The Alpine Treeline Ecotone in the Southernmost Swedish Scandes: Dynamism on Different Scales



Alpine (altitudinal) treeline ecotones are elusive, spatially heterogeneous and dynamic transitional zones between closed mountain forest and treeless alpine tundra. From a distance the may look sharp, but a closer view usually reveals a highly complex structural pattern (Kullman 1979). Thermal growth limitation is considered as the fundamental part of the mechanism that creates and maintains the treeline ecotone (Grace et al. 2002; Hoch and Körner 2003; Holtmeier 2003; Kullman 1998, 2007a, 2010a; Diaz et al. 2003; Lloyd and Fastie 2002). At finer scales, the straight thermal forcing is modulated by other agents, e.g., topography, geomorphology, wind, soil depth, species interactions, fire, herbivory, human impacts, and site history (Walsh et al. 1994; Holtmeier and Broll 2005; Gehrig-Fasel et al. 2007; Kullman and Öberg 2009; Leonelli et al. 2011; Aune et al. 2011). Among these, wind appears to have a superior role (cf. Seppälä 2004; Holtmeier and Broll 2010; Kullman 2010a).


  1. Alexandersson H (2006) Klimat i förändring. En jämförelse av temperatur och nederbörd 1991–2005 med 1961–1990. SMHI Faktablad 29:1–8Google Scholar
  2. Alftine K, Malanson GP (2004) Directional positive feedback and pattern at an alpine treeline. J Veg Sci 15:3–12Google Scholar
  3. Allard A (2003) Vegetation changes in mountainous areas. PhD-thesis. Department of Physical Geography and Quaternary Geology. Stockholm UniversityGoogle Scholar
  4. Almquist E (1949) Dalarnas flora i växtgeografisk belysning. In: Natur i Dalarna. K-H, Forsslund C, Curry-Lindahl C (eds). Bokförlaget Svensk Natur, Göteborg, pp 55–7Google Scholar
  5. Aune S, Hofgaard A, Söderström L (2011) Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41:437–449Google Scholar
  6. Baker WL, Weisberg PJ (1995) Landscape analysis of the forest-tundra ecotone in Rocky Mountain National Park, Colorado. Prof Geogr 47:361–375Google Scholar
  7. Bakke J, Lie Ø, Dahl SO, Nesje A, Bjune AE (2008) Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob Planet Chang 60:28–41Google Scholar
  8. Bang-Andersen S (2006) Charcoal in hearths: a clue to the reconstruction of palaeo-environments of Mesolithic dwelling sites. Archaeol Environ 12:5–16Google Scholar
  9. Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arct Antarct Alp Res 37:97–107Google Scholar
  10. Bernes C (1996) Arktisk miljö i Norden—orörd, exploaterad, förorenad. Nordiska ministerrådet, StockholmGoogle Scholar
  11. Butler DR, Malanson GP, Walsh SJ, Fagre DB (2007) Influences of geomorphology and geology on alpine treeline in the American west—more important than climatic influences? Phys Geogr 28:434–450Google Scholar
  12. Carlsson BÅ, Karlsson PS, Svensson BM (1999) Alpine and subalpine vegetation. Acta Phytogeogr Suec 84:75–89Google Scholar
  13. Caseldine CJ, Matthews JA (1987) Podzol development, vegetation change and glacier variations at Haugabreen, southern Norway. Boreas 16:215–230Google Scholar
  14. COHMAP members (1988) Climatic changes of the last 18.000 years: observations and simulations. Science 241:1043–1052Google Scholar
  15. Danby RK, Hik DK (2007) Variability, contingency and rapid change in recent subarctic alpine treeline dynamics. J Ecol 95:352–363Google Scholar
  16. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4Google Scholar
  17. Elliot GP, Kipfmueller KF (2010) Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the Southern Rocky Mountains, U.S.A. Arct Antarct Alp Res 42:45–56Google Scholar
  18. Enquist F (1933) Trädgränsundersökningar. Svenska Skogsvårdsför Tidskr 31:145–191Google Scholar
