Naturally Occurring Antibodies/Autoantibodies in Polyclonal Immunoglobulin Concentrates

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)

Abstract

It was a long way from the use of hyperimmune animal sera for the treatment of toxin-producing infections to the production of polyclonal, polyspecific human immunoglobulin preparations and the use of NAbs as therapeutic tools for autoimmune and inflammatory diseases. Some highlights of the development of knowledge in blood fractionation techniques, basic science and clinical wisdom are reviewed in this chapter. Proudly we mention the outstanding contribution of Swiss scientists and clinicians in the development of IVIG as clinical tool for some otherwise untreatable diseases or taking advantage of its low adverse event profile in long-term treatment of other chronic autoimmune and inflammatory diseases. This chapter summarizes some of the characteristics and the effects in humans of NAbs which are present in IgG concentrates. We call attention to the fact that the human data remain, at least in part, incomplete, among others because even with the most efficient large-scale techniques available not more than approximately 50% of the total IgG in plasma can be fractionated into an immunoglobulin G concentrate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coutinho A. The self-nonself discrimination and the nature and acquisition of the antibody repertoire. Ann Immunol (Paris) 1980; 131D:235–53; PMID:7013649.Google Scholar
  2. 2.
    Dighiero G, Guilbert B, Avrameas S. Naturally occurring antibodies against nine common antigens in humans sera. II. High incidence of monoclonal Ig exhibiting antibody activity against actin and tubulin and sharing antibody specificities with natural antibodies. J Immunol 1982; 128:2788–92; PMID: 6804567.PubMedGoogle Scholar
  3. 3.
    Lutz HU. [Elimination of old erythrocytes from the circulation: exposure of a cell-age specific antigen on aging erythrocytes] Elimination alter Erythrozyten aus der Zirkulation: Freilegung eines zellater-spezifischen Antigens auf alternden Erythrozyten. Schweiz Med Wochenschr 1981; 111:1507–17; PMID:6171880.PubMedGoogle Scholar
  4. 4.
    Lutz HU, Wipf G. Naturally occurring autoantibodies to skeletal proteins from human red blood cells. J Immunol 1982; 128:1695–9; PMID:7061846.PubMedGoogle Scholar
  5. 5.
    Lutz HU, Bussolino F, Flepp R et al. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci USA 1987; 84:7368–72; PMID:3313392; http://dx.doi.org/10.1073/pnas.84.21.7368.PubMedCrossRefGoogle Scholar
  6. 6.
    Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999; 286:2156–9; PMID:10591647; http://dx.doi.org/10.1126/science.286.5447.2156.PubMedCrossRefGoogle Scholar
  7. 7.
    Imbach P, Barandun S, D’Apuzzo V et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981; 1:1228–31; PMID:6112565; http://dx.doi.org/10.1016/S0140-6736(81)92400-4.PubMedCrossRefGoogle Scholar
  8. 8.
    Behring E, Kitasato S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr 1890; 16:1113–4; http://dx.doi.org/10.1055/s-0029-1207589.CrossRefGoogle Scholar
  9. 9.
    Gronski P, Seiler FR, Schwick HG. Discovery of antitoxins and development of antibody preparations for clinical uses from 1890 to 1990. Mol Immunol 1991; 28:1321–32; PMID:1749381; http://dx.doi.org/10.1016/0161-5890(91)90034-H.PubMedCrossRefGoogle Scholar
  10. 10.
    Hansen A. [Reinigung und Konzentrierung von Diphtherie-Antitoxin durch Adsorption nach Autolyse mit Pepsin. Biochemistry 1938; 299:377.Google Scholar
  11. 11.
    Parfentjew IA. Inventors. Method for purification of antitoxins and the like. United States Patent Office patent 2,065,196. 1936.Google Scholar
  12. 12.
    Pope CG. Disaggregation of protein by enzymes. British Journal of experimental Pahtology 1938; 19:245–251.Google Scholar
  13. 13.
    Bruton OC, Apt L, Gitlin D et al. Absence of serum gamma-globulins. Ama Am J Dis Child 1952; 84:632; PMID: 12984834.PubMedGoogle Scholar
  14. 14.
    Bruton OC. Agammaglobulinemia. Pediatrics 1952; 9:722–8; PMID: 14929630.PubMedGoogle Scholar
  15. 15.
    Cohn EJ, Strong LE, Hughes WLJ et al. Preparation and properties of serum and plasma proteins. IV: A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc 1946; 68:459–75; PMID:21015743; http://dx.doi.org/10.1021/ja01207a034.PubMedCrossRefGoogle Scholar
  16. 16.
    Oncley JL, Melin M, Richert DA et al. The separation of the antibodies, isoagglutinins, prothrombin, plasminogen and β1-lipoprotein into subfractions of human plasma. J Am Chem Soc 1949; 71:541–50; PMID:18112064; http://dx.doi.org/10.1021/ja01170a048.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohn EJ. Blood proteins and their therapeutic value. Science 1945; 101:51–6; PMID: 17840912; http://dx.doi.org/10.1126/science.101.2612.51.PubMedCrossRefGoogle Scholar
  18. 18.
    Barandun S, Kistler P, Jeunet F et al. Intravenous administration of human γ-globulin. Vox Sang 1962; 7:157–74; PMID: 13864762; http://dx.doi.org/10.1111/j.1423-0410.1962.tb03240.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Janeway CA. The development of clinical uses of immunoglobulins: a review. In: Merler E, ed. Immunoglobulins Biological aspects and clinical uses. Washington D.C: National Academy of Sciences; 1970;3–14.Google Scholar
  20. 20.
    Schultze HE, Schwick G. [On new possibilities of intravenous gamma globulin administration] Über neue Möglichkeiten intravenöser Gammaglobulin-Applikation. Dtsch Med Wochenschr 1962; 87:1643–44; PMID: 13909529; http://dx.doi.org/10.1055/s-0028-1113997.PubMedCrossRefGoogle Scholar
  21. 21.
    Schroeder DD, Dumas ML. A preparation of modified immune serum globulin (human) suitable for intravenous administration. Further characterization and comparison with pepsin-treated intravenous gamma globulin. Am J Med 1984; 76:33–9; PMID:6424455; http://dx.doi.org/10.1016/0002-9343(84)90317-6.PubMedCrossRefGoogle Scholar
  22. 22.
