Bacteriophage Therapy of Experimental Bubonic Plague in Mice

  • Andrey A. Filippov
  • Kirill V. Sergueev
  • Yunxiu He
  • Xiao-Zhe Huang
  • Bryan T. Gnade
  • Allen J. Mueller
  • Carmen M. Fernandez-Prada
  • Mikeljon P. Nikolich
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 954)


The emergence of multidrug-resistant strains of Yersinia pestis may result in epidemics of untreatable bubonic and pneumonic plague and requires urgent development of alternative therapeutics. The purpose of this work was to test plague diagnostic bacteriophages as a potential therapy against experimental bubonic plague. Purified phages φA1122 and L-413C remained stable at least for 2 years in phosphate-buffered saline with gelatin at 4°C. None of these two phages showed a cytotoxic effect on mouse macrophages, as well as human monocytes and hepatocytes. The φA1122 phage also demonstrated a lack of acute toxicity to mice. After single intraperitoneal (IP) or intramuscular (IM) administration to mice in a dose of 5 × 109 PFU (plaque-forming unit), the phage was detected in blood, liver, and spleen during 5 days of observation in one log higher concentrations when using IP route (vs. IM route). Pharmacodynamics tests showed the propagation of φA1122 in the liver and spleen of mice infected with Y. pestis. Neither φA1122 and L-413C suspensions nor the phage particles preadsorbed to Y. pestis cells demonstrated any bactericidal effect inside mouse macrophages. However, a IP administration of φA1122 (5 × 109 live phage particles) provided 40% protection of BALB/c mice against 1,000 LD50 of Y. pestis CO92 and extended mean time to death of nonsurvivors by 84%. Our data showed that φA1122 bacteriophage is a promising alternative therapy against multidrug-resistant plague.


