Reliable Transport in Delay Tolerant Networks

  • Arshad Ali
  • Manoj Panda
  • Lucile Sassatelli
  • Tijani Chahed
  • Eitan Altman
Chapter

Abstract

In this paper, we provide a holistic picture of the research efforts towards the design and development of transport protocols for DTN environments. In the first part, we provide an exhaustive and insightful survey of the literature on transport protocols and proposals aimed at DTNs. In the second part, we describe a new reliable transport protocol based on coding. Our proposed protocol is targeted at terrestrial DTN environments consisting of a large number of highly mobile nodes with random mobility. The key idea behind our proposal is that the average dynamics under such a network setting can be captured by a fluid-limit model and the protocol parameters can be optimized based on the fluid-limit model. Through simplified versions of our proposal, we guide the readers in a step-by-step manner through the intricacies of obtaining deterministic fluid-limit models for networks where the dynamics can be stochastically modeled by a continuous time Markov chain with a large state space. We also provide the relevant background material so as to help the readers clearly understand the methodology and enable him/her to apply the technique to their own research problems.

Keywords

DTNs Reliable transport Random linear coding  Fluid-limit Protocol parameter optimization 

References

  1. 1.
    Ahmed S, Kanhere S (2009) Hubcode: message forwarding using hub-based network coding in delay tolerant networks. In: Proceedings of the 12th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, pp 288–296Google Scholar
  2. 2.
    Akan OB, Fang J, Akyildiz IF (2004) TP-Planet: a reliable transport protocol for InterPlanetary internet. IEEE J Sel Areas Commun (JSAC) 22(2):348–361CrossRefGoogle Scholar
  3. 3.
    Akyildiz I, Akan Ö, Chen C, Fang J, Su W (2003) Interplanetary internet: state-of-the-art and research challenges. Comput Netw 43(2):75–112CrossRefMATHGoogle Scholar
  4. 4.
    Albee A, Palluconi F, Arvidson R (1998) Mars global surveyor mission: overview and status. Science 279(5357):1671–1672CrossRefGoogle Scholar
  5. 5.
    Ali A, Altman E, Chahed T, Panda M, Sassatelli L (2011) A new reliable transport scheme in delay tolerant networks based on acknowledgments and random linear coding. In: IEEE 2011 23rd International Teletraffic Congress (ITC), pp 214–221Google Scholar
  6. 6.
    Allman M, Dawkins S, Glover D, Griner J, Tran D, Henderson T, Heidemann J, Touch J, Kruse H, Ostermann S et al (2000) Ongoing tcp research related to satellites. RFC2760Google Scholar
  7. 7.
    Altman E, Pellegrini FD, Sassatelli L (2010) Dynamic control of coding in delay tolerant networks. In: Proceedings of IEEE Infocom, pp 1–5Google Scholar
  8. 8.
    Balakrishnan H, Padmanabhan V, Katz R (1999) The effects of asymmetry on tcp performance. Mob Netw Appl 4(3):219–241CrossRefGoogle Scholar
  9. 9.
    Balakrishnan H, Seshan S, Amir E, Katz R (1995) Improving TCP/IP performance over wireless networks. In: Proceedings of the 1st ACM annual international conference on mobile computing and networking, pp 2–11Google Scholar
  10. 10.
    Balakrishnan H et al (1998) Challenges to reliable data transport over heterogeneous wireless networks. University of California, BerkeleyGoogle Scholar
  11. 11.
    Barakat C, Altman E, Dabbous W (2000) On tcp performance in a heterogeneous network: a survey. IEEE Commun Mag 38(1):40–46CrossRefGoogle Scholar
  12. 12.
    Biswas S, Morris R (2005) ExOR: Opportunistic multi-hop routing for wireless networks. In: Proceedings of Sigcomm, pp 133–144Google Scholar
  13. 13.
    Brakmo L, Peterson L (1995) TCP Vegas: end to end congestion avoidance on a global internet. IEEE J Sele Areas Commun 13(8):1465–1480CrossRefGoogle Scholar
  14. 14.
    Bulut E, Wang Z, Szymanski B (2010) Cost-effective multiperiod spraying for routing in delay-tolerant networks. IEEE/ACM Trans Netw (TON) 18(5):1530–1543CrossRefGoogle Scholar
  15. 15.
    Bulut E, Wang Z, Szymanski B (2010) Cost efficient erasure coding based routing in delay tolerant networks. In: 2010 IEEE international conference on communications (ICC), pp 1–5Google Scholar
  16. 16.
    Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K, Weiss H (2003) Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun Mag 41(6):128–136Google Scholar
  17. 17.
    Caini C, Cruickshank H, Farrell S, Marchese M (2011) Delay-and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc IEEE 99:1–18CrossRefGoogle Scholar
  18. 18.
    Cao Y, Sun Z Routing in delay/disruption tolerant networks: a taxonomy, survey and challengesGoogle Scholar
  19. 19.
    CCSDS: CCSDS File Delivery Protocol (CFDP). In: CCSDS 727.0-B-4, Blue Book (2007)Google Scholar
  20. 20.
    Chen L, Yu C, Sun T, Chen Y, Chu H (2006) A hybrid routing approach for opportunistic networks. In: Proceedings of the 2006 ACM SIGCOMM workshop on Challenged networks, pp 213–220, Pise, Italy, Sept. 11–15Google Scholar
  21. 21.
    Chen L, Yu C, Tseng C, Chu H, Chou C (2008) A content-centric framework for effective data dissemination in opportunistic networks. IEEE J Sel Areas Commun 26(5):761–772CrossRefGoogle Scholar
  22. 22.
    Chung KC, Li YC, Liao W (2010) Exploiting network coding for data forwarding in delay tolerant networks. In: 2010 IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), pp 1–5Google Scholar
  23. 23.
    Dai Y, Yang P, Chen G, Wu J (2010) Cfp: Integration of fountain codes and optimal probabilistic forwarding in dtns. In: 2010 IEEE global telecommunications conference (GLOBECOM 2010), pp 1–5Google Scholar
  24. 24.
    Durst R, Feighery P, Scott K (2000) Why not use the standard internet suite for the interplanetary internet? In: Interplanetary internet study seminar, California Institute of Technology-1999Google Scholar
  25. 25.
    Eggert L, Gont F (2009) Tcp user timeout optionGoogle Scholar
  26. 26.
    Eggert L, Schütz S, Schmid S (2005) Tcp extensions for immediate retransmissions. draft-eggert-tcpm-tcp-retransmit-now-02 (work in progress)Google Scholar
  27. 27.
    Ethier S, Kurtz TG (2005) Markov processes: characterization and convergence. Wiley Series in Probability And Statistics, Wiley Interscience, Published Online: 27 May 2008, ISBN: 9780470316658, doi:10.1002/9780470316658
  28. 28.
    Fall K, Farrell S (2008) DTN: an architectural retrospective. IEEE J Sel Areas Commun 26(5):828–836CrossRefGoogle Scholar
  29. 29.
    Fall K, Hong W, Madden S (2003) Custody transfer for reliable delivery in delay tolerant, networks. IRB-TR-03-030Google Scholar
  30. 30.
    Fall K, McCanne S (2005) You don’t know jack about network performance. Queue 3(4):54–59Google Scholar
  31. 31.
    Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. SIGCOMM ’03, ACM, New York, pp 27–34, http://doi.acm.org/10.1145/863955.863960
  32. 32.
    Fang J, Akyildiz IF (2007) RCP-Planet: a rate control protocol for interplanetary internet. Int J Satell Commun Netw 25(2):167–194, http://dx.doi.org/10.1002/sat.873 Google Scholar
  33. 33.
    Farrell S, Cahill V (2005) LTP-T: a generic delay tolerant transport protocol. Technical Report TCD-CS-2005-69, Computer Science, Trinity College DublinGoogle Scholar
  34. 34.
    Farrell S, Cahill V (2007) Evaluating LTP-T: A DTN-Friendly transport protocol. In: 2007 IWSSC ’07 International Workshop onSatellite and space communications, pp 178–181Google Scholar
  35. 35.
    Farrell S, Ramadas M, Burleigh S (2008) Licklider transmission protocol-security extensionsGoogle Scholar
  36. 36.
    For Space Data Systems, C.C. (2006) Space Communications Protocol Standards (SCPS) - Transport Protocol (SCPS-TP). In: CCSDS 714.0-B-2, Blue BookGoogle Scholar
  37. 37.
    Franklin S, Slonski J, Kerridge S, Noreena G, Townes S, Schwartzbaum E, Synnott S, Deutsch M, Edwards C, Devereaux A et al (2004) The 2009 mars telecom orbiter mission. In: IEEE Proc of IEEE on aerospace conference, vol 1, 6-13 March 2004, Big Sky, MT, USAGoogle Scholar
  38. 38.
    Ghani N, Dixit S (1999) Tcp/ip enhancements for satellite networks. IEEE Commun Mag 37(7):64–72CrossRefGoogle Scholar
  39. 39.
