Advertisement

Acupuncture in Polycystic Ovary Syndrome: Potential and Challenge

  • Yi FengEmail author
  • Elisabet Stener-Victorin
  • Boying Chen
Chapter

Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder affecting 5–10 % of women of reproductive age. Conventional pharmacological therapy and surgery are effective but with obvious side effects and limited long-term treatment. Therefore, acupuncture therapy, as a complement or alternative to conventional therapies, may be an alternative for women with PCOS by reducing their symptoms. Experimental, mechanistic trials clearly indicate positive effects of acupuncture on reproductive and metabolic function. However, lack of randomized controlled trials hinders the translation and application of acupuncture in the treatment of PCOS. In this chapter, we summarize the PCOS diagnostic criteria and characters, PCOS-like animal models as well as the possible physiological basis and mechanism of the effect of acupuncture in PCOS. Clinical data from studies in women with PCOS and experimental observations in PCOS-like rat models suggest that acupuncture exerts long-lasting beneficial effects on metabolic, endocrine, and neuroendocrine systems.

Keywords

Acupuncture Polycystic ovary syndrome Metabolic syndrome Androgen receptor Gonadotropin-releasing hormone Corticotropin-releasing hormone Hypothalamic–pituitary–ovarian axis 

Notes

Acknowledgments

We thank the Swedish Institute and China Scholarship Council for their support and the Center for Mouse Physiology and Bio-Imaging, University of Gothenburg.

This program was supported by grants from the Swedish Medical Research Council (Project No. 2008-72VP-15445-01A); Novo Nordisk Foundation; Wilhelm and Martina Lundgren’s Science Fund; Hjalmar Svensson Foundation; Tore Nilson Foundation; Åke Wiberg Foundation; Adlerbert Research Foundation; Ekhaga Foundation; Swedish federal government under the ­letters of understanding agreement of Medical Education (ALFFGBG-10984) and Regional Research and Development agreement (VGFOUREG-5171, 11296, and 7861); Special grant of China Postdoctoral Science Foundation (No. 200801170); and National Natural Science Foundation of China (No. 81001544).

