R from the Beginning

  • Emilio L. Cano
  • Javier M. Moguerza
  • Andrés Redchuk
Chapter
Part of the Use R! book series (USE R, volume 36)

Abstract

R is a system for statistical computing and graphing. It consists of a language and a software environment. R has been widely used for academic and research purposes and is increasingly being deployed in corporate environments. R is a freely available software, under a GNU license, and is supported by the R Development Core Team. The strength of R is its extensibility through the packages developed by the community of R users, available through the CRAN repository, where support is also given. Furthermore, it is available for a wide range of platforms, including Windows, Mac, and Linux. In this chapter, we explain the basic background to help readers get used to R.

References

  1. 16.
    Chambers, J. M. (2008). Software for data analysis. Programming with R. Statistics and computing. Berlin: Springer.Google Scholar
  2. 18.
    Crawley, M. J. (2007). The R Book. UK: Wiley.Google Scholar
  3. 25.
    Faraway, J. J. (2002). Practical regression and anova using r. http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf. Accessed 01.08.2011.
  4. 45.
    Jakir, B. (2011). Introduction to statistical thinking (with r, without calculus). http://pluto.huji.ac.il/~msby/StatThink/index.html. Accessed 01.08.2011.
  5. 51.
    Kerns, G. J. (2010). Introduction to probability and statistics using r. http://ipsur.r-forge.r-project.org/book/index.html. Accessed 01.08.2011.
  6. 60.
    Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. In W. Härdle & B. Rönz (Eds.), Compstat 2002—Proceedings In Computational Statistics (pp. 575–580). Heidelberg: Physica Verlag. http://www.stat.uni-muenchen.de/~leisch/Sweave, ISBN 3-7908-1517-9.
  7. 64.
    Maindonald, J. H. (2008). Using r for data analysis and graphics. Introduction, code and commentary. http://cran.r-project.org/doc/contrib/usingR.pdf. Accessed 01.08.2011
  8. 73.
    Murrell, P. (2009). Introduction to data technologies. Series in computer science and data analysis. Boca Raton: CRC Press. http://www.stat.auckland.ac.nz/~paul/ItDT/.
  9. 74.
    Murrell, P. (2011). R graphics (2nd ed.). Boca Raton: Chapman & Hall/CRC.Google Scholar
  10. 84.
    R Development Core Team (2011). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/, ISBN 3-900051-07-0.
  11. 91.
    Sarkar, D. (2008). Lattice: Multivariate data visualization with R. New York: Springer. http://lmdvr.r-forge.r-project.org, ISBN 978-0-387-75968-5.
  12. 102.
    Venables, W., & Ripley, B. (2002). Modern applied statistics with S. Statistics and computing. New York: Springer.Google Scholar
  13. 104.
    Wahlbrink, S. (2012). Statet: Eclipse based ide for r. http://www.walware.de/goto/statet. Retrieved 16.01.2012.
  14. 105.
    Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Use R!. New York: Springer.Google Scholar
  15. 112.
    Zuur, A., Ieno, E., & Meesters, E. (2009). A beginner’s guide to R. Use R!. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Emilio L. Cano
    • 1
  • Javier M. Moguerza
    • 1
  • Andrés Redchuk
    • 1
  1. 1.Department of Statistics and Operations ResearchRey Juan Carlos UniversityMadridSpain

Personalised recommendations