinking green tea can prevent cancer? Nature 387:561

    PubMed  CAS  Google Scholar 

  • Javaid A, Bonkovsky HL (2006) Hepatotoxicity due to extracts of Chinese green tea (Camellia sinensis): a growing concern. J Hepatol 45:334–335, author reply 335–336

    PubMed  CAS  Google Scholar 

  • Jeon SY, Bae K, Seong YH, Song KS (2003) Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 13:3905–3908

    PubMed  CAS  Google Scholar 

  • Johnson MK, Loo G (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat Res 459:211–218

    PubMed  CAS  Google Scholar 

  • Kao YH, Chang HH, Lee MJ, Chen CL (2006) Tea, obesity, and diabetes. Mol Nutr Food Res 50:188–210

    PubMed  CAS  Google Scholar 

  • Kao CC, Wu BT, Tsuei YW, Shih LJ, Kuo YL, Kao YH (2009) Green tea catechins: inhibitors of glycerol 3-phosphate dehydrogenase. Planta Med 75:1–3

    Google Scholar 

  • Khan N, Asim M, Afaq F, Abu ZM, Mukhtar H (2008) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68:8555–8563

    PubMed  CAS  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618–5623

    PubMed  CAS  Google Scholar 

  • Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, Yu HJ, Do BR, Kim KS, Jung HK (2004) Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal differentiated N18D3 cells. Neurotoxicology 25:793–802

    PubMed  CAS  Google Scholar 

  • Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, Kim J, Kim MH, Hwang MS, Song C, Yang KW, Lee KW, Kim SH, Kim OH (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 395:103–107

    PubMed  CAS  Google Scholar 

  • Kondo K, Kurihara M, Miyata N, Suzuki T, Toyoda M (1999) Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action. Free Radic Biol Med 27:855–863

    PubMed  CAS  Google Scholar 

  • Kundu JK, Surh YJ (2007) Epigallocatechin gallate inhibits phorbol ester-induced activation of NF-κB and CREB in mouse skin: role of p38 MAPK. Ann N Y Acad Sci 1095:504–512

    PubMed  CAS  Google Scholar 

  • Kundu JK, Na HK, Chun KS, Kim YK, Lee SJ, Lee SS, Lee OS, Sim YC, Surh YJ (2003) Inhibition of phorbol esterinduced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133:3805S–3810S

    PubMed  CAS  Google Scholar 

  • Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281:17446–17456

    PubMed  CAS  Google Scholar 

  • Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194

    PubMed  CAS  Google Scholar 

  • Lee SY, Lee JW, Lee H, Yoo SH, Yun YP, Oh KW, Ha TY, Hong JT (2005) Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res Mol Brain Res 140:45–54

    PubMed  CAS  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    PubMed  CAS  Google Scholar 

  • Levites Y, Youdim MB, Maor G, Mandel S (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29

    PubMed  CAS  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 17:952–954

    PubMed  CAS  Google Scholar 

  • Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17:2141–2151

    PubMed  Google Scholar 

  • Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H, Collins HW, Matschinsky FM, Stanley CA, Smith TJ (2006) Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281:10214–10221

    PubMed  CAS  Google Scholar 

  • Lin YL, Lin JK (1997) (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52:465–472

    PubMed  CAS  Google Scholar 

  • Lin JK, Lin-Shiau SY (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50:211–217

    PubMed  CAS  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    PubMed  CAS  Google Scholar 

  • Lin JK, Liang YC, Lin-Shiau SY (1999) Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58:911–915

    PubMed  CAS  Google Scholar 

  • Lin SM, Wang SW, Ho SC, Tang YL (2010) Protective effect of green tea (-)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26:1195–1200

    PubMed  CAS  Google Scholar 

  • Liou HH, Chen RC, Chen TH, Tsai YF, Tsai MC (2001) Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo. Toxicol Appl Pharmacol 172:37–43

    PubMed  CAS  Google Scholar 

  • Loke WM, Jenner AM, Proudfoot JM, McKinley AJ, Hodgson JM, Halliwell B, Croft KD (2009) A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr 139:2309–2314

    PubMed  CAS  Google Scholar 

  • Lu H, Meng X, Yang CS (2003a) Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 31:572–579

    PubMed  CAS  Google Scholar 

  • Lu H, Meng X, Li C, Sang S, Patten C, Sheng S, Hong J, Bai N, Winnik B, Ho CT, Yang CS (2003b) Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 31:452–461

    PubMed  CAS  Google Scholar 

  • Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V (2004) The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 316:659–665

    PubMed  CAS  Google Scholar 

  • Mancuso C, Barone E (2009) Therapeutic use of tea derivatives: all that glitters is not gold. Blood 114:2359–2360