    Sgouris JT. The preparation of plasmin-treated immune serum globulin for intravenous use. Vox Sang 1967; 13:71–84; PMID:4166592.PubMedGoogle Scholar
  23. 23.
    Fernandes PM, Lundblad JL. Preparation of a stable intravenous gamma-globulin: process design and scale up. Vox Sang 1980; 39:101–12; PMID:6169202; http://dx.doi.org/10.1111/j.1423-0410.1980.tb01844.x.PubMedCrossRefGoogle Scholar
  24. 24.
    Masuho Y, Tomibe K, Matsozawa K et al. Development of an intravenous γ-globulin with Fc activities. I. Preparation and characterization of S-sulfonated human γ-globulin. Vox Sang 1977; 32:175–81; PMID:67713; http://dx.doi.org/10.1111/j.1423-0410.1977.tb00622.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Schroeder DD, Tankersley DL, Lundblad JL. A new preparation of modified immune serum globulin (human) suitable for intravenous administration. I. Standardization of the reduction and alkylation reaction. Vox Sang 1981; 40:373–82; PMID:7293114; http://dx.doi.org/10.1111/j.1423-0410.1981.tb00725.x.PubMedCrossRefGoogle Scholar
  26. 26.
    Stephan W. [Elimination of complement fixation of γ-globulin by chemical modification with β-propiolactone] Beseitigung der Komplementfixierung von γ-Globulin durch chemische Modifizierung mit β-Propiolacton. Z Klin Chem Klin Biochem 1969; 7:282–6; PMID:4187787.PubMedGoogle Scholar
  27. 27.
    Wright JK. Reduced immunoglobulin G activates complement system with decreased cooperativity. Biochem Biophys Res Commun 1978; 83:1284–90; PMID:697861; http://dx.doi.org/10.1016/0006-291X(78)91360-8.PubMedCrossRefGoogle Scholar
  28. 28.
    Schreiber JR, Barms VA, Siber GR. Decreased protective efficacy of reduced and alkylated human immune serum globulin in experimental infection with Haemophilus influenzae type b. Infect Immun 1985; 47:142–8; PMID:3871195.PubMedGoogle Scholar
  29. 29.
    von Murait A. A life with several facets. Annu Rev Physiol 1984; 46:1–13; PMID:6370100; http://dx.doi.org/10.1146/annurev.ph.46.030184.000245.CrossRefGoogle Scholar
  30. 30.
    Kistler P, Nitschmann H. Large scale production of human plasma fractions: Eight years experience with the alcohol fractionation procedure of Nitschmann, Kistler and Lergier. Vox Sang 1962; 7:414–24; PMID: 14033119; http://dx.doi.org/10.1111/j.1423-0410.1962.tb03274.x.PubMedCrossRefGoogle Scholar
  31. 31.
    Nitschmann H, Kistler P, Lergier W. Vereinfachtes Verfahren zur Gewinnung von humanem Albumin und γ-Globulin aus Blutplasma mittels Alkoholfällung. Helv Chim Acta 1954; 37:866–73; http://dx.doi.org/10.1002/hlca.l9540370327.CrossRefGoogle Scholar
  32. 32.
    Hässig A. 50 Jahre Blutspendedienst des Schweizerischen Roten Kreuzes. Schweiz Med Wochenschr 1991; 121:156–9; PMID:2003212.PubMedGoogle Scholar
  33. 33.
    Stokes J, Gellis SS. Chemical, clinical, and immunological studies on the products of human plasma fractionation. XL The use of concentrated normal human serum gammaglobulin (human immune serum globulin) in the prophylaxis and treatment of measles. J Clin Invest 1944; 23:531–40; PMID: 16695129; http://dx.doi.org/10.1172/JCI101518.PubMedCrossRefGoogle Scholar
  34. 34.
    Barandun S, Büchler H, Hässig A. Agammaglobulinämie. Helv Med Acta 1955; 22:456–7.Google Scholar
  35. 35.
    Barandun S, Büchler H, Hässig A. Das Antikörpermangelsyndrom — Agammaglobulinämie. Schweiz Med Wochenschr 1956; 86:33–8; PMID: 13298668.PubMedGoogle Scholar
  36. 36.
    Schnorf J, Arnet B, Burek-Kozlowska A et al. Laboratory parameters measured during infusion of immunoglobulin preparations for intravenous use and related tolerability. In: Kazatchkine MD, Morell A, eds. Intravenous Immunoglobulin — Research and Therapy. London: The Parthenon Publishing Group; 1996;312–313.Google Scholar
  37. 37.
    Spycher MO, Bolli R, Hodler G et al. Well-tolerated liquid intravenous immunoglobulin G preparations (IVGG) have a low immunoglobulin G dimer (IgG-dimer) content. J Autoimmun 1999; 96(Suppl. 1):S96A.Google Scholar
  38. 38.
    Buchacher A, Schluga P, Mullner J et al. Anticomplementary activity of IVIG concentrates — Important assay parameters and impact of IgG polymers. Vox Sang 2010; 98:e209–18; PMID:20432511; http://dx.doi.org/10.1111/j.l423-0410.2009.01271.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Barandun S, Isliker H. The development of immunoglobulin preparations for intravenous use. Vox Sang 1986; 51:157-60; PMID:3535252; http://dx.doi.org/10.1111/j.1423-0410.1986.tb00235.x.
  40. 40.
    Gugler E. Die kindlichen Thrombopenien. In: Rossi E, ed. Pädiatrischer Fortbildungskurs — Blutkrankheiten im Kindesalter. Basel: Karger; 1964;11–12.Google Scholar
  41. 41.
    Barandun S, Imbach P, Morell A et al. Clinical indications for immunoglobulin infusions. In: Nydegger UE, ed. Immunohemotherapy. A guide to immunglobulin prophylaxis and therapy. London: Academic Press; 1981;275–282.Google Scholar
  42. 42.
    Harrington WJ, Minnich V, Hollingsworth JW et al. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J Lab Clin Med 1951; 38:1–10; PMID: 14850832.PubMedGoogle Scholar
  43. 43.