  1. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47PubMedCrossRefGoogle Scholar
  2. Advier M (1933) Etude d’un bactériophage antipesteux. Bull Soc Pathol Exot 26:94–99Google Scholar
  3. Anderson GW, Leary SEC, Williamson ED et al (1996) Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64:4580–4585PubMedGoogle Scholar
  4. Bearden SW, Fetherston JD, Perry RD (1997) Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65:1659–1668PubMedGoogle Scholar
  5. Biswas B, Adhya S, Washart P et al (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210PubMedCrossRefGoogle Scholar
  6. Bogovazova GG, Voroshilova NN, Bondarenko VM (1991) The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh Mikrobiol Epidemiol Immunobiol 4:5–8PubMedGoogle Scholar
  7. Byrne WR, Welkos SL, Pitt ML et al (1998) Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob Agents Chemother 42:675–681PubMedCrossRefGoogle Scholar
  8. Capparelli R, Parlato M, Borriello G et al (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773PubMedCrossRefGoogle Scholar
  9. Carmody LA, Gill JJ, Summer EJ et al (2010) Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis 201:264–271PubMedCrossRefGoogle Scholar
  10. Carstensen JT, Rhodes CT (eds) (2000) Drug stability: principles and practices, 3rd edn. Marcel Dekker, Inc., New YorkGoogle Scholar
  11. Cerveny KE, DePaola A, Duckworth DH, Gulig PA (2002) Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun 70:6251–6262PubMedCrossRefGoogle Scholar
  12. Chu MC (2000) Laboratory manual of plague diagnostic tests. Centers for Disease Control and Prevention, Fort Collins, COGoogle Scholar
  13. Dennis DT, Gage KG (1999) Plague. In: Armstrong D, Cohen J (ed) Infectious diseases, vol. 2. Mosby, Armstrong, and Cohen, LondonGoogle Scholar
  14. Deresinski S (2009) Bacteriophage therapy: exploiting smaller fleas. Clin Infect Dis 48:1096–1101PubMedCrossRefGoogle Scholar
  15. Duplantier J-M, Duchemin J-B, Chanteau S, Carniel E (2005) From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet Res 36:437–453PubMedCrossRefGoogle Scholar
  16. Filippov AA, Sergueev KV, He Y et al (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6(9):e25486PubMedCrossRefGoogle Scholar
  17. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 300:357–362PubMedCrossRefGoogle Scholar
  18. Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688PubMedGoogle Scholar
  19. Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528PubMedCrossRefGoogle Scholar
  20. Galimand M, Guiyoule A, Gerbaud G et al (1997) Multiple antibiotic resistance in Yersinia pestis mediated by a self-transferable plasmid. N Engl J Med 337:677–680PubMedCrossRefGoogle Scholar
  21. Galimand M, Carniel E, Courvalin P (2006) Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother 50:3233–3236PubMedCrossRefGoogle Scholar
  22. Garcia E, Elliott JM, Ramanculov E et al (2003) The genome sequence of Yersinia pestis bacteriophage φA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 185:5248–5262PubMedCrossRefGoogle Scholar
  23. Garcia E, Chain P, Elliott JM et al (2008) Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 372:85–96PubMedCrossRefGoogle Scholar
  24. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14PubMedCrossRefGoogle Scholar
  25. Gill JJ, Pacan JC, Carson ME et al (2006) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50:2912–2918PubMedCrossRefGoogle Scholar
  26. Guiyoule A, Gerbaud G, Buchrieser C et al (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48PubMedCrossRefGoogle Scholar
  27. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68PubMedCrossRefGoogle Scholar
  28. Heo YJ, Lee YR, Jung HH et al (2009) Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 53:2469–2474PubMedCrossRefGoogle Scholar
  29. Hinnebusch BJ, Rosso M-L, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354PubMedCrossRefGoogle Scholar
  30. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540PubMedCrossRefGoogle Scholar
  31. Imamaliev OG, Serebryakova VG, Anisimova TI et al (1986) Comparative estimation of activity and specificity of diagnostic plague bacteriophages, L-413C and Pokrovskaya. In: Bektemirov TA, Zhouravleva YZ, Litvinova MY (eds) Standards, strains, and methods of control of bacterial and viral preparations. Mechnikov Institute Press, Moscow, pp 102–106Google Scholar
  32. Inglesby TV, Dennis DT, Henderson DA et al (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense JAMA 283:2281–2290Google Scholar
  33. Iteman I, Guiyoule A, de Almeida AM et al (1993) Relationship between loss of pigmentation and deletion of the chromosomal iron-regulated irp2 gene in Yersinia pestis: evidence for separate but related events. Infect Immun 61:2717–2722PubMedGoogle Scholar
  34. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320PubMedCrossRefGoogle Scholar
  35. Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86PubMedCrossRefGoogle Scholar
  36. Larina VS, Anisimov PI, Adamov AK (1970) A novel strain of plague bacteriophage for identification of Pasteurella pestis. Probl Particularly Dangerous Infect 11:132–136Google Scholar
  37. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2: 166–173PubMedCrossRefGoogle Scholar
  38. Lukaszewski RA, Kenny DJ, Taylor R et al (2005) Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 73:7142–7150PubMedCrossRefGoogle Scholar
  39. Marza JA, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646PubMedCrossRefGoogle Scholar
  40. McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938PubMedCrossRefGoogle Scholar
  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  42. Muniesa M, Jofre J (1998) Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl Environ Microbiol 64:2443–2448PubMedGoogle Scholar
  43. Naumov AV, Samoilova LV (eds) (1992) Manual on prophylaxis of plague. Russian Research Anti-Plague Institute “Microbe” Press, SaratovGoogle Scholar
  44. No authors listed (1992) Centers for Disease Control and Prevention. Pneumonic plague—Arizona. JAMA 268:2146–2147Google Scholar
  45. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66PubMedGoogle Scholar
  46. Pokrovskaya MP (1929) A plague bacteriophage in dead susliks. Gigiena Epidemiol 12:31–34Google Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  48. Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894PubMedCrossRefGoogle Scholar
  49. Sergueev KV, He Y, Borschel RH et al (2010) Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS ONE 5(6):e11337PubMedCrossRefGoogle Scholar
  50. Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Intern J Med Microbiol 296:5–14CrossRefGoogle Scholar
  51. Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261PubMedCrossRefGoogle Scholar
  52. Waldor M, Mekalanos J (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914PubMedCrossRefGoogle Scholar
  53. Watanabe R, Matsumoto T, Sano G et al (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452PubMedCrossRefGoogle Scholar
  54. Welch TJ, Fricke WF, McDermott PF et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2(3):e309PubMedCrossRefGoogle Scholar
  55. Welkos S, Pitt ML, Martinez M et al (2002) Determination of the virulence of the pigmentation-deficient and pigmentation/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214PubMedCrossRefGoogle Scholar
  56. Zhao X, Wu W, Qi Z et al (2010) The complete genome sequence and proteomics of Yersinia pestis phage ­Yep-phi. J Gen Virol 92:216–221PubMedCrossRefGoogle Scholar
  57. Zietz BP, Dunkelberg H (2004) The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health 207:165–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrey A. Filippov
    • 1
  • Kirill V. Sergueev
    • 1
  • Yunxiu He
    • 1
  • Xiao-Zhe Huang
    • 1
  • Bryan T. Gnade
    • 1
  • Allen J. Mueller
    • 1
  • Carmen M. Fernandez-Prada
    • 1
  • Mikeljon P. Nikolich
    • 1
  1. 1.Department of Emerging Bacterial Infections, Division of Bacterial and Rickettsial DiseasesWalter Reed Army Institute of ResearchSilver SpringUSA

Personalised recommendations