Advertisement

Large-Area Fabrication of Antennas and Nanodiodes

  • Mario BareißEmail author
  • Daniel Kälblein
  • Peter M. Krenz
  • Ute Zschieschang
  • Hagen Klauk
  • Giuseppe Scarpa
  • Bernhard Fabel
  • Wolfgang Porod
  • Paolo Lugli
Chapter

Abstract

The conventional fabrication method in semiconductor technology or nanoelectronics is electron beam lithography. We present a new fabrication method that enables the fabrication of high amount microscale and nanoscale devices on various substrates, namely, nanotransfer printing. Using this technique, we produced millions of nanoscale metal-insulator-metal diodes which represent rectifying devices in the terahertz regime and thousands of antenna structures that are sensitive in the wavelength regime of infrared light. The combination of this two (opto)electronic devices forms a rectenna that converts absorbed infrared light into a DC current. With our approach, the fabrication of large arrays of rectennas is possible which leads to applications in the field of infrared detectors or energy harvesting.

Keywords

Bottom Electrode Electron Beam Lithography Target Substrate Tunneling Diode Adhesion Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The research leading to these results has received funding from the Institute for Advanced Study (IAS), the International Graduate School for Science and Engineering (IGSSE) at the Technische Universität München, and the German Excellence Cluster “Nanosystems Initiative Munich” (NIM).