References

  1. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to ­polycystic ovary syndrome (PCOS). Hum Reprod 19, 41–47.Google Scholar
  2. Abbott, D.H., Tarantal, A.F., and Dumesic, D.A. (2009). Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys. Am J Primatol 71, 776–784.PubMedCrossRefGoogle Scholar
  3. Adams, J.M., Taylor, A.E., Crowley, W.F., Jr., and Hall, J.E. (2004). Polycystic ovarian morphology with regular ovulatory cycles: insights into the pathophysiology of polycystic ovarian syndrome. J Clin Endocrinol Metab 89, 4343–4350.PubMedCrossRefGoogle Scholar
  4. Atiomo, W.U., Bates, S.A., Condon, J.E., Shaw, S., West, J.H., and Prentice, A.G. (1998). The plasminogen activator system in women with polycystic ovary syndrome. Fertil Steril 69, 236–241.PubMedCrossRefGoogle Scholar
  5. Azziz, R., Black, V., Hines, G.A., Fox, L.M., and Boots, L.R. (1998). Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab 83, 2317–2323.PubMedCrossRefGoogle Scholar
  6. Azziz, R., Carmina, E., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H.F., Futterweit, W., Janssen, O.E., Legro, R.S., Norman, R.J., Taylor, A.E., et al. (2009). The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91, 456–488.PubMedCrossRefGoogle Scholar
  7. Bagos, P.G. (2009). Plasminogen activator inhibitor-1 4 G/5G and 5,10-methylene-tetrahydrofolate reductase C677T polymorphisms in polycystic ovary syndrome. Mol Hum Reprod 15, 19–26.PubMedCrossRefGoogle Scholar
  8. Blank, S.K., McCartney, C.R., and Marshall, J.C. (2006). The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Hum Reprod Update 12, 351–361.PubMedCrossRefGoogle Scholar
  9. Brawer, J.R., Munoz, M., and Farookhi, R. (1986). Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod 35, 647–655.PubMedCrossRefGoogle Scholar
  10. Britt, K.L., Drummond, A.E., Cox, V.A., Dyson, M., Wreford, N.G., Jones, M.E., Simpson, E.R., and Findlay, J.K. (2000). An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology 141, 2614–2623.PubMedCrossRefGoogle Scholar
  11. Chapman, J.C., Min, S.H., Freeh, S.M., and Michael, S.D. (2009). The estrogen-injected female mouse: new insight into the etiology of PCOS. Reprod Biol Endocrinol 7, 47.PubMedCrossRefGoogle Scholar
  12. Chen, B.Y., and Yu, J. (1991). Relationship between blood radioimmunoreactive beta-endorphin and hand skin temperature during the electro-acupuncture induction of ovulation. Acupunct Electrother Res 16, 1–5.PubMedGoogle Scholar
  13. Couse, J.F., Bunch, D.O., Lindzey, J., Schomberg, D.W., and Korach, K.S. (1999). Prevention of the polycystic ovarian phenotype and characterization of ovulatory capacity in the estrogen receptor-alpha knockout mouse. Endocrinology 140, 5855–5865.PubMedCrossRefGoogle Scholar
  14. Devin, J.K., Johnson, J.E., Eren, M., Gleaves, L.A., Bradham, W.S., Bloodworth, J.R., Jr., and Vaughan, D.E. (2007). Transgenic overexpression of plasminogen activator inhibitor-1 promotes the development of polycystic ovarian changes in female mice. J Mol Endocrinol 39, 9–16.PubMedCrossRefGoogle Scholar
  15. Dissen, G.A., Garcia-Rudaz, C., Paredes, A., Mayer, C., Mayerhofer, A., and Ojeda, S.R. (2009). Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. Endocrinology 150, 2906–2914.PubMedCrossRefGoogle Scholar
  16. Dissen, G.A., Lara, H.E., Leyton, V., Paredes, A., Hill, D.F., Costa, M.E., Martinez-Serrano, A., and Ojeda, S.R. (2000). Intraovarian excess of nerve growth factor increases androgen secretion and disrupts estrous cyclicity in the rat. Endocrinology 141, 1073–1082.PubMedCrossRefGoogle Scholar
  17. Dupont, S., Krust, A., Gansmuller, A., Dierich, A., Chambon, P., and Mark, M. (2000). Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development (Cambridge, England) 127, 4277–4291.Google Scholar
