Control of B Cells Expressing Naturally Occurring Autoantibodies

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 750)

Abstract

Naturally occurring autoantibodies (NAbs) are typically polyreactive, bind with low affinity to a discrete set of autoantigens and are encoded by variable region genes in germline configuration. They differ from disease-associated autoantibodies (autoAb), which are mostly monoreactive, somatically mutated and of high affinities. Structure-function studies have shown that polyreactivity of NAbs relies on the somatically generated complementarity determining region, CDR3, of the heavy chain. This finding suggested that NAb-producing B cells were positively selected from the pre-immune B-cell repertoire. The biological significance of this selection remains, however, unclear. Data originating mainly from transgenic mice have shown that mature NAb-producing B cells are frequently ignorant toward their antigen, possibly due to their low affinity, though active tolerance mechanisms are not excluded. An important issue is whether NAb-producing B cells constitute the pool from which pathologic auto Ab emerge after autoantigen-driven maturation. We summarize results obtained in mouse models, showing that some infectious agents are able to induce an autoantigen-driven activation of certain NAb-producing B cells. However direct proof that selection by autoantigen may lead to somatic hypermutation are still lacking. Other data tend to suggest that pathologic auto Abs may derive from non-autoimmune B cells that have diversified by somatic hypermutation of their variable region genes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dighiero G, Lymberi P, Guilbert B et al. Natural autoantibodies constitute a substantial part of normal circulating immunoglobulins. Ann N Y Acad Sci 1986; 475:135–45. PMID:3466566 doi:10.1111/j. 1749-6632.1986. tb20863.xPubMedCrossRefGoogle Scholar
  2. 2.
    Coutinho A, Kazatchkine MD, Avramaes S. Natural Autoantibodies. Curr Opin Immunol 1995; 7:812–8. PMID:8679125 doi:10.1016/0952-7915(95)80053-0PubMedCrossRefGoogle Scholar
  3. 3.
    Zelenay S, Moraes-Fontes MF, Fesel C et al. Physiopathology of natural autoantibodies: the case for regulation. J Autoimmun 2007; 29:229–35. PMID: 17967665 doi:10.1016/j.jaut.2007.07.011PubMedCrossRefGoogle Scholar
  4. 4.
    Wardemann H, Yurasov S, Schaefer A et al. Predominant autoantibody production by early human B cell precursors. Science 2003; 301:1374–7. PMID:12920303 doi: 10.1126/science. 1086907PubMedCrossRefGoogle Scholar
  5. 5.
    Radic MZ, Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 1994; 12:487–520. PMID:8011289 doi: 10.1146/annurev.iy. 12.040194.002415PubMedCrossRefGoogle Scholar
  6. 6.
    Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB et al. The role of clonal selection and somatic mutation in auto-immunity. Nature 1987; 328:805–11. PMID:3498121 doi:10.1038/328805a0PubMedCrossRefGoogle Scholar
  7. 7.
    Lieby P, Poindron V, Roussi S et al. Pathogenic antiphospholipid antibody: an antigen-selected needle in a haystack. Blood 2004; 104:1711–5. PMID:15166038 doi:10.1182/blood-2004-02-0462PubMedCrossRefGoogle Scholar
  8. 8.
    Casali P, Notkins AL. CD5+B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 1989; 10:364–8. PMID:2482031 doi: 10.1016/0167-5699(89)90268-5PubMedCrossRefGoogle Scholar
  9. 9.
    Martin T, Duffy SF, Carson DA et al. Evidence for somatic selection of natural autoantibodies. J Exp Med 1992; 175:983–91. PMID:1552291 doi: 10.1084/jem. 175.4.983PubMedCrossRefGoogle Scholar
  10. 10.
    Martin T, Crouzier R, Weber JC et al. Structure-function studies on a polyreactive (Natural) autoantibody. Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J Immunol 1994; 152:5988–96. PMID:8207223PubMedGoogle Scholar
  11. 11.
    Crouzier R, Martin T, Pasquali JL. Heavy chain variable region, light chain variable region and heavy chain CDR3 influences on the mono and polyreactivity and on the affinity of human monoclonal rheumatoid factors. J Immunol 1995; 154:4526–35. PMID:7722307PubMedGoogle Scholar
  12. 12.
    Ichiyoshi Y, Casali P. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J Exp Med 1994; 180:885–95. PMID:8064239 doi:10.1084/jem.l80.3.885PubMedCrossRefGoogle Scholar
  13. 13.
    Köhler F, Hug E, Eschbach C et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 2008; 29:912–21. PMID: 19084434 doi:10.1016/j.immuni.2008.10.013PubMedCrossRefGoogle Scholar
  14. 14.