    Graf J, Zurek R, Eisen H, Jai B, Johnston M, DePaula R (2005) The mars reconnaissance orbiter mission. Acta Astronaut 57(2):566–578CrossRefGoogle Scholar
  40. 40.
    Groenvelt R, Nain P, Koole G (2005) The message delay in mobile Ad Hoc networks. Perform Eval 62:210–228CrossRefGoogle Scholar
  41. 41.
    Grossglauser M, Tse D (2002) Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans Netw 10(4):477–486CrossRefGoogle Scholar
  42. 42.
    Haas Z, Halpern J, Li L (2002) Gossip-based ad hoc routing. In: Proceedings of IEEE, INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. vol. 3, pp 1707–1716Google Scholar
  43. 43.
    Harras KA, Almeroth KC (2006) Transport Layer Issues in delay tolerant mobile Networks. In: IFIP Networking, Coimbra, PortugalGoogle Scholar
  44. 44.
    Holland G, Vaidya N (2002) Analysis of TCP performance over mobile ad hoc networks. ACM Wirel Netw 8(2):275–288CrossRefMATHGoogle Scholar
  45. 45.
    Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp 244–251Google Scholar
  46. 46.
    Ibrahim M, Hanbali AA, Nain P (2007) Delay and resource analysis in MANETs in presence of throwboxes. Perform Eval 24(9–12):933–945CrossRefGoogle Scholar
  47. 47.
    Internet Research Task Force Delay-Tolerant Networking Research Group, http://www.dtnrg.org
  48. 48.
    Jacobson V, Braden R, Borman D (1992) Tcp extensions for high performance, http://coders.meta.net.nz/~perry/rfc/index-1323.html (Last retrieved April 23, 2013)
  49. 49.
    Jain S, Demmer M, Patra R, Fall K (2005) Using redundancy to cope with failures in a delay tolerant network. In: ACM SIGCOMM computer communication review. vol. 35, pp 109–120Google Scholar
  50. 50.
    Jonson T, Pezeshki J, Chao V, Smith K, Fazio J (2008) Application of delay tolerant networking (DTN) in airborne networks. In: Military communications conference, 2008. MILCOM 2008, IEEE, pp 1–7Google Scholar
  51. 51.
    Juang P, Oki H, Wang Y, Martonosi M, Peh L, Rubenstein D (2002) Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In: ACM Sigplan Notices. vol 37, ACM, pp 96–107Google Scholar
  52. 52.
    Kayastha N, Niyato D, Wang P, Hossain E (2011) Applications, architectures, and protocol design issues for mobile social networks: a survey. Proc IEEE 99(12):2130–2158CrossRefGoogle Scholar
  53. 53.
    Khabbaz M, Fawaz W, Assi C (2011) Probabilistic bundle relaying schemes in two-hop vehicular delay tolerant networks. Commun Lett IEEE 15(3):281–283CrossRefGoogle Scholar
  54. 54.
    Krifa A, Barakat C, Spyropoulos T (2011) Mobitrade: trading content in disruption tolerant networks. In: Proceedings of the 6th ACM workshop on Challenged networks, ACM, pp 31–36Google Scholar
  55. 55.
    Krifa A, Barakat C, Spyropoulos T (2012) Message drop and scheduling in DTNs:  theory and practice. IEEE Trans Mobile Comput 11(9):1470–1483Google Scholar
  56. 56.
    Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump markov processes. J Appl Probab 7(1):49–58MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Lin Y, Liang B, Li B (2007) Performance modeling of network coding in epidemic routing. In: Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking, ACM, pp 67–74Google Scholar
  58. 58.
    Lin Y, Li B, Liang B (2008) Stochastic analysis of network coding in epidemic Routing. IEEE J Sel Area Comm 26(5):794–808Google Scholar
  59. 59.
    Lin Y, Li B, Liang B (2008) Efficient network coded data transmissions in disruption tolerant networks, pp 1508–1516Google Scholar
  60. 60.
    Luby M (2002) LT codes. In: IEEE FOCS, pp 271–282Google Scholar
  61. 61.
    Lucani D, Stojanovic M, Médard M (2009) Random linear network coding for time division duplexing: when to stop talking and start listening. In: Proc. of IEEE Infocom 2009, pp. 1800–1808 Rio de Janeiro, BrazilGoogle Scholar
  62. 62.
    Lun DS, Médard M, Effros M (2004) On coding for reliable communication over packet networks. In: Proceedings of 42nd annual allerton conference on communication, control, and, computing, pp 20–29Google Scholar
  63. 63.