  18. Ehrmann, D.A. (2005). Polycystic ovary syndrome. The New England journal of medicine 352, 1223–1236.PubMedCrossRefGoogle Scholar
  19. Feng, Y., Johansson, J., Shao, R., Manneras, L., Fernandez-Rodriguez, J., Billig, H., and Stener-Victorin, E. (2009). Hypothalamic neuroendocrine functions in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. PLoS One 4, e6638.PubMedCrossRefGoogle Scholar
  20. Foecking, E.M., McDevitt, M.A., Acosta-Martinez, M., Horton, T.H., and Levine, J.E. (2008). Neuroendocrine consequences of androgen excess in female rodents. Horm Behav 53, 673–692.PubMedCrossRefGoogle Scholar
  21. Gerhard, I., and Postneek, F. (1992). Auricular acupuncture in the treatment of female infertility. Gynecol Endocrinol 6, 171–181.PubMedCrossRefGoogle Scholar
  22. Handa, R.J., Pak, T.R., Kudwa, A.E., Lund, T.D., and Hinds, L. (2008). An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm Behav 53, 741–752.PubMedCrossRefGoogle Scholar
  23. Heine, P.A., Taylor, J.A., Iwamoto, G.A., Lubahn, D.B., and Cooke, P.S. (2000). Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A 97, 12729–12734.PubMedCrossRefGoogle Scholar
  24. Herbison, A.E., Horvath, T.L., Naftolin, F., and Leranth, C. (1995). Distribution of estrogen receptor-immunoreactive cells in monkey hypothalamus: relationship to neurones containing luteinizing hormone-releasing hormone and tyrosine hydroxylase. Neuroendocrinology 61, 1–10.PubMedCrossRefGoogle Scholar
  25. Herbison, A.E., and Theodosis, D.T. (1992). Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience 50, 283–298.PubMedCrossRefGoogle Scholar
  26. Hu, Y.C., Wang, P.H., Yeh, S., Wang, R.S., Xie, C., Xu, Q., Zhou, X., Chao, H.T., Tsai, M.Y., and Chang, C. (2004). Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A 101, 11209–11214.PubMedCrossRefGoogle Scholar
  27. Ito, Y., Fisher, C.R., Conte, F.A., Grumbach, M.M., and Simpson, E.R. (1993). Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries. Proc Natl Acad Sci U S A 90, 11673–11677.PubMedCrossRefGoogle Scholar
  28. Jansen, E., Laven, J.S., Dommerholt, H.B., Polman, J., van Rijt, C., van den Hurk, C., Westland, J., Mosselman, S., and Fauser, B.C. (2004). Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Molecular endocrinology (Baltimore, Md 18, 3050–3063.Google Scholar
  29. Jedel E, Labrie F, Oden A, et al. (2011). Impact of electro-acupuncture and physical exercise on hyperandrogenism and oligo/amenorrhea in women with polycystic ovary syndrome: a randomized controlled trial. Am J Physiol Endocrinol Metab 300, E37–45.Google Scholar
  30. Kafali, H., Iriadam, M., Ozardali, I., and Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35, 103–108.PubMedCrossRefGoogle Scholar
  31. Kaipia, A., and Hsueh, A.J. (1997). Regulation of ovarian follicle atresia. Annual review of physiology 59, 349–363.PubMedCrossRefGoogle Scholar
  32. Kallo, I., Butler, J.A., Barkovics-Kallo, M., Goubillon, M.L., and Coen, C.W. (2001). Oestrogen receptor beta-immunoreactivity in gonadotropin releasing hormone-expressing neurones: regulation by oestrogen. J Neuroendocrinol 13, 741–748.PubMedCrossRefGoogle Scholar
  33. Lanham, M.S., Lebovic, D.I., and Domino, S.E. (2006). Contemporary medical therapy for polycystic ovary syndrome. Int J Gynaecol Obstet 95, 236–241.PubMedCrossRefGoogle Scholar
  34. Lanzone, A., Petraglia, F., Fulghesu, A.M., Ciampelli, M., Caruso, A., and Mancuso, S. (1995). Corticotropin-releasing hormone induces an exaggerated response of adrenocorticotropic hormone and cortisol in polycystic ovary syndrome [see comments]. Fertil Steril 63, 1195–1199.PubMedGoogle Scholar