    Hayakawa K, Asano M, Shinton SA et al. Positive selection of natural autoreactive B cells. Science 1999; 285:113–6. PMID: 10390361 doi:10.1126/science.285.5424.113PubMedCrossRefGoogle Scholar
  15. 15.
    Julien S, Soulas P, Garaud JC et al. B cell positive selection by soluble self-antigen. J Immunol 2002; 169:4198–204. PMID: 12370349PubMedGoogle Scholar
  16. 16.
    Wang H, Clarke SH. Evidence for a ligand-mediated positive selection signal in differentiation to a mature B cell. J Immunol 2003; 171:6381–8. PMID:14662836PubMedGoogle Scholar
  17. 17.
    Wang H, Clarke SH. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev 2004; 197:51–9. PMID:14962186 doi: 10.1 lll/j.0105-2896.2004.0098.xPubMedCrossRefGoogle Scholar
  18. 18.
    Ohnishi K, Melchers F. The nonimmunoglobulin portion of Iambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003; 4:849–56. PMID: 12897780 doi:10.1038/ni959PubMedCrossRefGoogle Scholar
  19. 19.
    Koralov SB, Novobrantseva TI, Konigsmann J et al. Antibody repertoires generated by VH replacement and direct VH to JH joining. Immunity 2006; 25:43–53. PMID: 16860756 doi: 10.1016/j.immuni.2006.04.016PubMedCrossRefGoogle Scholar
  20. 20.
    Gauthier L, Rossi B, Roux F et al. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 2002; 99:13014–9. PMID: 12271131 doi: 10.1073/pnas.202323999PubMedCrossRefGoogle Scholar
  21. 21.
    Bradl H, Wittmann J, Milius D et al. Interaction of murine precursor B cell receptor with stroma cells is controlled by the unique tail of lambda 5 and stroma cell-associated heparin sulfate. J Immunol 2003; 171:2338–48. PMID:12928380PubMedGoogle Scholar
  22. 22.
    Hardy RR. B-1 cells development, selection, natural autoantibody and leukemia. Curr Opin Immunol 2006; 18:547–55. PMID: 16879952 doi:10.1016/j.coi.2006.07.010PubMedCrossRefGoogle Scholar
  23. 23.
    Von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 2010; 11:14–20. PMID:20016505 doi:10.1038/ni.1794CrossRefGoogle Scholar
  24. 24.
    Pasquali JL, Soulas-Sprauel P, Korganow AS et al. Auto-reactive B cells in transgenic mice. J Autoimmun 2007; 29:250–6. PMID:17845841 doi:10.1016/j.jaut.2007.07.006PubMedCrossRefGoogle Scholar
  25. 25.
    Shlomchik MJ, Zharhary D, Saunders T et al. A rheumatoid factor transgenic mouse model of autoantibody regulation. Int Immunol 1993; 5:1329–41. PMID:8268138 doi:10.1093/intimm/5.10.1329PubMedCrossRefGoogle Scholar
  26. 26.
    Koenig-Marrony S, Soulas P, Julien S et al. Natural autoreactive B cells in transgenic mice reproduce an apparent paradox to the clonal tolerance theory. J Immunol 2001; 166:1463–70. PMID:11160185PubMedGoogle Scholar
  27. 27.
    Aplin BD, Keech CL, de Kauwe AL et al. Tolerance through indifference: autoreactive B cells to the nuclear antigen La show no evidence of tolerance in a transgenic model. J Immunol 2003; 171:5890–900. PMID: 14634099PubMedGoogle Scholar
  28. 28.
    Hannum LG, Ni D, Haberman AM et al. A disease-related rheumatoid factor autoantibody is not tolerized in a normal mouse: implications for the origins of autoantibodies in autoimmune disease. J Exp Med 1996; 184:1269–78. PMID:8879198 doi: 10.1084/jem. 184.4.1269PubMedCrossRefGoogle Scholar
  29. 29.
    Soulas P, Koenig-Marrony S, Julien S et al. A role for membrane IgD in the tolerance of pathological human rheumatoid factor B cells. Eur J Immunol 2002; 32:2623–34. PMID: 12207347 doi: 10.1002/1521-4141(200209)32:9<2623∷AID-IMMU2623>3.0.CO;2-0PubMedCrossRefGoogle Scholar
  30. 30.
    Cariappa A, Tang M, Parng C et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 2001; 14:603. PMID:11371362 doi:10.1016/S1074-7613(01)00135-2PubMedCrossRefGoogle Scholar
  31. 31.
    Soulas P, Woods A, Jaulhac B et al. Autoantigen, innate immunity, and T cells cooperate to break B cell tolerance during bacterial infection. J Clin Invest 2005; 115:2257–67. PMID:16041408 doi:10.1172/JCI24646PubMedCrossRefGoogle Scholar
  32. 32.