  19. Erkamo V (1956) Untersuchungen über die pflanzenbiologischen und einige andere Folgerscheinungen der neuzeitlichen Klimaschwankung in Finnland. Ann Bot Soc Zool Bot Fenn Vanamo 28:1–283Google Scholar
  20. Esper J, Schweingruber FH (2004) Large-scale tree-line changes recorded in Siberia. Geophys Res Lett 31:1–5Google Scholar
  21. Fagre DB, Peterson DL, Hessle AE (2003) Taking the pulse of mountains: ecosystem responses to climatic variability. Clim Chang 59:263–282Google Scholar
  22. Forsslund K-E (1921) Omkring Storvaln. Sveriges sydligatse fjäll. Sveriges Natur 1921:33–42Google Scholar
  23. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps. Climate change and land abandonment. J Veg Sci 18:571–582Google Scholar
  24. Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-tundra ecotone. Plant Ecol 162:157–168Google Scholar
  25. Giesecke T (2005) Holocene forest development in the central Scandes Mountains, Sweden. Veg Hist Archaeobot 14:133–147Google Scholar
  26. Gosz JR (1993) Ecotone hierarchies. Ecol Appl 3:369–373Google Scholar
  27. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544PubMedGoogle Scholar
  28. Grove JM (1988) The little Ice Age. Methuen, New YorkGoogle Scholar
  29. Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186:890–899PubMedGoogle Scholar
  30. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049PubMedGoogle Scholar
  31. Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21PubMedGoogle Scholar
  32. Hofgaard A, Wilmann B (2002) Plant distribution across the forest-tundra ecotone: the importance of treeline position. Ecoscience 9:375–385Google Scholar
  33. Holtmeier F-K (1981) What does the term “krummholz” really mean? Observations with special reference to the Alps and the Colorado Front Range. Mt Res Dev 1:253–260Google Scholar
  34. Holtmeier F-K (2003) Mountain timberlines: ecology, patchiness and dynamics. Kluwer, DordrechtGoogle Scholar
  35. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410Google Scholar
  36. Holtmeier F-K, Broll G (2007) Treeline advance—driving processes and adverse factors. Landsc Online 1:1–33Google Scholar
  37. Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treeline in North America, the Alps and the European Subarctic. Phys Geogr 31:203–233Google Scholar
  38. Huldén L (2001) Ektunnor och den medeltida värmeprioden i Satakunta. Terra 113:171–178Google Scholar
  39. Hustich I (1937) Pflanzengeographische Studien im Gebiet der niederen Fjelde im westlichen Finnischen Lappland. Acta Bot Fenn 19:1–156Google Scholar
  40. Hustich I (1948) The Scotch pine in northernmost Finland and its dependence on the climate in the last decades. Acta Bot Fenn 42:1–75Google Scholar
  41. Hustich I (1958) On the recent expansion of the Scotch pine in northern Europe. Fennia 82:1–25Google Scholar
  42. Hustich I (1978) The growth of Scots pine in northern Lapland, 1928–77. Ann Bot Soc Zool Bot Fenn Vanamo 15:241–252Google Scholar
  43. Hustich I (1979) Ecological concepts and biogeographical zonation in the north: the need for a generally accepted terminology. Holarct Ecol 2:208–217Google Scholar
  44. IPCC (2007) Climate change 2007. The physical scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  45. Kapralov DS, Shiyatov SG, Moiseev PA, Fomin VV (2006) Changes in composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the Northern Ural Mountains. Russ J Ecol 37:367–372Google Scholar
  46. Kardell L, Arvidsson B, Nilsson E (1982) Tandövala—vårt sydligaste lågfjäll. Sveriges Lantbruksuniv Avd För Landskapsvård Rapport 24:1–157Google Scholar
  47. Karlén W (1976) Lacustrine sedimenst and tree-limit variations as indicators of Holocene climatic fluctuations in Lappland: northern Sweden. Geogr Ann 58A:1–34Google Scholar
  48. Karlén W (2008) Recent changes in climate: natural or forced by human activity. Ambio Special Report 14:483–488Google Scholar