    Shulman NR, Marder VJ, Weinrach RS. Similarities between known antiplatelet antibodies and the factor responsible for thrombocytopenia in idiopathic purpura. Physiologic, serologic and isotopic studies. Ann NY Acad Sci 1965; 124:499–542; PMID:5214832; http://dx.doi.org/10.1111/j.l749-6632.1965.tbl8984.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Sultan Y, Kazatchkine MD, Maisonneuve P et al. Anti-idiotypic suppression of autoantibodies to factor VIII (antihaemophilic factor) by high dose intravenous gammaglobulin. Lancet 1984; 2:765–8; PMID:6148519; http://dx.doi.org/10.1016/S0140-6736(84)90701-3.PubMedCrossRefGoogle Scholar
  45. 45.
    Hässig A. Antigenanalytische Untersuchungen an Paraproteinen. Fortschr Med 1962; 80:151–8.Google Scholar
  46. 46.
    Provan D, Nokes TJC, Agrawal S et al. Clinical Guidelines for immunoglobulin use. 2nd, 1–91. 2008. London, UK, UK Department of Health.Google Scholar
  47. 47.
    Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 2005; 26:347–62; PMID: 15633017; http://dx.doi.org/10.1007/s00281-004-0182-2.PubMedCrossRefGoogle Scholar
  48. 48.
    Hofman FM, Danilovs J, Husmann L et al. Ontogeny of B cell markers in the human fetal liver. J Immunol 1984; 133:1197–201; PMID:6430996.PubMedGoogle Scholar
  49. 49.
    Solvason N, Kearney JF. The human fetal omentum: a site of B cell generation. J Exp Med 1992; 175:397–404; PMID: 1370683; http://dx.doi.org/10.1084/jem.175.2.397.PubMedCrossRefGoogle Scholar
  50. 50.
    Gathings WE, Lawton AR, Cooper MD. Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol 1977; 7:804–10; PMID:412679; http://dx.doi.org/10.1002/eji.1830071112.PubMedCrossRefGoogle Scholar
  51. 51.
    Kamps WA, Cooper MD. Microenvironmental studies of pre-B and B cell development in human and mouse fetuses. J Immunol 1982; 129:526–31; PMID:6806373.PubMedGoogle Scholar
  52. 52.
    Zhou ZH, Notkins AL. Polyreactive antigen-binding B (PAB-) cells are widely distributed and the PAB population consists of both B-1+ and B-1− phenotypes. Clin Exp Immunol 2004; 137:88–100; PMID: 15196248; http://dx.doi.org/10.1111/j.1365-2249.2004.02511.x.PubMedCrossRefGoogle Scholar
  53. 53.
    Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 210:167–79; PMID:8565555.PubMedCrossRefGoogle Scholar
  54. 54.
    Feeney AJ. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med 1990; 172:1377–90; PMID:1700054; http://dx.doi.org/10.1084/jem.172.5.1377.PubMedCrossRefGoogle Scholar
  55. 55.
    Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11:34–46; PMID:21151033; http://dx.doi.org/10.1038/nri2901.PubMedCrossRefGoogle Scholar
  56. 56.
    Bofill M, Janossy G, Janossa M et al. Human B cell development. II. Subpopulations in the human fetus. J Immunol 1985; 134:1531–8; PMID:3871452.PubMedGoogle Scholar
  57. 57.
    Bhat NM, Kantor AB, Bieber MM et al. The ontogeny and functional characteristics of human B-1 (CD5+ B) cells. Int Immunol 1992; 4:243–52; PMID:1377947; http://dx.doi.org/10.1093/intimm/4.2.243.PubMedCrossRefGoogle Scholar
  58. 58.
    Donze HH, Lue C, Julian BA et al. Human peritoneal B-1 cells and the influence of continuous ambulatory peritoneal dialysis on peritoneal and peripheral blood mononuclear cell (PBMC) composition and immunoglobulin levels. ClinExp Immunol 1997; 109:356–61; PMID:9276533; http://dx.doi.org/10.1046/j.1365-2249.1997.4541352.X.CrossRefGoogle Scholar
  59. 59.
    Laub R, Baurin S, Timmerman D et al. Specific protein content of pools of plasma for fractionation from different sources: impact of frequency of donations. Vox Sang 2010; 99:220–31; PMID:20840337; http://dx.doi.org/10.1111/j.1423-0410.2010.01345.X.PubMedCrossRefGoogle Scholar
  60. 60.
    Fernandez-Cruz E, Kaveri SV, Peter HH et al. 6th International Immunoglobulin Symposium: Poster presentations. Clin Exp Immunol 2009; 158:60–7; PMID: 19883425; http://dx.doi.org/10.1111/j.1365-2249.2009.04028.X.PubMedCrossRefGoogle Scholar
  61. 61.
    Gronski P, Haas T, Kanzy EJ et al. Indications of neutralising anti-idiotypic antibodies and selective proteolytic fragmentation in polyclonal anti-D IgG preparations. Biologicals 2003; 31:191–201; PMID: 12935808; http://dx.doi.org/10.1016/S1045-1056(03)00057-5.PubMedCrossRefGoogle Scholar
  62. 62.
    Stucki M, Moudry R, Kempf C et al. Characterisation of a chromatographically produced anti-D immunoglobulin product. J Chromatogr B Biomed Sci Appl 1997; 700:241–8; PMID:9390735; http://dx.doi.org/10.1016/S0378-4347(97)00319-8.PubMedCrossRefGoogle Scholar
  63. 63.
    Bertolini J. Chromatographic purification of immunoglobulins. Downstream 1998; 31:21–2.Google Scholar
  64. 64.
    Hughes RAC, Donofrio P, Bril V et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol 2008; 7:136–44; PMID: 18178525; http://dx.doi.org/10.1016/S1474-4422(07)70329-0.PubMedCrossRefGoogle Scholar
  65. 65.
    Stucki M, Schäfer W, Hostettler T et al. Pathogen safety of a new 20% liquid immunoglobulin product. J Allergy Clin Immunol 2009; 123:S89; http://dx.doi.org/10.1016/j.jaci.2008.12.314.CrossRefGoogle Scholar
  66. 66.
