Mode-Locked Semiconductor Lasers with Optical Injection

  • Tatiana HabrusevaEmail author
  • Natalia Rebrova
  • Stephen P. Hegarty
  • Guillaume Huyet
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 13)


We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.


Mode-locked lasers Quantum dots Optical injection Phase-locked oscillators 


  1. 1.
    Hargrove, L.E., Fork, R.L., Pollack, M.A.: Appl. Phys. Lett. 5(1) (1964)Google Scholar
  2. 2.
    DeMaria, A.J., Stetser, D.A., Heynau, H.: Appl. Phys. Lett. 8(7) (1966)Google Scholar
  3. 3.
    Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H., Ferguson, J.F., Asom, M.T.: Opt. Lett. 17(7) (1992)Google Scholar
  4. 4.
    Weber, A.G., Schell, M., Fischbeck, G., Bimberg, D.: IEEE J. Quantum Electron. 28(10) (1992)Google Scholar
  5. 5.
    Thompson, M.G., Marinelli, C., Tan, K.T., Williams, K.A., Penty, R.V., White, I.H., Kaiander, I.N., Sellin, R.L., Bimberg, D., Kang, D.J., Blamire, M.G., Visinka, F., Jochum, S., Hansmann, S.: Electron. Lett. 39(15) (2003)Google Scholar
  6. 6.
    Fork, R.L., Greene, B.I., Shank, C.V.: Appl. Phys. Lett. 38(9), 25 (1981)CrossRefGoogle Scholar
  7. 7.
    Wu, M.C., Chen, Y.K., Tanbun-Ek, T., Logan, R.A., Chin M.A., Raybon, G.: Appl. Phys. Lett. 57(8) (1990)Google Scholar
  8. 8.
    Chen, Y.K., Wu, M.C., Tanbun-Ek, T., Logan, R.A., Chin, M.A.: Appl. Phys. Lett. 58(12) (1991)Google Scholar
  9. 9.
    Thompson, M.G., Marinelli, C., Zhao, X., Sellin, R.L., Penty, R.V., White, I.H., Kaiander, I.H., Bimberg, D., Kang, D.J., Blamire, M.G.: Electron. Lett. 42(5) (2007)Google Scholar
  10. 10.
    Arahira, S., Oshiba, S., Matsui, Y., Kunii, T., Ogawa, Y.: Opt. Lett. 19(11) (1994)Google Scholar
  11. 11.
    Viktorov, E.A., Erneux, T., Mandel, P., Piwonski, T., Madden, G., Pulka, J., Huyet, G., Houlihan, J.: Appl. Phys. Lett. 94, 263502 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Piwonski, T., Pulka, J., Madden, G., Huyet, G., Houlihan, J., Pozo, J., Vogiatzis, N., Ivanov, P., Rorison, J.M., Barrios, P.J., Gupta, J.A.: Appl. Phys. Lett. 106, 083104 (2009)Google Scholar
  13. 13.
    Piwonski, T., Pulka, J., Madden, G., Huyet, G., Houlihan, J., Viktorov, E.A., Erneux, T., Mandel, P.: Appl. Phys. Lett. 94(12) (2009)Google Scholar
  14. 14.
    O’Donoghue, S.: Investigation and optimisation of mode-locked semiconductor quantum dot lasers. Ph.D. thesis, University College Cork (2011)Google Scholar
  15. 15.
    Delfyett, P.J., Gee, S., Choi, M.T., Izadpanah, H., Lee, W., Ozharar, S., Quinlan, F., Yilmaz, T.: J. Lightwave Technol. 24(7), 2701 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, W., Izadpanah, H., Menendez, R., Etemad, S., Delfyett, P.J.: J. Lightwave Technol. 26(8), 908 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Udem, T., Holzwarth, R., Hansch, T.W.: Nature 46, 233 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Haus, H.A., Mecozzi A.: IEEE J. Quantum Electron. 29(3) (1993)Google Scholar
  19. 19.
    von der Linde, D.: Appl. Phys. B 39 (1988)Google Scholar
  20. 20.