    PubMed  CAS  Google Scholar 

  • Mandel S, Smit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360

    PubMed  CAS  Google Scholar 

  • Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB (2008) Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr 138:1578S–1583S

    PubMed  CAS  Google Scholar 

  • Matsumoto N, Ishigaki F, Ishigaki A, Iwashin H, Hara Y (1993) Reduction of blood glucose levels by tea catechin. Biosci Biotechnol Biochem 57:525–527

    CAS  Google Scholar 

  • Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Med 12:5592–5603

    CAS  Google Scholar 

  • Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    PubMed  CAS  Google Scholar 

  • Mizushina Y, Saito A, Tanaka A, Nakajima N, Kuriyama I, Takemura M, Takeuchi T, Sugawara F, Yoshida H (2005) Inhibitory effect of tocotrienol on eukaryotic DNA polymerase lambda and angiogenesis. Biochem Biophys Res Commun 333:101–109

    PubMed  CAS  Google Scholar 

  • Mukhtar H, Ahmad N (2000) Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71(6 Suppl):1698S–1702S

    PubMed  CAS  Google Scholar 

  • Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46:1271–1278

    PubMed  CAS  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330

    PubMed  CAS  Google Scholar 

  • Nanjo F, Hara Y, Kikuchi Y (1994) Effects of tea polyphenols on blood rheology in rats fed a high-fat diet. In: Ho CT (ed) Food phytochemicals for cancer prevention: teas, spices and herbs. American Chemical Society, Washington, DC, pp 76–82

    Google Scholar 

  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21:895–902

    PubMed  CAS  Google Scholar 

  • Navarro-Peran E, Cabezas-Herrera J, García-Canovas F, Durrant MC, Thorneley RNF, Rodríguez-Lopez JN (2005) The antifolate activity of tea catechins. Cancer Res 65:2059–2064

    PubMed  CAS  Google Scholar 

  • Nomura M, Ma W, Chen N, Bode AM, Dong Z (2000) Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF-kappaB activation by tea polyphenols, (-)-epigallocatechin gallate and theaflavins. Carcinogenesis 21:1885–1890

    PubMed  CAS  Google Scholar 

  • Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    PubMed  CAS  Google Scholar 

  • Pan T, Fei J, Zhou X, Jankovic J, Le W (2003) Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci 72:1073–1083

    PubMed  CAS  Google Scholar 

  • Panickar KS, Polansky MM, Anderson RA (2009) Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures. Nutr Neurosci 12:105–113

    PubMed  CAS  Google Scholar 

  • Park D, Jeon JH, Shin S (2009) Green tea extract increases cyclophosphamide-induced teratogenesis by modulating the expression of cytochrome P-450 mRNA. Reprod Toxicol 27:79–84

    PubMed  CAS  Google Scholar 

  • Patra SK, Rizzi F, Silva A, Rugina DO, Bettuzzi S (2008) Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 59(Suppl 9):217–255

    PubMed  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    PubMed  Google Scholar 

  • Raine SS (2004) Novel molecular mechanisms in MS. Adv Stud Med 4:S316–S321

    Google Scholar 

  • Rains TM, Agarwal S, Maki KC (2011) Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem 22:1–7

    PubMed  CAS  Google Scholar 

  • Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    PubMed  CAS  Google Scholar 

  • Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 220:262–266

    PubMed  CAS  Google Scholar 

  • Romeo L, Intrieri M, D’Agata V, Mangano NG, Oriani G, Ontario ML, Scapagnini G (2009) The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 28 Suppl:492S–499S

    PubMed  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    PubMed  CAS  Google Scholar 

  • Ruan H, Yang Y, Zhu X, Wang X, Chen R (2009) Neuroprotective effects of (+/-)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci Lett 450:152–157

    PubMed  CAS  Google Scholar 

  • Sadava D, Whitlock E, Kane SE (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360:233–237

    PubMed  CAS  Google Scholar 

  • Sang SM, Tian S, Meng X, Stark RE, Rosen RT, Yang CS, Ho C-T (2002) Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS. Tetrahedron Lett 43:7129–7133

    CAS  Google Scholar 

  • Sang S, Yang I, Buckley B, Ho CT, Yang CS (2007) Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radic Biol Med 43:362–371

    PubMed  CAS  Google Scholar 

  • Sang S, Lee MJ, Yang I, Buckley B, Yang CS (2008) Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun Mass Spectrom 22:1567–1578

    PubMed  CAS  Google Scholar 

  • Sarma DN, Barrett ML, Chavez ML, Gardiner P et al (2008) Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf 31:469–484