  49. Kellgren AG (1891) Om de skogbildande trädens utbredning i Dalarnes fjältrakter. Botaniska Notiser 1891:182–186Google Scholar
  50. Kihlman AO (1890) Pflanzenbiologische Studien aus Russich Lappland. Acta Soc Fauna Flora Fenn 68(3):1–263Google Scholar
  51. Kjällgren L, Kullman L (1998) Spatial patterns and structure of the mountain birch tree-limit in the southern Swedish Scandes—a regional perspective. Geogr Ann 80A:1–16Google Scholar
  52. Klanderud K, Birks HJ (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6Google Scholar
  53. Körner C (1999) Alpine plant life. Springer, BerlinGoogle Scholar
  54. Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324Google Scholar
  55. Kullman L (1979) Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915–1975. Acta Phytogeogr Suec 65:1–121Google Scholar
  56. Kullman L (1980) Radiocarbon dating of subfossil Scots pine (Pinus sylvestris L.) in the southern Swedish Scandes. Boreas 9:101–106Google Scholar
  57. Kullman L (1986a) Demography of Betula pubescens ssp. tortuosa sown in contrasting habitats close to the birch limit in Central Sweden. Vegetatio 65:13–20Google Scholar
  58. Kullman L (1986b) Recent tree-limit history of Picea abies in the southern Swedish Scandes. Can J For Res 16:761–771Google Scholar
  59. Kullman L (1987) A decade of tree-limit monitoring in the southern Swedish Scandes. UNGI Rapport 65:191–202Google Scholar
  60. Kullman L (1993) Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden. J Veg Sci 4:765–772Google Scholar
  61. Kullman L (1997) Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geogr Ann 79A:139–165Google Scholar
  62. Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321Google Scholar
  63. Kullman L (2000) Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Norw J Geogr 54:49–59Google Scholar
  64. Kullman L (2001a) 20th century climate warming and tree-limit rise in the southern Scandes. Ambio 30:72–80PubMedGoogle Scholar
  65. Kullman L (2001b) Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nordic J Bot 21:39–54Google Scholar
  66. Kullman L (2003) Recent reversal of Neoglacial climate cooling trend in the Swedish Scandes as evidenced by mountain birch tree-limit rise. Glob Planet Chang 36:77–88Google Scholar
  67. Kullman L (2004a) Tree-limit and landscape evolution at the southern fringe of the Swedish Scandes (Dalarna province)—Holocene and 20th century perspectives. Fennia 182:73–94Google Scholar
  68. Kullman L (2004b) A face of global warming—“ice birches” and a changing alpine plant cover. GeoÖko 25:181–202Google Scholar
  69. Kullman L (2005a) Gamla och nya träd på Fulufjället—vegetationshistoria på hög nivå. Sven Bot Tidskr 99:315–329Google Scholar
  70. Kullman L (2005b) Trädgränsen i Dalafjällen. Del. 2. Tandövala—försvinnande sydlig fjällvärld. Länsstyrelsen Dalarnas Län Miljövårdsenheten Rapport 10:1–25Google Scholar
  71. Kullman L (2005c) Pine (Pinus sylvestris) treeline dynamics during the past millennium a population study in west-central Sweden. Ann Bot Soc Zool Bot Fenn Vanamo 42:95–106Google Scholar
  72. Kullman L (2005d) Wind-conditioned 20th century decline of birch treeline vegetation in the Swedish Scandes. Arctic 58:286–294Google Scholar
  73. Kullman L (2007a) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52Google Scholar
  74. Kullman L (2007b) Modern climate change and shifting ecological states of the subalpine/alpine landscape in the Swedish Scandes. GeoÖko 28:187–221Google Scholar
  75. Kullman L (2007c) Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden. Nord J Bot 24:445–467Google Scholar
  76. Kullman L (2008) Thermophilic tree species reinvade subalpine Sweden—early responses to anomalous Late Holocene warming. Arct Antarct Alp Res 40:104–110Google Scholar