    Waller C. Historical perspective on blood & plasma products, the stakeholders and the issues. In: Valverde JL, ed. Blood, Plasma and Plasma proteins: A Unique Contribution to Modern Health Care. Volume 7, 2005, 2006 ed. Amsterdam, NL: IOS Press; 2006;7–19.Google Scholar
  67. 67.
    Jelezarova E, Lutz HU. Assembly and regulation of the complement amplification loop in blood: the role ofC3b-C3b-IgG complexes. Mol Immunol 1999; 36:837–42; PMID:10698337; http://dx.doi.org/10.1016/S0161-5890(99)00104-2.PubMedCrossRefGoogle Scholar
  68. 68.
    Lutz HU, Stammler P, Jelezarova E et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88:184–93; PMID:8704173.PubMedGoogle Scholar
  69. 69.
    Lutz HU, Stammler P, Bianchi V et al. Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood 2004; 103:465–72; PMID: 14512320; http://dx.doi.org/10.1182/blood-2003-05-1530.PubMedCrossRefGoogle Scholar
  70. 70.
    Borte M, Davies SV, Touraine JL et al. Clinical properties of a novel liquid intravenous immunoglobulin: studies in patients with immune thrombocytopenic purpura and primary immunodeficiencies. Transfus Med Hemother 2004; 31:126-34; http://dx.doi.org/10.1159/000079071.
  71. 71.
    Simon HU, Späth PJ. IVIG — Mechanisms of action. Allergy 2003; 58:543–52; PMID: 12823109; http://dx.doi.org/10.1034/j.1398-9995.2003.00239.X.PubMedCrossRefGoogle Scholar
  72. 72.
    Roux KH, Tankersley DL. A view of the human idiotypic repertoire — Electron microscopic and immunologic analyses of spontaneous idiotype-anti-idiotype dimers in pooled human IgG. J Immunol 1990; 144:1387–95; PMID:2303712.PubMedGoogle Scholar
  73. 73.
    Tankersley DL, Preston MS, Finlayson JS. Immunoglobulin G dimer: An idiotype-anti-idiotype complex. Mol Immunol 1988; 25:41–8; PMID:3343971; http://dx.doi.org/10.1016/0161-5890(88)90088-0.PubMedCrossRefGoogle Scholar
  74. 74.
    Gronski P. IgG dimers in multidonor-derived immunoglobulins: Aspects of generation and function. Curr Pharm Des 2006; 12:181–90; PMID: 16454735; http://dx.doi.org/10.2174/138161206775193154.PubMedCrossRefGoogle Scholar
  75. 75.
    Gronski P, Schridde C, Forsterling HD. Polyreactive antibodies in multidonor-derived immunoglobulin G: theory and conclusions drawn from experiments. Immunobiology 2010; 215:356–69; PMID: 19592128; http://dx.doi.Org/10.1016/j.imbio.2009.06.015.PubMedCrossRefGoogle Scholar
  76. 76.
    Wright JK, Tschopp J, Jaton JC et al. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement. Biochem J 1980; 187:775–80; PMID:6985362.PubMedGoogle Scholar
  77. 77.
    Kroez M, Kanzy EJ, Gronski P et al. Hypotension with intravenous immunoglobulin therapy: importance of pH and dimer formation. Biologicals 2003; 31:277–86; PMID: 14624798; http://dx.doi.Org/10.1016/j.biologicals.2003.09.001.PubMedCrossRefGoogle Scholar
  78. 78.
    Schaub A, Wymann S, Heller M et al. Self-reactivity in the dimeric intravenous immunoglobulin fraction. AnnN Y Acad Sci 2007; 1110:681–93; PMID: 17911483; http://dx.doi.org/10.1196/annals.1423.071.CrossRefGoogle Scholar
  79. 79.
    Schaub A, Von Gunten S, Vogel M et al. Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 2011; 66:1030–7; PMID:21385183; http://dx.doi.org/10.1111/j.1398-9995.2011.02579.x.PubMedCrossRefGoogle Scholar
  80. 80.
    Wymann S, Ghielmetti M, Schaub A et al. Monomerization of dimeric IgG of intravenous immunoglobulin (IVIg) increases the antibody reactivity against intracellular antigens. Mol Immunol 2008; 45:2621–8; PMID: 18280568; http://dx.doi.Org/10.1016/j.molimm.2007.12.020.PubMedCrossRefGoogle Scholar
  81. 80a.
    Wymann S, Zürcher AW, Schaub A et al. Monomeric and dimeric IgG fractions show differential reactivity against pathogen-derived antigens. Scand J Immunol 2011; 74:31–41; PMID: 21338382; http://dx.doi.org/10.1111/j.l365-3083.2011.02537.x.PubMedCrossRefGoogle Scholar
  82. 81.
    Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26:513–33; PMID: 18370923; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090232.PubMedCrossRefGoogle Scholar
  83. 82.
    Kaneko Y, Nimmerjahn F, Ravetch JV+. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313:670–3; PMID: 16888140; http://dx.doi.org/10.1126/science.1129594.PubMedCrossRefGoogle Scholar
  84. 83.
    Stadlmann J, Weber A, Pabst M et al. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 2009; 9:4143–53; PMID: 19688751; http://dx.doi.org/10.1002/pmic.200800931.PubMedCrossRefGoogle Scholar
  85. 84.
    Anthony RM, Nimmerjahn F, Ashline DJ et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 2008; 320:373–6; PMID: 18420934; http://dx.doi.org/10.1126/science.1154315.PubMedCrossRefGoogle Scholar
  86. 85.
    Bayry J, Bansal K, Kazatchkine MD et al. DC-SIGN and α2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells. Proc Natl Acad Sci USA 2009; 106:E24; PMID: 19237553; http://dx.doi.org/10.1073/pnas.0900016106.PubMedCrossRefGoogle Scholar
  87. 86.
    Scallon BJ, Tarn SH, McCarthy SG et al. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 2007; 44:1524–34; PMID: 17045339; http://dx.doi.org/10.1016/j.molimm.2006.09.005.PubMedCrossRefGoogle Scholar
  88. 87.
    Godeau B, Caulier MT, Decuypere L et al. Intravenous immunoglobulin for adults with autoimmune thrombocytopenic purpura: results of a randomized trial comparing 0.5 and 1 g/kg bw. Br J Haematol 1999; 107:716–9; PMID: 10606875; http://dx.doi.org/10.1046/j.1365-2141.1999.01766.x.PubMedCrossRefGoogle Scholar
  89. 88.
