Small Molecule Screening for Inhibitors of the YopH Phosphatase of Yersinia pseudotuberculosis

  • Jonas Eriksson
  • Christin Grundström
  • A. Elisabeth Sauer-Eriksson
  • Uwe H. Sauer
  • Hans Wolf-Watz
  • Mikael ElofssonEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 954)


Bacterial virulence systems are attractive targets for development of new antibacterial agents. Yersinia spp. utilize the type III secretion (T3S) system to secrete and translocate Yersinia outer proteins (Yop effectors) into the cytosol of the target cell and thereby overcome host defenses to successfully establish an infection. Thus, the Yop effectors constitute attractive targets for drug development. In the present study we apply small molecule screening to identify inhibitors of one of the secreted proteins YopH, a tyrosine phosphatase required for virulence. Characterization of seven inhibitors indicated that both competitive and noncompetitive inhibitors were identified with IC50 values of 6–20 μM.


Effector Protein Small Organic Molecule Yersinia Enterocolitica Yersinia Pestis Protein Tyrosine Phosphatase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for support from the Kempe Foundations, the Carl Trygger’s Foundation, Umea City, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, and the Swedish Governmental Agency for Innovation Systems (VINNOVA).


  1. Bahta M, Lountos GT, Dyas B et al (2011) Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase. J Med Chem 54:2933–2943PubMedCrossRefGoogle Scholar
  2. Baron C (2009) Antivirulence drugs to target bacterial secretion systems. Curr Opin Microbiol 13:1–6Google Scholar
  3. Bölin I, Wolf-Watz H (1988) The plasmid-encoded Yop2b protein of Yersinia pseudotuberculosis is a virulence determinant regulated by calcium and temperature at the level of transcription. Mol Microbiol 2:237–245PubMedCrossRefGoogle Scholar
  4. Coan KE, Shoichet BK (2008) Stoichiometry and physical chemistry of promiscous aggregate-based inhibitors. J Am Chem Soc 130:9606–9612PubMedCrossRefGoogle Scholar
  5. Comeau AB, Critton DA, Page R et al (2010) A focused library of protein tyrosine phosphatase inhibitors. J Med Chem 53:6768–6772PubMedCrossRefGoogle Scholar
  6. Dahlgren MK, Kauppi AM, Olsson IM et al (2007) Design, synthesis, and multivariate quantitative structure-activity relationship of salicylanilides, potent inhibitors of type III secretion in Yersinia. J Med Chem 50:6177–6188PubMedCrossRefGoogle Scholar
  7. Dahlgren MK, Öberg CT, Wallin EA et al (2010a) Synthesis of 2-(2-aminopyrimidine)-2,2-difluoroethanols as potential bioisosters of salicylidene acylhydrazides. Molecules 15:4423–4438PubMedCrossRefGoogle Scholar
  8. Dahlgren MK, Zetterström CE, Gylfe Å et al (2010b) Statistical molecular design of a focused salicylidene acylhydrazide library and multivariate QSAR of inhibition of type III secretion in the Gram-negative bacterium Yersinia. Bioorg Med Chem 18: 2686–2703PubMedCrossRefGoogle Scholar
  9. Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573PubMedCrossRefGoogle Scholar
  10. Gee KR, Sun WC, Bhalgat MK et al (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem 273:41–48PubMedCrossRefGoogle Scholar
  11. Hillgren JM, Dahlgren MK, To TM et al (2010) Synthesis of [4-(2-hydroxyphenyl)thiazol-2-yl]methanones as potential bioisosteres of salicylidene acylhydrazides. Molecules 15:6019–6034PubMedCrossRefGoogle Scholar
  12. Huang Z, He Y, Zhang X et al (2010) Derivatives of salicylic acid as inhibitors of YopH in Yersinia pestis. Chem Biol Drug Des 76:85–99PubMedCrossRefGoogle Scholar