  77. Kullman L (2010a) One century of treeline change and stability—experiences from the Swedish Scandes. Landsc Online 17:1–31Google Scholar
  78. Kullman L (2010b) Alpine flora dynamics—a critical review of responses to climate change in the Swedish Scandes since the early 1950s. Nord J Bot 28:398–408Google Scholar
  79. Kullman L (2010c) A richer, greener and smaller alpine world: review and projection of warming-induced plant cover change in the Swedish Scandes. Ambio 39:159–169PubMedGoogle Scholar
  80. Kullman L (2010) Fjällens nya ansikte. Rikare, grönare, vackrare. Lustgården 90:13–24. In Swedish with English summaryGoogle Scholar
  81. Kullman L, Kjällgren L (2006) Holocene treeline evolution in the Swedish Scandes: recent treeline rise and climate change in a long-term perspective. Boreas 35:159–168Google Scholar
  82. Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429Google Scholar
  83. Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of global climatic change. Prog Phys Geogr 20:253–272Google Scholar
  84. Laaksonen K (1976) The dependence of mean air temperatures upon latitude and altitude in Fennoscandia. Ann Acad Sci Fenn Ser A3 199:1–19Google Scholar
  85. Leonelli G, Pelfini M, Morra di Cella U, Garavaglia V (2011) Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40:264–273PubMedGoogle Scholar
  86. Lidberg R, Lindström H (2010) Medelpads flora. SBF-förlaget, UppsalaGoogle Scholar
  87. Ljungqvist FC (2009) Temperature proxy records covering the last two millennia: a tabular and visual overview. Geogr Ann 91A:11–29Google Scholar
  88. Lloyd AH (2005) Ecological histories from Alaskan treelines provide insight into future change. Ecology 86:1687–1695Google Scholar
  89. Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treelines in Alaska. Clim Chang 52:481–509Google Scholar
  90. Lundqvist G (1948) De svenska fjällens natur. Svenska Turistföreningens Förlag, StockholmGoogle Scholar
  91. Lundqvist G (1951) Beskrivning till jordartskarta över Kopparbergs län. Sver Geol Und Ca 21:1–213Google Scholar
  92. Malanson GP (2001) Complex responses to global change at alpine treeline. Phys Geogr 22:333–342Google Scholar
  93. Mascher JW (2007) Nya fynd i Ångermanlands flora. Sven Bot Tidskr 101:321–346Google Scholar
  94. Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Erdkunde 54:34–50Google Scholar
  95. Moberg A, Tuomenvirta AH, Nordli Ø (2005) Recent climatic trends. In: Seppälä M (ed) The physical geography of Fennoscandia. Oxford University Press, Oxford, pp 112–133Google Scholar
  96. Moen J, Aune K, Edenius L, Agerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 16:1–10Google Scholar
  97. Moen J, Cairns DM, Lafon CW (2008) Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol Divers 1:77–87Google Scholar
  98. Molinari C, Bradshaw RHW, Risbøl O, Lie H, Ohlson M (2005) Long-term vegetational history of a Picea abies stand in south-eastern Norway: implications for the conservation of biological values. Biol Conserv 126:155–165Google Scholar
  99. Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & Wistrand, StockholmGoogle Scholar
  100. Nägeli W (1969) Waldgrenze und Kampfzone in den Alpen. Hespa Mitt 19:1–44Google Scholar
  101. Nagy L (2006) European high mountain (alpine) vegetation and its suitability for indicating climate change impacts. Biol Environ Proc R Ir Acad 106B(3):335–341Google Scholar
  102. Noble IR (1993) A model of the responses of ecotones to climate change. Ecol Appl 3:396–403Google Scholar
  103. Öberg L (2008) Trädgränsen som indikator för ekologiska klimateffekter i fjällen. Länsstyrelsen i Jämtlands län. Miljö/Fiske Miljöövervakning. Rapport, 2008,01Google Scholar
  104. Öberg L (2009) The heart of Härjedalen. Sonfjället. National Park since 1909. Jamtli Förlag, ÖstersundGoogle Scholar