    Benesch M, Kerbl R, Lackner H et al. Low-dose versus high-dose immunoglobulin for primary treatment of acute immune thrombocytopenic purpura in children: results of a prospective, randomized single-center trial. J Pediatr Hematol Oncol 2003; 25:797–800; PMID: 14528103; http://dx.doi.org/10.1097/00043426-200310000-00011.PubMedCrossRefGoogle Scholar
  90. 89.
    Blanchette V, Imbach P, Andrew M et al. Randomised trial of intravenous immunoglobulin G, intravenous anti-D, and oral prednisone in childhood acute immune thrombocytopenic purpura. Lancet 1994; 344:703–7; PMID:7915773; http://dx.doi.org/10.1016/S0140-6736(94)92205-5.PubMedCrossRefGoogle Scholar
  91. 90.
    Heath J, Goldman FD. Idiopathic thrombocytopenic purpura in a boy with ataxia telangiectasia on immunoglobulin replacement therapy. J Pediatr Hematol Oncol 2010; 32:e25–7; PMID:20051773; http://dx.doi.org/10.1097/MPH.0b013e3181bf29b6.PubMedCrossRefGoogle Scholar
  92. 91.
    Michel M, Chanet V, Galicier L et al. Autoimmune thrombocytopenic purpura and common variable immunodeficiency: analysis of 21 cases and review of the literature. Medicine (Baltimore) 2004; 83:254–63; PMID:15232313; http://dx.doi.org/10.1097/01.md.0000133624.65946.40.CrossRefGoogle Scholar
  93. 92.
    Wang J, Cunningham-Rundles C. Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun 2005; 25:57–62; PMID: 15994061; http://dx.doi.org/10.1016/j.jaut.2005.04.006.PubMedCrossRefGoogle Scholar
  94. 93.
    Shulman ST. IVGG therapy in Kawasaki disease: mechanism(s) of action. Clin Immunol Immunopathol 1989; 53:S141–6; PMID:2477184; http://dx.doi.org/10.1016/0090-1229(89)90079-2.PubMedCrossRefGoogle Scholar
  95. 94.
    Yeo JS, Choi JW. Effectiveness of medium-dose intravenous immunoglobulin (1 g/kg) in the treatment of Kawasaki Disease. Korean Circ J 2010; 40:81–5; PMID:20182593; http://dx.doi.org/10.4070/kcj.2010.40.2.81.PubMedCrossRefGoogle Scholar
  96. 95.
    Barron KS, Murphy DJ Jr., Silverman ED et al. Treatment of Kawasaki syndrome: a comparison of two dosage regimens of intravenously administered immune globulin. J Pediatr 1990; 117:638–44; PMID:2213395; http://dx.doi.org/10.1016/S0022-3476(05)80707-3.PubMedCrossRefGoogle Scholar
  97. 96.
    Danieli MG, Pettinari L, Moretti R et al. Subcutaneous immunoglobulin in polymyositis and dermatomyositis: A novel application. Autoimmun Rev 2011; 10:144–9; PMID:20858553; http://dx.doi.Org/10.1016/j.autrev.2010.09.004.PubMedCrossRefGoogle Scholar
  98. 97.
    Eftimov F, Vermeulen M, de Haan RJ et al. Subcutaneous immunoglobulin therapy for multifocal motor neuropathy. J Peripher Nerv Syst 2009; 14:93–100; PMID: 19691531; http://dx.doi.org/10.1111/j.1529-8027.2009.00218.X.PubMedCrossRefGoogle Scholar
  99. 98.
    Harbo T, Andersen H, Jakobsen J. Long-term therapy with high doses of subcutaneous immunoglobulin in multifocal motor neuropathy. Neurology 2010; 75:1377–80; PMID:20938030; http://dx.doi.org/10.1212/WNL.0b013e3181f735ce.PubMedCrossRefGoogle Scholar
  100. 99.
    Köller H, Schroeter M, Feischen H et al. Subcutaneous self-infusions of immunoglobulins as a potential therapeutic regimen in immune-mediated neuropathies. J Neurol 2006; 253:1505–6; PMID: 16972122; http://dx.doi.org/10.1007/s00415-006-0258-0.PubMedCrossRefGoogle Scholar
  101. 100.
    Kuitwaard K, van Doom PA. Newer therapeutic options for chronic inflammatory demyelinating polyradiculoneuropathy. Drugs 2009;69:987–1001; PMID:19496628; http://dx.doi.org/10.2165/00003495-200969080-00004.Google Scholar
  102. 101.
    Lee DH, Linker RA, Paulus W et al. Subcutaneous immunoglobulin infusion: A new therapeutic option in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2008; 37:406–9; PMID: 17918749; http://dx.doi.org/10.1002/mus.20909.PubMedCrossRefGoogle Scholar
  103. 102.
    Misbah SA, Baumann A, Fazio R et al. A smooth transition protocol for patients with multifocal motor neuropathy going from intravenous to subcutaneous immunoglobulin therapy: an open-label proof-of-concept study. J Peripher Nerv Syst 2011; 16:92–7; PMID:21692906; http://dx.d0i.org/l 111/j.1529-8027.2011.00330.x.PubMedCrossRefGoogle Scholar
  104. 103.
    Schleinitz N, Jean E, Benarous L et al. Subcutaneous immunoglobulin administration: An alternative to intravenous infusion as adjuvant treatment for dermatomyositis? Clin Rheumatol 2008; 27:1067–8; PMID: 18463936; http://dx.doi.org/10.1007/sl0067-008-0892-2.PubMedCrossRefGoogle Scholar
  105. 104.
    Sladky JT. What is the best initial treatment for childhood chronic inflammatory demyelinating polyneuropathy: Corticosteroids or intravenous immunoglobulin? Muscle Nerve 2008; 38:1638–43; PMID: 19016535; http://dx.doi.org/10.1002/mus.21058.PubMedCrossRefGoogle Scholar
  106. 105.