  35. Lara, H.E., Dissen, G.A., Leyton, V., Paredes, A., Fuenzalida, H., Fiedler, J.L., and Ojeda, S.R. (2000). An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology 141, 1059–1072.PubMedCrossRefGoogle Scholar
  36. Lee, S., Kang, D.W., Hudgins-Spivey, S., Krust, A., Lee, E.Y., Koo, Y., Cheon, Y., Gye, M.C., Chambon, P., and Ko, C. (2009). Theca-specific estrogen receptor-alpha knockout mice lose fertility prematurely. Endocrinology 150, 3855–3862.PubMedCrossRefGoogle Scholar
  37. Legro, R.S. (2007). Pregnancy considerations in women with polycystic ovary syndrome. Clin Obstet Gynecol 50, 295–304.PubMedCrossRefGoogle Scholar
  38. Legro, R.S., Barnhart, H.X., Schlaff, W.D., Carr, B.R., Diamond, M.P., Carson, S.A., Steinkampf, M.P., Coutifaris, C., McGovern, P.G., Cataldo, N.A., et al. (2007). Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. The New England journal of medicine 356, 551–566.PubMedCrossRefGoogle Scholar
  39. Legro, R.S., Spielman, R., Urbanek, M., Driscoll, D., Strauss, J.F., 3rd, and Dunaif, A. (1998). Phenotype and genotype in polycystic ovary syndrome. Recent progress in hormone research 53, 217–256.PubMedGoogle Scholar
  40. Leung, P.C., and Armstrong, D.T. (1979). Estrogen treatment of immature rats inhibits ovarian androgen production in vitro. Endocrinology 104, 1411–1417.PubMedCrossRefGoogle Scholar
  41. Leung, P.C., Goldenberg, S.R., and Armstrong, D.T. (1978). Changes with age in aromatization of testosterone in immature female rats. Biol Reprod 19, 1036–1039.PubMedCrossRefGoogle Scholar
  42. Linde, K., Streng, A., Jurgens, S., Hoppe, A., Brinkhaus, B., Witt, C., Wagenpfeil, S., Pfaffenrath, V., Hammes, M.G., Weidenhammer, W., et al. (2005). Acupuncture for patients with migraine: a randomized controlled trial. Jama 293, 2118–2125.PubMedCrossRefGoogle Scholar
  43. Lu, S., Liu, M., Epner, D.E., Tsai, S.Y., and Tsai, M.J. (1999). Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13, 376–384.PubMedCrossRefGoogle Scholar
  44. Lubahn, D.B., Moyer, J.S., Golding, T.S., Couse, J.F., Korach, K.S., and Smithies, O. (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 90, 11162–11166.PubMedCrossRefGoogle Scholar
  45. Lund, I., and Lundeberg, T. (2006). Are minimal, superficial or sham acupuncture procedures acceptable as inert placebo controls? Acupunct Med 24, 13–15.PubMedCrossRefGoogle Scholar
  46. Mahajan, D.K. (1988). Polycystic ovarian disease: animal models. Endocrinology and metabolism clinics of North America 17, 705–732.PubMedGoogle Scholar
  47. Mahesh, V.B., Mills, T.M., Bagnell, C.A., and Conway, B.A. (1987). Animal models for study of polycystic ovaries and ovarian atresia. Advances in experimental medicine and biology 219, 237–257.PubMedCrossRefGoogle Scholar
  48. Manneras, L., Cajander, S., Holmang, A., Seleskovic, Z., Lystig, T., Lonn, M., and Stener-Victorin, E. (2007). A New Rat Model Exhibiting Both Ovarian and Metabolic Characteristics of Polycystic Ovary Syndrome. Endocrinology 148, 3781–3791.PubMedCrossRefGoogle Scholar
  49. Manneras, L., Jonsdottir, I.H., Holmang, A., Lonn, M., and Stener-Victorin, E. (2008). Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome. Endocrinology 149, 3559–3568.PubMedCrossRefGoogle Scholar
  50. Marins, N., da Silva, C.T., da Motta, V.P., Scianni, C.C., Arcaldi, N., and de Matos, J.V. (1981). [Hemodynamic study in subjects with Chagas’ disease without apparent heart disease]. Arquivos brasileiros de cardiologia 37, 463–466.PubMedGoogle Scholar
  51. Matzuk, M.M., DeMayo, F.J., Hadsell, L.A., and Kumar, T.R. (2003). Overexpression of human chorionic gonadotropin causes multiple reproductive defects in transgenic mice. Biol Reprod 69, 338–346.PubMedCrossRefGoogle Scholar