  105. Öberg L, Kullman L (2011a) Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64:183–196Google Scholar
  106. Öberg L, Kullman L (2011b) Recent glacier recession—a new source of postglacial treeline and climate history in the Swedish Scandes. Landsc Online 26:1–38Google Scholar
  107. Odland A, Høitomt T, Olsen SL (2010) Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arct Antarct Alp Res 42:458–470Google Scholar
  108. Oldhammer B (2005) Varder—en försvinnande naturtyp. Sven Bot Tidskr 99:330–331Google Scholar
  109. Paus A (2010) Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Veget Hist Archeobot 19:29–51Google Scholar
  110. Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929Google Scholar
  111. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414Google Scholar
  112. Robertsson AM (1997) Reinvestigation of the interglacial pollen flora at Leveäniemi, Swedish Lapland. Boreas 26:81–89Google Scholar
  113. Samuelsson G (1910) Regionförskjutningar inom Dalarne. Sven Bot Tidskr 4:1–57Google Scholar
  114. Samuelsson G (1914) Om Dalafjällen. Ymer 1914:331–345Google Scholar
  115. Samuelsson G (1917) Studien über die Vegetation der Hochgebirgsgegenden von Dalarne. N Acta Reg Soc Sci Upsal 4(8):1–253Google Scholar
  116. Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey pinelands. Oikos 100:447–458Google Scholar
  117. Seppälä M (2004) Wind as a geomorphic agent in cold climates. Cambridge University Press, CambridgeGoogle Scholar
  118. Shiyatov SG (2003) Rates of change in the upper treeline ecotone in the Polar Urals. Pages News 11:6–8Google Scholar
  119. Sjörs H (1999) The background: geology, climate and zonation. Acta Phytogeogr Suec 84:5–14Google Scholar
  120. Skre O, Baxter R, Crawford RMM, Callaghan TV, Fedorkov A (2002) How will the tundra-taiga interface respond to climate change? Ambio Special Report 12:37–46Google Scholar
  121. Smith H (1920) Vegetationen och dess utvecklingshistoria i det centralsvenska högfjällsområdet. Almqvist & Wiksell, UppsalaGoogle Scholar
  122. Smith H (1957) En botanisk undersökning av Neans dalgång. K Svenska Vetenskapsakad Avhandl Naturskyddsär 16:1–21Google Scholar
  123. Sundqvist MK, Björk RG, Molau U (2008) Establishment of boreal forest species in alpine dwarf-shrub heath in subarctic Sweden. Plant Ecol Divers 1:67–75Google Scholar
  124. Tallantire P (1977) A further contribution to the problem of the spread of spruce (Picea abies (L.) Karst.) in Fennoscandia. J Biogeogr 4:219–227Google Scholar
  125. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12:686–702Google Scholar
  126. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947Google Scholar
  127. Tømmervik H, Johansen B, Riseth JÅ, Karlsen SR, Solberg B, Høgda KA (2009) Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006. For Ecol Manag 257:244–257Google Scholar
  128. Velle G, Larsen J, Eide W, Peglar SM, Birks HJB (2005) Holocene environmental history and climate at Råtåsjøen, a low-alpine lake in south-central Norway. J Paleolimnol 33:129–153Google Scholar
  129. Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 411–422Google Scholar
  130. Walsh SJ, Butler DR, Allen TR, Malanson GP (1994) Influence of snow patterns and snow avalanches on the alpine treeline ecotone. J Veg Sci 5:657–672Google Scholar
  131. Wistrand G (1981) Bidrag till Pite lappmarks växtgeografi. Växtekol Stud 14:1–99Google Scholar
  132. Young A, Cairns DM, Lafon CW, Moen J, Martin LE (2011) Dendroclimatic relationships and possible implications for mountain birch and Scots pine at treeline in northern Sweden through the 21st century. Can J For Res 41:450–459Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden

Personalised recommendations