    Hansen KE, Arnason J, Bridges AJ. Autoantibodies and common viral illnesses. Semin Arthritis Rheum 1998; 27:263–71. PMID:9572708 doi:10.1016/S0049-0172(98)80047-4PubMedCrossRefGoogle Scholar
  33. 33.
    Ludewig B, Krebs P, Metters H et al. Molecular characterization of virus-induced autoantibody responses. J Exp Med 2004; 200:637–46. PMID: 15353556 doi:10.1084/jem.20040358PubMedCrossRefGoogle Scholar
  34. 34.
    Hunziker L, Recher M, Macpherson AJ et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat Immunol 2003; 4:343–9. PMID: 12627229 doi:10.1038/ni911PubMedCrossRefGoogle Scholar
  35. 35.
    Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298:2199–202. PMID: 12481138 doi: 10.1126/science. 1076071PubMedCrossRefGoogle Scholar
  36. 36.
    Recher M, Hunziker L, Ciurea A et al. Public, private and non-specific antibodies induced by non-cytopathic viral infections. Curr Opin Microbiol 2004; 7:426–33. PMID:15358263 doi:10.1016/j.mib.2004.06.008PubMedCrossRefGoogle Scholar
  37. 37.
    Jellison ER, Guay HM, Szomolanyi-Tsuda E et al. Dynamics and magnitude of virus-induced polyclonal B cell activation mediated by BCR-independent presentation of viral antigen. Eur J Immunol 2007; 37:119–28. PMID:17163452 doi:10.1002/eji.200636516PubMedCrossRefGoogle Scholar
  38. 38.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11:373–84. PMID:20404851 doi:10.1038/ni.l863PubMedCrossRefGoogle Scholar
  39. 39.
    Woods A, Soulas-Sprauel P, Jaulhac B et al. MyD88 negatively controls hypergammaglobulinemia with autoantibody production during bacterial infection. Infect Immun 2008; 76:1657–67. PMID: 18227170 doi:10.1128/IAI.00951-07PubMedCrossRefGoogle Scholar
  40. 40.
    Bolz DD, Sundsbak RS, Ma Y et al. MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J Immunol 2004; 173:2003–10. PMID: 15265935PubMedGoogle Scholar
  41. 41.
    Alexopoulou L, Thomas V, Schnare M et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1-and TLR2-deficient mice. Nat Med 2002; 8:878–84. PMID: 12091878PubMedGoogle Scholar
  42. 42.
    Roosnek E, Lanzavecchia A. Efficient and selective presentation of antigen-antibody complexes by rheumatoid factor B cells. J Exp Med 1991; 173:487–9. PMID:1703209 doi: 10.1084/jem. 173.2.487PubMedCrossRefGoogle Scholar
  43. 43.
    Leadbetter EA, Rifkin IR, Hohlbaum AM et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416:603–7. PMID: 11948342 doi:10.1038/416603aPubMedCrossRefGoogle Scholar
  44. 44.
    Lau CM, Broughton C, Tabor AS et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005; 202:1171–7. PMID: 16260486 doi:10.1084/jem.20050630PubMedCrossRefGoogle Scholar
  45. 45.
    Viglianti GA, Lau CM, Hanley TM et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 2003; 19:837–47. PMID: 14670301 doi:10.1016/S1074-7613(03)00323-6PubMedCrossRefGoogle Scholar
  46. 46.
    Berland R, Fernandez L, Kari E et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 2006; 25:429–40. PMID: 16973388 doi: 10.1016/j. immuni.2006.07.014PubMedCrossRefGoogle Scholar
  47. 47.
    Gilkeson GS, Pippen AM, Pisetsky DS. Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 1995; 95:1398–402. PMID:7883986 doi:10.1172/JCI117793PubMedCrossRefGoogle Scholar
  48. 48.
    Rui L, Vinuesa CG, Blasioli J et al. Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nat Immunol 2003; 4:594–600. PMID: 12740574 doi: 10.1038/ni924PubMedCrossRefGoogle Scholar
  49. 49.
    Guo W, Smith D, Aviszus K et al. Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. J Exp Med 2010; 207:2225–37. PMID:20805563 doi: 10.1084/jem.20092712PubMedCrossRefGoogle Scholar
  50. 50.
    Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 2009; 9:845–57. PMID:19935804 doi:10.1038/nri2637PubMedCrossRefGoogle Scholar
  51. 51.
    Lieby P, Soley A, Knapp AM et al. Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood 2003; 102:2459–65. PMID:12791657 doi:10.1182/blood-2003-01-0180PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Clinical Immunology Department, National Referral Center for Systemic Autoimmune Diseases, Nouvel Hôpital CivilHôpitaux Universitaires de StrasbourgStrasbourgFrance

Personalised recommendations