Optically Injected Single-Mode Quantum Dot Lasers

  • B. KelleherEmail author
  • D. Goulding
  • S. P. Hegarty
  • G. Huyet
  • E. A. Viktorov
  • T. Erneux
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 13)


The response of an optically injected quantum dot semiconductor laser is studied both experimentally and theoretically. Specifically, the locking boundaries are investigated, revealing features more commonly associated with Class A lasers rather than conventional Class B semiconductor lasers (SLs). Further, various dynamical regimes are observed including excitability and multistability. Of particular interest is the observation of a phase-locked bistability. We determine the stability diagram analytically using appropriate rate equations for quantum dot lasers. In particular, the saddle-node (SN) and Hopf bifurcations forming the locking boundaries are examined and are shown to reproduce the observed experimental stability features. The generation of the phase-locked bistability is also explained via a combination of these bifurcations.


Hopf Bifurcation Quantum Well Stability Diagram Excitable Pulse Hopf Bifurcation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was conducted under the framework of the INSPIRE programme, funded by the Irish Governments Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013 and the authors also gratefully acknowledge the support of Science Foundation Ireland (SFI) under the contract number 07/IN.1/I929 and also through the Centre for Telecommunications Value-Chain Research (CTVR), the Irish Research Council for Science, Engineering and Technology (IRCSET), the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project, Grand No. 264687 and the Tyndall National Access Programme. The authors in Bruxelles acknowledge support of the Fonds National de la Recherche Scientifique (Belgium). The research by T. Erneux was also supported by the Air Force Office of Scientific Research (AFOSR) grant FA8655-09-1-3068.


  1. 1.
    Adler, R.: Study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946)CrossRefGoogle Scholar
  2. 2.
    Arecchi, F.T., Lippi, G.L., Puccioni, G.P., Tredicce, J.R.: Deterministic chaos in laser with injected signal. Opt. Commun. 51, 308–314 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Baili, G., Alouini, M., Moronvalle, C., Dolfi, D., Bretenaker, F.: Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser. Opt. Lett. 31, 62–64 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Baili, G., Alouini, M., Dolfi, D., Bretenaker, F., Sagnes, I., Garnache, A.: Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications. Opt. Lett. 32, 650–652 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Baili, G., Alouini, M., Malherbe, T., Dolfi, D., Sagnes, I., Bretenaker, F.: Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser. Eur. Phys. Lett. 87, 44005 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, NY (1999)Google Scholar
  7. 7.
    Erneux, T., Viktorov, E.A., Mandel, P.: Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Erneux, T., Viktorov, E.A., Kelleher, B., Goulding, D., Hegarty, S.P., Huyet, G.: Optically injected quantum dot lasers. Opt. Lett. 35, 937–939 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Erneux, T., Glorieux, P.: Laser Dynamics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  10. 10.
    Goulding, D., Hegarty, S.P., Rasskazov, O., Melnik, S., Hartnett, M., Greene, G., McInerney, J.G., Rachinskii, D., Huyet, G.: Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98, 153903 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Gradshteyn, I.S., Ryzhik, I.M.: Routh-Hurwitz Theorem. In: Tables of Integrals, Series, and Products. 6th edn. Academic Press, San Diego (2000)Google Scholar
  12. 12.
    Hegarty, S.P., Goulding, D., Kelleher, B., Huyet, G., Todaro, M.T., Salhi, A., Passaseo, A., De Vittorio, M.: Phase-locked mutually coupled \(1.3\,\upmu\hbox{m}\) quantum-dot lasers. Opt. Lett. 32, 3245–3247 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Hohl, A., van der Linden, H.J.C., Roy, R., Goldsztein, G., Broner, F., Strogatz, S.H.: Scaling laws for dynamical hysteresis in a multidimensional laser system. Phys. Rev. Lett. 74, 2220–2223 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Kelleher, B., Goulding, D., Hegarty, S.P., Huyet, G., Ding-Yi, C., Martinez, A., Lemaître, A., Ramdane, A., Fischer, M., Gerschütz, F., Koeth, J.: Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 34, 40–42 (2009)CrossRefGoogle Scholar
  15. 15.
    Kelleher, B., Bonatto, C., Skoda, P., Hegarty, S.P., Huyet, G.: Excitation regeneration in delay-coupled oscillators. Phys. Rev. E 81, 036204 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Kelleher, B., Bonatto, C., Huyet, G., Hegarty, S.P.: Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E 83, 026207 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Kuntz, M., Ledentsov, N.N., Bimberg, D., Kovsh, A.R., Ustinov, V.M., Zhukov, A.E., Shernyakov, Y.M.: Spectrotemporal response of \(1.3\,\upmu\hbox{m}\) quantum-dot lasers. Appl. Phys. Lett. 81, 3846–3848 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Lüdge, K., Bormann, M.J.P., Malic, E., Hövel, P., Kuntz, M., Bimberg, D., Knorr, A., Schöll, E.: Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78, 035316 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Martinez, A., Lemaître, A., Merghem, K., Ferlazzo, L., Dupuis, C., Ramdane, A., Provost, J.G., Dagens, B., Le Gouezigou, O., Gauthier-Lafaye, O.: Static and dynamic measurements of the \(\alpha\)-factor of five-quantum-dot-layer single-mode lasers emitting at \(1.3\,\upmu\hbox{m}\) on GaAs. Appl. Phys. Lett. 86, 211115 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Mayol, C., Toral, R., Mirasso, C.R., Natiello, M.A.: Class-A lasers with injected signal: bifurcation set and Lyapunov-potential function. Phys. Rev. A 66, 013808 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    O’Brien, D., Hegarty, S.P., Huyet, G., Uskov, A.V.: Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 29, 1072–1074 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Simpson, T.B.: Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection. Opt. Commun. 215, 135–151 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Wieczorek, S., Krauskopf, B., Lenstra, D.: Multipulse excitability in a semiconductor laser with optical injection. Phys. Rev. Lett. 88, 063901 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Wieczorek, S., Krauskopf, B., Simpson, T.B., Lenstra, D.: The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416, 1–128 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • B. Kelleher
    • 1
    Email author
  • D. Goulding
    • 2
  • S. P. Hegarty
    • 2
  • G. Huyet
    • 1
  • E. A. Viktorov
    • 3
  • T. Erneux
    • 3
  1. 1.Centre for Advanced Photonics and Process AnalysisCork Institute of Technology and Tyndall National InstituteCorkIreland
  2. 2.Tyndall National InstituteUniversity College CorkCorkIreland
  3. 3.Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus PlaineBruxellesBelgium

Personalised recommendations