    Kärtner, F.X., Morgner, U., Schibli, T., Ell, R., Haus, H.A., Fujimoto, J.G., Ippen, E.P.: Top. Appl. Phys. 95 (2004)Google Scholar
  21. 21.
    Kèfèlian, F., O’Donoghue, S., Todaro, M.T., McInerney, J.G., Huyet, G.: IEEE Photonics Technol. Lett. 20(16) (2008)Google Scholar
  22. 22.
    Takushima, Y., Sotobayashi, H., Grein, M.E., Ippen, E.P., Haus, H.A.: Proc. SPIE 5595 (2004)Google Scholar
  23. 23.
    Habruseva, T., O’Donoghue, S., Rebrova, N., Kèfèlian, F., Hegarty, S.P., Huyet, G.: Opt. Lett. 34(21) (2009)Google Scholar
  24. 24.
    Kane, D.J., Trebino, R., J. Quantum Electron. 29(2) (1993)Google Scholar
  25. 25.
    Thomsen, B.C., Roelens, M.A.F., Watts, R.T., Richardson, D.J.: IEEE Photonics Technol. Lett. 17(9) (2005)Google Scholar
  26. 26.
    Dorrer, C., Kang, I., Opt. Lett. 27(15) (2002)Google Scholar
  27. 27.
    Xin, Y.C., Kane, D.J., Lester, L.F.: Electron. Lett. 44(21) (2008)Google Scholar
  28. 28.
    Fiol, G., Arsenijevic, D., Bimberg, D., Vladimirov, A.G., Wolfrum, M., Viktorov, E.A., Mandel, P.: Appl. Phys. Lett. 96, 011104 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Thompson, M.G., Larsson, D., Rae, A., Yvind, K., Penty, R.V., White, I.H., Hvam, J. Kovsh, A.R., Mikhrin, D.L. S., Krestnikov I.: In: Proceedings of ECOC (2006)Google Scholar
  30. 30.
    Lang, R., Kobayashi, K.: IEEE J. Quantum Electron. 16(3) (1980)Google Scholar
  31. 31.
    O’Brien, D., Hegarty, S.P., Huyet, G., McInerney, J.G., Kettler, T., Laemmlin, M., Bimberg, D., Ustinov, V.M., Zhukov, A.E., Mikhrin, S.S., Kovsh, A.R.: Electron. Lett. 39(25) (2003)Google Scholar
  32. 32.
    Lin, C.Y., Grillot, F., Naderi, N.A., Lester, Y.L.L.F.: Appl. Phys. Lett. 96(5), 051118 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Fiol, G., Kleinert, M., Arsenijevic, D., Bimberg, D.: Semicond. Sci. Technol. 26, 014006 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Grillot, F., Lin, C.Y., Naderi, N.A., Pochet, M., Lester, L.F.: Appl. Phys. Lett. 94, 153503 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Tkach, R., Chraplyvy, A.R.: J. Lightwave Technol. 4(11), 1655 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    Takada, A., Imajuku W.: IEEE Photonics Technol. Lett. 9(10) (1997)Google Scholar
  37. 37.
    Teshima, M., Sato, K., Koga, M.: J. Quantum Electron. 34(9), 1588 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    Jung, T. Shen, J.L., Tong, D.T.K., Murthy, S., Wu, M.C., Tanbun-Ek, T., Wang, W., Lodenkamper, R., Davis, R., Lembo, L.J., Brock, J.C.: IEEE Trans. Microw. Theory Tech. 47(7) (1999)Google Scholar
  39. 39.
    Seo, D.S., Kim, D.Y., Liu, H.F.: Electron. Lett. 32(1), 44 (1996)CrossRefGoogle Scholar
  40. 40.
    Quinlan, F., Gee, S., Ozharar, S., Delfyett, P.J.: IEEE Photonics Technol. Lett. 19(16) (2007)Google Scholar
  41. 41.
    Joneckis, L.G., Ho, P.T., Burdge, G.L.: J. Quantum Electron. 27(1), 1854 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    Goulding, D., Hegarty, S.P., Rasskazov, O., Melnik, S., Hartnett, M., Greene, G., McInerney, J.G., Rachinskii, D., Huyet, G.: Phys. Rev. Lett. 98(15) (2007)Google Scholar
  43. 43.