    Tayal U, Burton J, Dash C et al. Subcutaneous immunoglobulin therapy for immunomodulation in a patient with severe epidermolysis bullosa acquisita. Clin Immunol 2008; 129:518–9; PMID: 18848500; http://dx.doi.Org/10.1016/j.clim.2008.08.003.PubMedCrossRefGoogle Scholar
  107. 106.
    van Schaik IN. What’s new in chronic inflammatory demyelinating polyradiculoneuropathy in 2007–2008? J Peripher Nerv Syst 2008; 13:258–60; PMID: 19192063; http://dx.doi.org/10.1111/J.1529-8027.2008.00189.X.PubMedCrossRefGoogle Scholar
  108. 107.
    Woodall A, Jones S. Switching to home-based SCIg for multifocal motor neuropathy (MMN). Br J Nurs 2010; 19(Suppl 5):S27–31.Google Scholar
  109. 108.
    Berger M, Cupps TR, Fauci AS. Immunoglobulin replacement therapy by slow subcutaneous infusion. Ann Intern Med 1980; 93:55–6; PMID:7396316.PubMedGoogle Scholar
  110. 109.
    Chapel HM, Spickett GP, Ericson D et al. The comparison of the efficacy and safety of intravenous versus subcutaneous immunoglobulin replacement therapy. J Clin Immunol 2000; 20:94–100; PMID: 10821460; http://dx.doi.Org/10.1023/A:1006678312925.PubMedCrossRefGoogle Scholar
  111. 110.
    Gardulf A, Hammarström L, Smith CIE. Home treatment of hypogammaglobulinaemia with subcutaneous gammaglobulin by rapid infusion. Lancet 1991; 338:162–6; PMID:1712881; http://dx.doi.org/10.1016/0140-6736(91)90147-H.PubMedCrossRefGoogle Scholar
  112. 111.
    Gardulf A, Andersson E, Lindqvist M et al. Rapid subcutaneous IgG replacement therapy at home for pregnant immunodeficient women. J Clin Immunol 2001; 21:150–4; PMID: 11332654; http://dx.doi.org/10.1023/A:1011051704960.PubMedCrossRefGoogle Scholar
  113. 112.
    Gaspar J, Gerritsen B, Jones A. Immunoglobulin replacement treatment by rapid subcutaneous infusion. Arch Dis Child 1998; 79:48–51; PMID:9771252; http://dx.doi.org/10.1136/adc.79.l.48.PubMedCrossRefGoogle Scholar
  114. 113.
    Van Beem R, Damen A, Zoethout R et al. Retrospective analysis on clinical experiences with subcutaneous administration of GammaQuin®. Vox Sang 2010; 99(Suppl S1):238–9; http://dx.doi.org/10.1111/j.1423-0410.2010.01343_2.x.Google Scholar
  115. 114.
    Vermeulen M, van Schaik IN, Brand A. Anti-D immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 1995; 58:383–4; PMID:7897433; http://dx.doi.org/10.1136/jnnp.58.3.383-a.PubMedCrossRefGoogle Scholar
  116. 115.
    Mascarin M, Ventura A. Anti-Rh(D) immunoglobulin for autoimmune neutropenia of infancy. Acta Paediatr 1993; 82:142–4; PMID:8386573; http://dx.doi.org/10.1111/j.1651-2227.1993.tbl2625.x.PubMedCrossRefGoogle Scholar
  117. 116.
    Blockmans D, Deckmyn H, Pieters G et al. Commercially available intravenous immunoglobulins (IVIg’s) inhibit binding of anti-glycoprotein (GP)IIb-IIIa antibodies to their antigens in chronic idiopathic thrombocytopenic purpura (ITP) patients. Thromb Haemost 1991; 65:1065.Google Scholar
  118. 117.
    Greinacher A, Möckel M, Mueller-Eckhardt C. [Inhibition of FcRII by intravenously applicable immunnoglobulin is dependent on the mode how to achieve intravenous tolerance] Die Hemmung des FcRII durch intravenös applizierbares IgG ist abhängig vom Herstellungsverfahren der Immunglobuline. Beitr Infusionsther Transfusionsmed 1994; 32:211–3; PMID:9480090.PubMedGoogle Scholar
  119. 118.
    Dietrich H. [Report on the experience in the treatment of septic diseases with Gamma-Venin] Erfahrungsbericht bei der Behandlung septischer Erkrankunger mit Gamma-Venin. Dtsch Med J 1966; 17:709–10; PMID:4167085.PubMedGoogle Scholar
  120. 119.
    Fumia S, Goede JS, Fischler M et al. Human F(ab’)2-containing immune complexes together with anti-hinge natural antibodies stimulate complement amplification in vitro and in vivo. Mol Immunol 2008; 45:2951–61; PMID: 18339427; http://dx.doi.org/10.1016/j.molimm.2008.01.029.PubMedCrossRefGoogle Scholar
  121. 120.
    Ballow M, Allen C. Intravenous immunoglobulin modulates the maturation of TLR 4-primed peripheral blood monocytes. Clin Immunol 2011; 139:208–14; PMID:21406333; http://dx.doi.org/10.10l6/j.clim.2011.02.006.PubMedCrossRefGoogle Scholar
  122. 121.
    Abe T, Matsuda J, Kawasugi K et al. Clinical effect of intravenous immunoglobulin on chronic idiopathic thrombocytopenicpurpura. Blut 1983; 47:69–75; PMID:6683578;http://dx.doi.org/10.1007/BF02482640.PubMedCrossRefGoogle Scholar
  123. 122.
    Burdach SE, Evers KG, Geursen RG. Treatment of acute idiopathic thrombocytopenic purpura of childhood with intravenous immunoglobulin G: comparative efficacy of 7S and 5S preparations. J Pediatr 1986; 109:770–5; PMID:2430084; http://dx.doi.org/10.1016/S0022-3476(86)80691-6.PubMedCrossRefGoogle Scholar
  124. 123.
    Laosombat V, Wiriyasateinkul A, Wongchanchailert M. Intravenous gamma globulin for treatment of chronic idiopathic thrombocytopenic purpura in children. J Med Assoc Thai 2000; 83:160–8; PMID: 10710885.PubMedGoogle Scholar
  125. 124.