  52. McCarthy, G.F., and Brawer, J.R. (1990). Induction of Stein-Leventhal-like polycystic ovaries (PCO) in the rat: a new model for cystic ovarian disease. The Anatomical record 228, 137–144.PubMedCrossRefGoogle Scholar
  53. Moll, E., Bossuyt, P.M., Korevaar, J.C., Lambalk, C.B., and van der Veen, F. (2006). Effect of clomifene citrate plus metformin and clomifene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomised double blind clinical trial. BMJ (Clinical research ed 332, 1485.Google Scholar
  54. Moran, L., and Teede, H. (2009). Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum Reprod Update 15, 477–488.PubMedCrossRefGoogle Scholar
  55. Naftolin, F., Garcia-Segura, L.M., Horvath, T.L., Zsarnovszky, A., Demir, N., Fadiel, A., Leranth, C., Vondracek-Klepper, S., Lewis, C., Chang, A., et al. (2007). Estrogen-induced hypothalamic synaptic plasticity and pituitary sensitization in the control of the estrogen-induced gonadotrophin surge. Reprod Sci 14, 101–116.PubMedCrossRefGoogle Scholar
  56. Nardo, L.G., Patchava, S., and Laing, I. (2008). Polycystic ovary syndrome: pathophysiology, molecular aspects and clinical implications. Panminerva medica 50, 267–278.PubMedGoogle Scholar
  57. Neveu, N., Granger, L., St-Michel, P., and Lavoie, H.B. (2007). Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndrome. Fertil Steril 87, 113–120.PubMedCrossRefGoogle Scholar
  58. Norman, R.J., Dewailly, D., Legro, R.S., and Hickey, T.E. (2007). Polycystic ovary syndrome. Lancet 370, 685–697.PubMedCrossRefGoogle Scholar
  59. Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B.G., Starck, G., Ekholm, S., Strigo, I., Worsley, K., Vallbo, A.B., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nature neuroscience 5, 900–904.PubMedCrossRefGoogle Scholar
  60. Orio, F., Jr., Palomba, S., Cascella, T., Tauchmanova, L., Nardo, L.G., Di Biase, S., Labella, D., Russo, T., Savastano, S., Tolino, A., et al. (2004). Is plasminogen activator inhibitor-1 a cardiovascular risk factor in young women with polycystic ovary syndrome? Reprod Biomed Online 9, 505–510.PubMedCrossRefGoogle Scholar
  61. Pastore LM, Williams CD, Jenkins J, Patrie JT. (2011). True and Sham Acupuncture Produced Similar Frequency of Ovulation and Improved LH to FSH Ratios in Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab 96, 3143–3150.Google Scholar
  62. Patisaul, H.B., Whitten, P.L., and Young, L.J. (1999). Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17beta-estradiol and the phytoestrogen, coumestrol. Brain Res Mol Brain Res 67, 165–171.PubMedCrossRefGoogle Scholar
  63. Paxinos, G., and Watson, C. (2005). The rat brain in stereotaxic coordinates, 5th edn (Elsevier academic press).Google Scholar
  64. Risma, K.A., Clay, C.M., Nett, T.M., Wagner, T., Yun, J., and Nilson, J.H. (1995). Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci U S A 92, 1322–1326.PubMedCrossRefGoogle Scholar
  65. Risma, K.A., Hirshfield, A.N., and Nilson, J.H. (1997). Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology. Endocrinology 138, 3540–3547.PubMedCrossRefGoogle Scholar
  66. Roy, S., Mahesh, V.B., and Greenblatt, R.B. (1962). Effect of dehydroepiandrosterone and delta4-androstenedione on the reproductive organs of female rats: production of cystic changes in the ovary. Nature 196, 42–43.PubMedCrossRefGoogle Scholar
  67. Ruiz, A., Aguilar, R., Tebar, A.M., Gaytan, F., and Sanchez-Criado, J.E. (1996). RU486-treated rats show endocrine and morphological responses to therapies analogous to responses of women with polycystic ovary syndrome treated with similar therapies. Biol Reprod 55, 1284–1291.PubMedCrossRefGoogle Scholar