  13. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433PubMedGoogle Scholar
  14. Juris SJ, Shao F, Dixon JE (2002) Yersinia effectors target mammalian signalling pathways. Cell Microbiol 4: 201–211PubMedCrossRefGoogle Scholar
  15. Kauppi AM, Nordfelth R, Hägglund U et al (2003a) Salicylanilides are potent inhibitors of type III secretion in Yersinia. Adv Exp Med Biol 529:97–100PubMedCrossRefGoogle Scholar
  16. Kauppi AM, Nordfelth R, Uvell H et al (2003b) Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 10:241–249PubMedCrossRefGoogle Scholar
  17. Kauppi AM, Andersson CD, Norberg HA et al (2007) Inhibitors of type III secretion in Yersinia: design, synthesis and multivariate QSAR of 2-arylsulfonylamino-benzanilides. Bioorg Med Chem 15:6994–7011PubMedCrossRefGoogle Scholar
  18. Keyser P, Elofsson M, Rosell S et al (2008) Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J Intern Med 264:17–29PubMedCrossRefGoogle Scholar
  19. Lee K, Boovanahalli SK, Nam KY et al (2005) Synthesis of tripeptides as potent Yersinia protein tyrosine phosphatase inhibitors. Bioorg Med Chem Lett 15: 4037–4042PubMedCrossRefGoogle Scholar
  20. Leone M, Barile E, Vazquez J et al (2010) NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 76:10–16PubMedCrossRefGoogle Scholar
  21. Liang F, Huang Z, Lee SY (2003) Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J Biol Chem 278:41734–41741PubMedCrossRefGoogle Scholar
  22. Liu F, Hakami RM, Dyas B et al (2010) A rapid oxime linker-based library approach to identification of bivalent inhibitors of the Yersinia pestis protein-tyrosine phosphatase, YopH. Bioorg Med Chem Lett 20:2813–2816PubMedCrossRefGoogle Scholar
  23. McCain DF, Wu L, Nickel P et al (2004) Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. J Biol Chem 279:14713–14725PubMedCrossRefGoogle Scholar
  24. Michiels T, Cornelis G (1988) Nucleotide sequence and transcription analysis of yop51 from Yersinia enterocolitica W22703. Microb Pathog 5:449–459PubMedCrossRefGoogle Scholar
  25. Nordfelth R, Kauppi AM, Norberg HA et al (2005) Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 73:3104–3114PubMedCrossRefGoogle Scholar
  26. Rosqvist R, Bölin I, Wolf-Watz H (1988) Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56:2139–2143PubMedGoogle Scholar
  27. Straley CS, Bowmer WS (1986) Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51:445–454PubMedGoogle Scholar
  28. Tautz L, Bruckner S, Sareth S et al (2005) Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J Biol Chem 280:9400–9408PubMedCrossRefGoogle Scholar
  29. Tierno MB, Johnston PA, Foster C et al (2007) Development and optimization of high-throughput in vitro protein phosphatase screening assays. Nat Protoc 2:1134–1144PubMedCrossRefGoogle Scholar
  30. Vazquez J, Tautz L, Ryan JJ et al (2007) Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors. J Med Chem 50:2137–2143PubMedCrossRefGoogle Scholar
  31. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jonas Eriksson
    • 1
    • 2
  • Christin Grundström
    • 2
    • 3
  • A. Elisabeth Sauer-Eriksson
    • 2
    • 3
  • Uwe H. Sauer
    • 2
    • 3
  • Hans Wolf-Watz
    • 3
    • 4
  • Mikael Elofsson
    • 2
    • 3
    • 5
    Email author
  1. 1.Laboratories for Chemical BiologyUmeå UniversityUmeåSweden
  2. 2.Department of ChemistryUmeå UniversityUmeåSweden
  3. 3.Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
  4. 4.Department of Molecular BiologyUmeå UniversityUmeåSweden
  5. 5.Molecular Infection Medicine Sweden (MIMS)Umeå UniversityUmeåSweden

Personalised recommendations