    Fateh-Moghadam A, Wick M, Besinger U et al. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet 1984; 1:848–9; PMID:6200741; http://dx.doi.org/10.1016/S0140-6736(84)92294-3.PubMedCrossRefGoogle Scholar
  126. 125.
    Dammacco F, Iodice G, Campobasso N. Treatment of adult patients with idiopathic thrombocytopenic purpura with intravenous immunoglobulin: effects on circulating T cell subsets and PWM-induced antibody synthesis in vitro. Br J Haematol 1986; 62:125–35; PMID:3484633; http://dx.doi.Org/10.1111/j.1365-2141.1986.tb02908.x.PubMedCrossRefGoogle Scholar
  127. 126.
    Emmerich B, Hiller E, Woitinas F et al. Dose-response relationship in the treatment of idiopathic thrombocytopenic purpura with intravenous immunoglobulin. Klin Wochenschr 1987; 65:369–72; PMID:3295380; http://dx.doi.org/10.1007/BF01745575.PubMedCrossRefGoogle Scholar
  128. 127.
    Follea G, Souillet G, Clerc M et al. Intravenous plasmin-treated gammaglobulin therapy in idiopathic thrombocytopenic purpura. Nouv Rev Fr Hematol 1985; 27:5–10; PMID:3157922.PubMedGoogle Scholar
  129. 128.
    Bussel A, Jaisson F, Janvier M et al. [Use of high-dose intravenous gamma globulins in the treatment of autoimmune hemolytic anemia] Utilisation des gammaglobulines intraveineuses a fortes doses dans le traitement des anémies hémolytiques auto-immunes. Presse Med 1983; 12:2628; PMID:6197710.PubMedGoogle Scholar
  130. 129.
    Hsu CH, Chen MR, Hwang FY et al. Efficacy of plasmin-treated intravenous gamma-globulin for therapy of Kawasaki syndrome. Pediatr Infect Dis J 1993; 12:509–12; PMID:8345983; http://dx.doi.org/10.1097/00006454-199306000-00010.PubMedCrossRefGoogle Scholar
  131. 130.
    Gronski P, Hofstaetter T, Kanzy EJ et al. S-Sulfonation: a reversible chemical modification of human immunoglobulin permitting intravenous application. I. Physicochemical and binding properties of S-sulfonated and reconstituted IgG. Vox Sang 1983; 45:144–54; PMID:6604365; http://dx.doi.org/10.1111/j.l423-0410.1983.tb01899.x.PubMedCrossRefGoogle Scholar
  132. 131.
    Furusho K, Kamiya T, Nakano H et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 1984; 2(8411):1055–8; PMID: 6209513.PubMedCrossRefGoogle Scholar
  133. 132.
    Brandstetter H, Hauser H, Stünkel S. Polyradikulitis Gullain-Barré: Verlauf bei einem 2 jährigen Mädchen unter Immunglobulintherapie. Pädiat Prax 1993; 45:253–5.Google Scholar
  134. 133.
    Schmidt RE, Budde U, Broschen Zywietz C et al. High-dose gammaglobulin therapy in adults with idiopathic thrombocytopenic purpura (ITP), clinical effects. Blut 1984; 48:19–25; PMID:6197117; http://dx.doi.org/10.1007/BF00320713.PubMedCrossRefGoogle Scholar
  135. 134.
    Becker T, Panzer S, Maas D et al. High-dose intravenous immunoglobulin for post-transfusion purpura. Br J Haematol 1985; 61:149–55; PMID:4052323;http://dx.doi.org/10.1111/j.1365-2141.1985.tb04071.x.PubMedCrossRefGoogle Scholar
  136. 135.
    al-Qudah AA. Immunoglobulins in the treatment of Guillain-Barré syndrome in early childhood. J Child Neurol 1994; 9:178–80; PMID:8006371; http://dx.doi.org/10.1177/088307389400900215.PubMedCrossRefGoogle Scholar
  137. 136.
    Stiehm ER. Lessons from Kawasaki disease: All brands of IVIG are not equal. J Pediatr 2006; 148:6–8; PMID: 16423589; http://dx.doi.org/10.1016/jjpeds.2005.09.019.PubMedGoogle Scholar
  138. 137.
    Tsai MH, Huang YC, Yen MH et al. Clinical responses of patients with Kawasaki disease to different brands of intravenous immunoglobulin. J Pediatr 2006; 148:38–43; PMID: 16423595; http://dx.doi.org/10.1016/j.jpeds.2005.08.024.PubMedCrossRefGoogle Scholar
  139. 138.
    Cramer M, Frei R, Sebald A et al. Stability over 36 months of a new liquid 10%polyclonal immunoglobulin product (IgPro10, Privigen(c)) stabilized with L-proline. Vox Sang 2009; 96:219–25; PMID: 19207169; http://dx.doi.org/10.1111/j.1423-0410.2008.01143.x.PubMedCrossRefGoogle Scholar
  140. 139.
    Roifman CM, Schroeder H, Berger M et al. Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency. A randomized double-blind trial. Int Immunopharmacol 2003; 3:1325–33; PMID: 12890430; http://dx.doi.org/10.1016/S1567-5769(03)00134-6.PubMedCrossRefGoogle Scholar
  141. 140.
    Zhang G, Lopez PHH, Sheikh KA. Comparison of different brands of IVIg in an in vitro model of immune neuropathy. J Neuroimmunol 2006; 173:200–3; PMID: 16413615; http://dx.doi.Org/10.1016/j.jneuroim.2005.12.001.PubMedCrossRefGoogle Scholar
  142. 141.
    Klaver AC, Finke JM, Digambaranath J et al. Antibody concentrations to Aβ1–42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. Int Immunopharmacol 2010; 10:115–9; PMID: 19840873; http://dx.doi.Org/10.1016/j.intimp.2009.10.005.PubMedCrossRefGoogle Scholar
  143. 142.
    Machimoto T, Guerra G, Burke G et al. Effect of IVIG administration on complement activation and HLA antibody levels. Transpl Int 2010; 23:1015–22; PMID:20412537; http://dx.doi.org/10.1111/j.1432-2277.2010.01088.X.PubMedCrossRefGoogle Scholar
  144. 143.