    Macedo D, dos Santos A, Pujolle G (2008) From tcp/ip to convergent networks: challenges and taxonomy. Commun Surv Tutorials IEEE 10(4):40–55Google Scholar
  64. 64.
    Mahmoodi T, Friderikos V, Holland O, Hamid Aghvami A (2007) Cross-layer design to improve wireless tcp performance with link-layer adaptation. In: Vehicular technology conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, IEEE, pp 1504–1508Google Scholar
  65. 65.
    Mandelbaum A, Massey W, Reiman MI (1998) Strong approximations for markovian service networks. Queueing Syst 30:149–201MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Mandelbaum A, Pats G (1995) State-dependent queues: approximations and applications. In: Kelly F, Williams RJ (eds) IMA volumes in mathematics and its applications, vol 71. Springer, Berlin, pp 239–282Google Scholar
  67. 67.
    Muhammad F, Franck L, Farrell S (2007) Transmission protocols for challenging networks: Ltp and ltp-t. In: International workshop on satellite and space Ccommunications, 2007. IWSSC’07, IEEE, pp 145–149Google Scholar
  68. 68.
    Nikander P, Moskowitz R (2006) Host identity protocol (hip) architecture. RFC 4423, http://www.ietf.org/rfc/rfc4423.txt (Last visited April 23, 2013)
  69. 69.
    Ott J, Kutscher D (2004) Drive-thru internet: Ieee 802.11 b for automobile users. In:Proc. of IEEE Infocom 2004, vol 1, 7–11 March 2004, Hong-KongGoogle Scholar
  70. 70.
    Ott J, Kutscher D (2005) A disconnection-tolerant transport for drive-thru internet environments. In: Proceedings IEEE INFOCOM 2005. 24th Annual joint conference of the IEEE computer and communications societies, vol. 3, IEEE, pp 1849–1862Google Scholar
  71. 71.
    Papastergiou G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Comput Commun Spec Issue Comput Communicationson Delay Disruption Tolerant Netw 32(16):1757–1767Google Scholar
  72. 72.
    Papastergiou G, Samaras C, Tsaoussidis V (2010) Where does transport layer fit into space dtn architecture? In: Advanced satellite multimedia systems conference (asma) and the 11th signal processing for space communications workshop (spsc), 2010 5th, IEEE, pp 81–88Google Scholar
  73. 73.
    Pentland A, Fletcher R, Hasson A (2004) Daknet: rethinking connectivity in developing nations. Computer 37(1):78–83CrossRefGoogle Scholar
  74. 74.
    Pereira P, Casaca A, Rodrigues J, Soares V, Triay J, Cervelló-Pastor C (2011) From delay-tolerant networks to vehicular delay-tolerant networks. Commun Surv Tutorials IEEE 99:1–17Google Scholar
  75. 75.
    Postel J (1980) User datagram protocol. In: RFC-768, http://www.ietf.org/rfc/rfc768.txt (Last visited April 23, 2013)
  76. 76.
    Postel J (1981) Transmission control protocol. In: RFC-793, http://www.ietf.org/rfc/rfc793.txt (Last visited April 23, 2013)
  77. 77.
    Price K, Storn R (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optimiz 11:341–359MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Psaras I, Papastergiou G, Tsaoussidis V, Peccia N (2008) DS-TP: Deep-space transport protocol. In: Aerospace conference, 2008 IEEE, pp 1–13Google Scholar
  79. 79.
    Psaras I, Wood L, Tafazolli R (2010) Delay-/disruption-tolerant networking: State of the art and future challenges. Technical Report, University of Surrey, UKGoogle Scholar
  80. 80.
    Ramadas M, Burleigh S, Farrell S (2008) Licklider transmission protocol—motivation. In: RFC-5325, http://tools.ietf.org/html/rfc5325 (Last visited April 23, 2013)
  81. 81.
    Ramadas M, Burleigh S, Farrell S (2008) Licklider transmission protocol specification. In: RFC-5326, http://tools.ietf.org/html/rfc5326 (Last visited April 23, 2013)
  82. 82.
    Samaras C, Tsaoussidis V (2008) DTTP: a delay-tolerant transport protocol for space internetworks. In: Proc. of second ERCIM Workshop on E-Mobility, pp. 3–14, May 30, Tampere, FinlandGoogle Scholar
  83. 83.
    SSTL: Surrey Satellite Technology Ltd., http://www.sstl.co.uk
  84. 84.