    Kim, J., Delfyett, P.: Opt. Express 16, 11153 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Lee, W., Delfyett, P.J.: Electron. Lett. 40(19) (2004)Google Scholar
  45. 45.
    Habruseva, T., Huyet, G., Hegarty, S.: J. Sel. Top. Quantum Electron. 4 (2011)Google Scholar
  46. 46.
    Kelleher, B., Goulding, D., Hegarty, S.P., Huyet, G., Cong, D.Y., Martinez, A., Lemaitre, A., Ramdane, A., Fischer, M., Gerschuetz, F., Koeth, J.: Opt. Lett. 34(4), 440 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Vladimirov, A., Turaev, D.: Phys. Rev. A 72, 033808 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Haus, H.A.: J. Appl. Phys. 46 (1975)Google Scholar
  49. 49.
    O’Driscoll, I., Piwonski, T., Houlihan, J., Huyet, G., Manning, R.J., Corbett, B.: Appl. Phys. Lett. 91, 263506 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    O’Driscoll, I., Piwonski, T., Schleussner, C.F., Houlihan, J., Huyet, G., Manning, R.: Appl. Phys. L91, 071111 (2007)ADSGoogle Scholar
  51. 51.
    Habruseva, T., O’Donoghue, S., Rebrova, N., Hegarty, S.P., Huyet, G.: SPIE Proc. 7608, 760803 (2010)CrossRefGoogle Scholar
  52. 52.
    Ahmed, Z., Liu, H.F., Novak, D., Ogawa, Y., Pelusi, M.D., Kim, D.Y.: IEEE Photonics Technol. Lett. 8(1), 37 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    Goldberg, L., Taylor, H.F., Weller, J.F.: Electron. Lett. 18((11), 1019 (1982)ADSCrossRefGoogle Scholar
  54. 54.
    Kikuchi, K., Zan, C.E., Lee, T.P.: J. Lightwave Technol. 6((12), 1821 (1988)ADSCrossRefGoogle Scholar
  55. 55.
    Habruseva, T., O’Donoghue, S., Rebrova, N., Reid, D.A., Barry, L., Rachinskii, D., Huyet, G., Hegarty, S.P.: IEEE Photonics Technol. Lett. 22(6) (2010)Google Scholar
  56. 56.
    Carpintero, M., Thompson, M.G., Penty, R.V., White, I.H.: IEEE Photonics Technol. Lett. 21(6) (2009)Google Scholar
  57. 57.
    Habruseva, T., Rebrova, N., Hegarty, S.P., Huyet, G.: SPIE Proc. 7720, 77200Z (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Renaudier, J., Lavigne, B., Jourdan, M., Gallion, P., Lelarge, F., Dagens, B., Accard, A., Legouezigou, O., Duan, G.H.: In: Proceedings of European Conference Exhibition on Optical Communications (ECOC), pp. 31–32 (2005)Google Scholar
  59. 59.
    e Silva, M.C., Lagrost, A., Bramerie, L., Gay, M., Besnard, P., Joindot, M., Simon, J.C., Shen, A., Duan, G.: In: National Fiber Optic Engineers Conference (NFOEC) (2010)Google Scholar
  60. 60.
    e Silva, M.C., Lagrost, A., Bramerie, L., Gay, M., Besnard, P., Joindot, M., Simon, J.C., Shen, A., Duan, G.H.: J. Lightwave Technol. 29(4)(2011)Google Scholar
  61. 61.
    Nguyen, Q.T., Besnard, P., Bramerie, L., Shen, A., Kazmierski, C., Chanlou, P., Duan, G.H., Member, S., Simon, J.C.: IEEE Photonics Technol. Lett. 22(11), 733 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Tatiana Habruseva
    • 1
    Email author
  • Natalia Rebrova
    • 1
  • Stephen P. Hegarty
    • 1
  • Guillaume Huyet
    • 1
  1. 1.Center of Advanced Photonics and Process AnalysisCork Institute of Technology and Tyndall National InstituteCorkIreland

Personalised recommendations