References

  1. 1.
    Hocker LO, Sokoloff DR, Daneu V, Szoke A, Javan A. Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode. Appl Phys Lett. 1968;12:401–2.CrossRefGoogle Scholar
  2. 2.
    Alda J, Rico-García JM, López-Alonso JM, Boreman G. Optical antennas for nano-photonic applications. Nanotechnology. 2005;16:S230–64.CrossRefGoogle Scholar
  3. 3.
    Bareiß M, et al. High-yield transfer printing of metal–insulator–metal nanodiodes. ACS Nano. 2012;6:2853–9. doi: 10.1021/nn3004058.CrossRefGoogle Scholar
  4. 4.
    Bean JA, Tiwari B, Bernstein GH, Fay P, Porod W. Long wave infrared detection using dipole antenna-coupled metal-oxide-metal diodes. In: Proceedings of the 33rd International conference on infrared, millimeter and terahertz waves (IRMMW-THz 2008), California Institute of Technology, Pasadena, CA; 15–19 Sept 2008. p. 1, 2. doi: 10.1109/ICIMW.2008.4665615. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4665615&isnumber=4665395.
  5. 5.
    Bartsch ST, Lovera A, Grogg D, Ionescu AM. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption. ACS Nano. 2012;6:256–64.CrossRefGoogle Scholar
  6. 6.
    Kim C, Prada M, Blick RH. Coulomb blockade in a coupled nanomechanical electron shuttle. ACS Nano. 2012;6:651–5.CrossRefGoogle Scholar
  7. 7.
    Slovick BA, Bean JA, Boreman GD. Angular resolution improvement of infrared phased-array antennas. IEEE Antennas Wirel Propag Lett. 2011;10:119–22.CrossRefGoogle Scholar
  8. 8.
    Slovick BA, Bean JA, Krenz PM, Boreman GD. Directional control of infrared antenna-coupled tunnel diodes. Opt Express. 2010;18:20960–7.CrossRefGoogle Scholar
  9. 9.
    Bareiß M, et al. Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes. J Appl Phys. 2011;110:044316.CrossRefGoogle Scholar
  10. 10.
    Choi J-H, Kim K-H, Choi S-J, Lee HH. Whole device printing for full colour displays with organic light emitting diodes. Nanotechnology. 2006;17:2246–9.CrossRefGoogle Scholar
  11. 11.
    Li D, Guo LJ. Organic thin film transistors and polymer light emitting diodes patterned by polymer inking and stamping. J Phys D: Appl Phys. 2008;41:105115.CrossRefGoogle Scholar
  12. 12.
    Zaumseil J, et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 2003;3:1223–7. doi: 10.1021/nl0344007.CrossRefGoogle Scholar
  13. 13.
    Loo Y-L, Willett RL, Baldwin KW, Rogers JA. Interfacial chemistries for nanoscale transfer printing. J Am Chem Soc. 2002;124:7654–5. doi: 10.1021/ja026355v.CrossRefGoogle Scholar
  14. 14.
    Meitl MA, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater. 2006;5:33–8.CrossRefGoogle Scholar
  15. 15.
    Bareiß M, et al. Nano antenna array for terahertz detection. IEEE Trans Microw Theory Tech. 2011;59:2751–7.CrossRefGoogle Scholar
  16. 16.
    Bareiß M., et al. Energy harvesting using nano antenna array. In: 2011 11th IEEE conference on nanotechnology (IEEE-NANO); 2011. p. 218–21.Google Scholar
  17. 17.
    Okada M, et al. Durability of antisticking layer against heat in nanoimprinting evaluated using scanning probe microscopy. Microelectron Eng. 2009;86:657–60.CrossRefGoogle Scholar
  18. 18.
    Weitz RT, Zschieschang U, Forment-Aliaga A, Kälblein D, Burghard M, Kern K, Klauk H. Highly reliable carbon nanotube transistors with patterned gates and molecular gate dielectric. Nano Lett. 2009;9(4):1335–1340.Google Scholar
  19. 19.
    Bareiß M, Imtaar MA, Fabel B, Scarpa G, Lugli P. Temperature enhanced large area nano transfer printing on Si/SiO2 substrates using Si wafer stamps. J Adhes. 2011;87:893–901.CrossRefGoogle Scholar
  20. 20.
    Ryu H, et al. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices. Nanotechnology. 2010;21(47):475207.CrossRefGoogle Scholar
  21. 21.
    Zschieschang U, et al. Mixed self-assembled monolayer gate dielectrics for continuous threshold voltage control in organic transistors and circuits. Adv Mater. 2010;22:4489–93. doi: 10.1002/adma.201001502.CrossRefGoogle Scholar
  22. 22.
    Loo Y-L, Lang DV, Rogers JA, Hsu JWP. Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 2003;3:913–7.CrossRefGoogle Scholar
  23. 23.
    Jegert G, Kersch A, Weinreich W, Lugli P. Monte Carlo simulation of leakage currents in TiN/ZrO2/TiN capacitors. IEEE Trans Electron Devices. 2011;58:327–34.CrossRefGoogle Scholar
  24. 24.
    Jegert G, Kersch A, Weinreich W, Schroder U, Lugli P. Modeling of leakage currents in high-kappa dielectrics: three-dimensional approach via kinetic Monte Carlo. Appl Phys Lett. 2010;96:062113.CrossRefGoogle Scholar
  25. 25.
    Jirauschek C. Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation. IEEE J Quantum Electron. 2009;45:1059–67.CrossRefGoogle Scholar
  26. 26.
    Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett. 1973;22:562–4.CrossRefGoogle Scholar
  27. 27.
    Sung MG, et al. Scanning noise microscopy on graphene devices. ACS Nano. 2011;5:8620–8.CrossRefGoogle Scholar
  28. 28.
    Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C. 2008;112:18737–53.CrossRefGoogle Scholar
  29. 29.
    Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys. 2005;69:327–96.CrossRefGoogle Scholar
  30. 30.
    Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B. 2000;18:1785–91.CrossRefGoogle Scholar
  31. 31.
    Wingreen NS, Jacobsen KW, Wilkins JW. Resonant tunneling with electron–phonon interaction: an exactly solvable model. Phys Rev Lett. 1988;61:1396–9.CrossRefGoogle Scholar
  32. 32.
    Bean JA, Tiwari B, Bernstein GH, Fay P, Porod W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J Vac Sci Technol B. 2009;27:11–4.CrossRefGoogle Scholar
  33. 33.
    Krenz PM, et al. Response increase of IR antenna-coupled thermocouple using impedance matching. IEEE J Quantum Electron. 2012;48:659–64.CrossRefGoogle Scholar
  34. 34.
    Bean JA, et al. Antenna length and polarization response of antenna-coupled MOM diode infrared detector. Infrared Phys Technol. 2009;53:182–5.CrossRefGoogle Scholar
  35. 35.
    Krenz PM, Lail BA, Boreman GD. Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays. IEEE J Quantum Electron. 2011;17:218–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mario Bareiß
    • 1
    Email author
  • Daniel Kälblein
    • 2
  • Peter M. Krenz
    • 3
  • Ute Zschieschang
    • 2
  • Hagen Klauk
    • 2
  • Giuseppe Scarpa
    • 1
  • Bernhard Fabel
    • 1
  • Wolfgang Porod
    • 3
  • Paolo Lugli
    • 1
  1. 1.Institute for NanoelectronicsTechnische Universität MünchenMunichGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany
  3. 3.Center for Nano Science and TechnologyUniversity of Notre DameSouth BendUSA

Personalised recommendations