    Sarkar M, Shukla KK, Dasgupta KS (2011) Article:a survey of transport protocols for deep space communication networks. Int J Comput Appl 31(8):25–32, published by Foundation of Computer Science. New York, USAGoogle Scholar
  85. 85.
    Schütz S, Eggert L, Schmid S, Brunner M (2005) Protocol enhancements for intermittently connected hosts. ACM SIGCOMM Comput Commun Rev 35(3):5–18CrossRefGoogle Scholar
  86. 86.
    Scott K, Burleigh S (2007) Bundle protocol specification. In: RFC-5050Google Scholar
  87. 87.
    Seligman M, Fall K, Mundur P (2006) Alternative custodians for congestion control in delay tolerant networks. In: Proceedings of the 2006 SIGCOMM workshop on challenged networks. ACM , pp 229–236Google Scholar
  88. 88.
    Seligman M, Fall K, Mundur P (2007) Storage routing for dtn congestion control. Wirel Commun Mob Comput J, Wiley 7(10):1183–1196Google Scholar
  89. 89.
    Shokrollahi MA (2003) Raptor codes. In: IEEE international symposium on information theoryGoogle Scholar
  90. 90.
    Small T, Haas Z (2003) The shared wireless infostation model: a new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking and computing, ACM, pp 233–244Google Scholar
  91. 91.
    Vahdat A, Becker D (2000) Epidemic routing for partially-connected ad hoc networks. In: Techical Report CS-200006, Duke UniversityGoogle Scholar
  92. 92.
    Vahdat A, Becker D et al (2000) Epidemic routing for partially connected ad-hoc networks. Technical Report, Technical Report CS-200006, Duke UniversityGoogle Scholar
  93. 93.
    Vellambi B, Subramanian R, Fekri F, Ammar M (2007) Reliable and efficient message delivery in delay tolerant networks using rateless codes. In: Proceedings of the 1st international MobiSys workshop on Mobile opportunistic networking, ACM, pp 91–98Google Scholar
  94. 94.
    Wang R, Taleb T, Jamalipour A, Sun B (2009) Protocols for reliable data transport in space internet. Commun Surv Tutorials IEEE 11(2):21–32CrossRefGoogle Scholar
  95. 95.
    Wang Y, Jain S, Martonosi M, Fall K (2005) Erasure-coding based routing for opportunistic networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, ACM, pp 229–236Google Scholar
  96. 96.
    Wang Y, Wu H (2007) Delay/Fault-Tolerant mobile sensor network (DFT-MSN): a new paradigm for pervasive information gathering. IEEE Trans Mob Comput 6(9):1021–1034CrossRefGoogle Scholar
  97. 97.
    Whitt W (2002) Stochastic-process limits. Springer, HeidelbergGoogle Scholar
  98. 98.
    Widmer J, Le Boudec J (2005) Network coding for efficient communication in extreme networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, ACM , pp 284–291Google Scholar
  99. 99.
    Wood L, Eddy W, Holliday P (2009) A bundle of problems. In: Aerospace conference, 2009 IEEE, pp 1–17Google Scholar
  100. 100.
    Wood L, McKim J, Eddy W, Ivancic W, Jackson C (2009) Saratoga: a scalable file transfer protocol. Network Working Group Internet-Draft, http://tools.ietf.org/html/draft-wood-tsvwg-saratoga-10 (Last visited April 23, 2013)
  101. 101.
    Zhang Q, Jin Z, Zhang Z, Shu Y (2009) Network coding for applications in the delay tolerant network (dtn). In: 5th international conference on Mobile ad-hoc and sensor networks, 2009. MSN ’09, pp 376–380Google Scholar
  102. 102.
    Zhang X, Neglia G, Kurose J, Towsley D (2006) On the benefits of random linear coding for unicast applications in disruption tolerant networks. In: 2006 4th international symposium on modeling and optimization in mobile, ad hoc and wireless networks, IEEE, pp 1–7Google Scholar
  103. 103.
    Zhang X, Neglia G, Kurose J, Towsley D (2007) Performance modeling of epidemic routing. Comput Netw 51:2867–2891CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arshad Ali
    • 1
  • Manoj Panda
    • 1
  • Lucile Sassatelli
    • 2
  • Tijani Chahed
    • 1
  • Eitan Altman
    • 3
  1. 1.Telecom SudParisEvry CedexFrance
  2. 2.Laboratoire I3SUniversité Nice Sophia Antipolis - CNRSSophia AntipolisFrance
  3. 3.INRIASophia-AntipolisFrance

Personalised recommendations