    PubMed  Google Scholar 

  • Schönthal AH (2011) Adverse effects of concentrated green tea extracts. Mol Nutr Food Res 55:874–885

    PubMed  Google Scholar 

  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557

    PubMed  CAS  Google Scholar 

  • Serhan CN (2005) Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 105:7–21

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Tarapore RS, Mukhtar H (2009) Prevention of skin cancer by green tea: past, present and future. Cancer Biol Ther 8:1288–1291

    PubMed  CAS  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    PubMed  CAS  Google Scholar 

  • Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389:207–212

    PubMed  CAS  Google Scholar 

  • Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99 E Suppl 1:ES60–ES77

    PubMed  Google Scholar 

  • Spencer JP (2009a) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    PubMed  CAS  Google Scholar 

  • Spencer JP (2009b) The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38:1152–1161

    PubMed  CAS  Google Scholar 

  • Spencer JP, Abd El Mohsen MM, Minihane M, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    PubMed  CAS  Google Scholar 

  • Steinman L (1999) Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24:511–514

    PubMed  CAS  Google Scholar 

  • Suganuma M, Okabe S, Sueoka E, Iida N, Komori A, Kim SJ, Fujiki H (1996) A new process of cancer prevention mediated through inhibition of tumor necrosis factor α expression. Cancer Res 56:3711–3715

    PubMed  CAS  Google Scholar 

  • Supattapone S (2004) Prion protein conversion in vitro. J Mol Med 82:348–356

    PubMed  CAS  Google Scholar 

  • Takano K, Nakaima K, Nitta M, Shibata F, Nakagawa H (2004) Inhibitory effect of (-)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo. J Agric Food Chem 52:4571–4576

    PubMed  CAS  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick RA, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    PubMed  CAS  Google Scholar 

  • Ueda M, Nishiumi S, Nagayasu H, Fukuda I, Yoshida KI, Ashida H (2008) Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun 377:286–290

    PubMed  CAS  Google Scholar 

  • USDA (2003) USDA Database for the flavonoid contents of selected foods. US Department of Agriculture, Beltsville

    Google Scholar 

  • Valcic S, Burr JA, Timmermann BN, Liebler DC (2000) Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals. Chem Res Toxicol 13:801–810

    PubMed  CAS  Google Scholar 

  • Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15:1840–1850

    Google Scholar 

  • Vignes M, Maurice T, Lanté F, Nedjar M, Thethi K, Guiramand J, Récasens M (2006) Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115

    PubMed  CAS  Google Scholar 

  • Waleh NS, Chao WR, Bensari A, Zaveri NT (2005) Novel D-ring analog of epigallocatechin-3-gallate inhibits tumor growth and VEGF expression in breast carcinoma cells. Anticancer Res 25:397–402

    PubMed  CAS  Google Scholar 

  • Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114

    PubMed  CAS  Google Scholar 

  • Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    PubMed  Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37:705–718

    PubMed  CAS  Google Scholar 

  • Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187

    PubMed  CAS  Google Scholar 

  • Woo ER, Lee JY, Cho IJ, Kim SG, Kang KW (2005) Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacol Res 51:539–546

    PubMed  CAS  Google Scholar 

  • Xu Z, Chen S, Li X, Luo G, Li X, Le W (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31:1263–1269

    PubMed  CAS  Google Scholar 

  • Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW (2001) The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 60:528–533

    PubMed  CAS  Google Scholar 

  • Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G (2006) Possible mechanisms of the cancer-preventive activities of green tea. Mol Nutr Food Res 50:170–175

    PubMed  CAS  Google Scholar 

  • Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, Sawada S, Yonemura A, Higashi K, Ito T, Nakajima K, Yamashita T, Tomiyasu K, Nishiwaki M, Ohsuzu F, Nakamura H (1999) Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol 58:1695–1703

    PubMed  CAS  Google Scholar 

  • Yoshino K, Suzuki M, Sasaki K, Miyase T, Sano M (1999) Formation of antioxidants from (-)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma. J Nutr Biochem 10:223–229

    PubMed  CAS  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:180–192

    PubMed  CAS  Google Scholar 

  • Zaveri NT (2001) Synthesis of a 3,4,5-trimethoxybenzoyl ester analogue of epigallocatechin-3-gallate (EGCG): a potential route to the natural product green tea catechin, EGCG. Org Lett 3:843–846

    PubMed  CAS  Google Scholar 

  • Zhao B (2009) Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 34:630–638

    PubMed  CAS  Google Scholar 

  • Zijp IM, Korver O, Tijburg LB (2000) Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr 40:371–398

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Green Tea Catechins on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_5

Download citation

Publish with us

Policies and ethics