    Patrias LM, Klaver AC, Coffey MP et al. Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol 2010; 161:527–35; PMID:20646004; http://dx.doi.org/10.1111/j.1365-2249.2010.04214.x.PubMedCrossRefGoogle Scholar
  145. 144.
    Elluru S, Van Huyen JPD, Bayry J et al. Comparative study of the anti-inflammatory effect of two intravenous immunoglobulin preparations manufactured by different processes. Immunol Lett 2006; 107:58–62; PMID: 16952403; http://dx.doi.Org/10.1016/j.imlet.2006.07.009.PubMedCrossRefGoogle Scholar
  146. 145.
    Clark DA, Wong K, Banwatt D et al. CD200-dependent and nonCD200-dependant pathways of NK cell suppression by human IVIG. J Assist Reprod Genet 2008; 25:67–72; PMID: 18256920; http://dx.doi.org/10.1007/s10815-008-9202-9.PubMedCrossRefGoogle Scholar
  147. 146.
    Nalli C, Couture C, Bernier M et al. A rare case of fulminant myocarditis succesfully treated with immunoglobulin therapy. Am J Case Rep 2010; 11:166–8.Google Scholar
  148. 147.
    Fazekas F, Lublin FD, Li D et al. Intravenous immunoglobulin in relapsing-remitting multiple sclerosis: a dose-finding trial. Neurology 2008; 71:265–71; PMID: 18645164; http://dx.doi.org/10.1212/01.wnl.0000318281.98220.6f.PubMedCrossRefGoogle Scholar
  149. 148.
    Desai SH, Chouksey A, Poll J et al. A pilot study of equal doses of 10% IGIV given intravenously or subcutaneously. J Allergy Clin Immunol 2009; 124:854–6; PMID: 19767071; http://dx.doi.org/10.1016/j.jaci.2009.07.051.PubMedCrossRefGoogle Scholar
  150. 149.
    Leibl H, Wasserman RL, Melamed I et al. Pharmacokinetic analysis (PK) of immune globulin subcutaneous (human), 10% (IGSC) administered intravenously or subcutaneously in subjects with primary immunodeficiency diseases (PIDD). J Allergy Clin Immunol 2011; 127:AB17; http://dx.doi.org/10.1016/j.jaci.2010.12.077.CrossRefGoogle Scholar
  151. 150.
    Levy R, Chen J, Roberts R et al. Pharmacokinetics and safety of subcutaneous immune globulin (human), 10% caprylate/chromatography purified (IGIV-C) in patients with primary immunodeficiency disease (PID). J Allergy Clin Immunol 2010; 125:AB140; http://dx.doi.org/10.1016/j.jaci.2009.12.549.CrossRefGoogle Scholar
  152. 151.
    Wasserman RL, Irani AM, Tracy J et al. Pharmacokinetics and safety of subcutaneous immune globulin (human), 10% caprylate/chromatography purified in patients with primary immunodeficiency disease. Clin Exp Immunol 2010; 161:518–26; PMID:20550549; http://dx.doi.org/10.1111/j.l365-2249.2010.04195.x.PubMedCrossRefGoogle Scholar
  153. 152.
    Epsom M, Tang MLK, Rozen L et al. Evogam, the first locally produced SCIG; A study of efficacy, safety, and acceptablity in PID. 22nd Annual Scientific Meeting — Australasian Society of Clinical Immunology & Allergy (ASCIA); 11 Sep 7–11 Sep 9.Google Scholar
  154. 153.
    Fasth A, Nystrom J. Safety and efficacy of subcutaneous human immunoglobulin in children with primary immunodeficiency. Acta Paediatr 2007; 96:1474-8; PMID: 17850391; http://dx.doi.org/10.1111/j.1651-2227.2007.00485.X.
  155. 154.
    Gardulf A, Nicolay U, Math D et al. Children and adults with primary antibody deficiencies gain quality of life by subcutaneous IgG self-infusions at home. J Allergy Clin Immunol 2004; 114:936–42; PMID: 15480339; http://dx.doi.org/10.1016/jjaci.2004.06.053.PubMedCrossRefGoogle Scholar
  156. 155.
    Knight E, Carne E, Novak B et al. Self-administered hyaluronidase-facilitated subcutaneous immunoglobulin home therapy in apatient with primary immunodeficiency. J Clin Pathol 2010; 63:846–7; PMID:20671049; http://dx.doi.org/10.1136/jcp.2010.076828.PubMedCrossRefGoogle Scholar
  157. 156.
    Maeder W, Lieby P, Sebald A et al. Local tolerance and stability up to 24 months of a new 20% proline-stabilized polyclonal immunoglobulin for subcutaneous administration. Biologicals 2011; 39:43–9; PMID:21257320; http://dx.doi.Org/10.1016/j.biologicals.2010.11.004.PubMedCrossRefGoogle Scholar
  158. 157.
    Cocito D, Serra G, Falcone Y et al. The efficacy of subcutaneous immunoglobulin administration in chronic inflammatory demyelinating polyneuropathy responders to intravenous immunoglobulin. J Peripher Nerv Syst 2011; 16:150–2; PMID:21692916; http://dx.doi.org/10.1111/j.1529-8027.2011.00340.x.PubMedCrossRefGoogle Scholar
  159. 158.
    Misbah SA, Baumann A, Fazio R et al. A smooth transition protocol for patients with multifocal motor neuropathy going from intravenous to subcutaneous immunoglobulin therapy: an open-label proof-of-concept study. J PeripherNerv Syst 2011; 16:92–7; PMID:21692906; http://dx.doi.org/10.1111/j.1529-8027.2011.00330.x.CrossRefGoogle Scholar
  160. 159.
    Römer J, Morgenthaler JJ, Scherz R et al. Characterization of various immunoglobulin preparations for intravenous application. I. Protein composition and antibody content. Vox Sang 1982; 42:62–73; PMID:6977944.PubMedGoogle Scholar
  161. 160.
    Römer J, Späth PJ, Skvaril F et al. Characterization of various immunoglobulin preparations for intravenous application. II. Complement activation and binding to staphylococcus protein A. Vox Sang 1982; 42:74–80; PMID:6461133.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Institute of PharmacologyUniversity of BernBernSwitzerland
  2. 2.Institute of BiochemistryETH-HönggerbergZurichSwitzerland

Personalised recommendations