  68. Sampson, M., Kong, C., Patel, A., Unwin, R., and Jacobs, H.S. (1996). Ambulatory blood pressure profiles and plasminogen activator inhibitor (PAI-1) activity in lean women with and without the polycystic ovary syndrome. Clin Endocrinol (Oxf) 45, 623–629.CrossRefGoogle Scholar
  69. Sanchez-Criado, J.E., Sanchez, A., Ruiz, A., and Gaytan, F. (1993). Endocrine and morphological features of cystic ovarian condition in antiprogesterone RU486-treated rats. Acta endocrinologica 129, 237–245.PubMedGoogle Scholar
  70. Schomberg, D.W., Couse, J.F., Mukherjee, A., Lubahn, D.B., Sar, M., Mayo, K.E., and Korach, K.S. (1999). Targeted disruption of the estrogen receptor-alpha gene in female mice: characterization of ovarian responses and phenotype in the adult. Endocrinology 140, 2733–2744.PubMedCrossRefGoogle Scholar
  71. Schwartz, N.B. (1969). A model for the regulation of ovulation in the rat. Recent progress in hormone research 25, 1–55.PubMedGoogle Scholar
  72. Sheng, M., and Greenberg, M.E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485.PubMedCrossRefGoogle Scholar
  73. Shi, D., Dyck, M.K., Uwiera, R.R., Russell, J.C., Proctor, S.D., and Vine, D.F. (2009). A unique rodent model of cardiometabolic risk associated with the metabolic syndrome and polycystic ovary syndrome. Endocrinology 150, 4425–4436.PubMedCrossRefGoogle Scholar
  74. Shughrue, P.J., Komm, B., and Merchenthaler, I. (1996). The distribution of estrogen receptor-beta mRNA in the rat hypothalamus. Steroids 61, 678–681.PubMedCrossRefGoogle Scholar
  75. Silverman A.J., L.I., Witkin J.W. (1994). The gonadotropin-releasing hormone (GnRH) neuronal systems: Immunocytochemistry and in situ hybridization (New York, Raven Press).Google Scholar
  76. Skynner, M.J., Sim, J.A., and Herbison, A.E. (1999). Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140, 5195–5201.PubMedCrossRefGoogle Scholar
  77. Steckler, T.L., Herkimer, C., Dumesic, D.A., and Padmanabhan, V. (2009). Developmental programming: excess weight gain amplifies the effects of prenatal testosterone excess on reproductive cyclicity--implication for polycystic ovary syndrome. Endocrinology 150, 1456–1465.PubMedCrossRefGoogle Scholar
  78. Stein, I.F., and Leventhal, M.L. (1935). Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29, 181–191.Google Scholar
  79. Stener-Victorin, E., Fujisawa, S., and Kurosawa, M. (2006). Ovarian blood flow responses to electroacupuncture stimulation depend on estrous cycle and on site and frequency of stimulation in anesthetized rats. J Appl Physiol 101, 84–91.PubMedCrossRefGoogle Scholar
  80. Stener-Victorin, E., Jedel, E., Janson, P.O., and Sverrisdottir, Y.B. (2009). Low-frequency electroacupuncture and physical exercise decrease high muscle sympathetic nerve activity in polycystic ovary syndrome. Am J Physiol Regul Integr Comp Physiol 297, R387–395.PubMedCrossRefGoogle Scholar
  81. Stener-Victorin, E., Jedel, E., and Manneras, L. (2008). Acupuncture in polycystic ovary syndrome: current experimental and clinical evidence. J Neuroendocrinol 20, 290–298.PubMedCrossRefGoogle Scholar
  82. Stener-Victorin, E., Kobayashi, R., and Kurosawa, M. (2003). Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats. Auton Neurosci 108, 50–56.PubMedCrossRefGoogle Scholar
  83. Stener-Victorin, E., Kobayashi, R., Watanabe, O., Lundeberg, T., and Kurosawa, M. (2004). Effect of electro-acupuncture stimulation of different frequencies and intensities on ovarian blood flow in anaesthetized rats with steroid-induced polycystic ovaries. Reprod Biol Endocrinol 2, 16.PubMedCrossRefGoogle Scholar
  84. Stener-Victorin, E., Lundeberg, T., Waldenstrom, U., Bileviciute-Ljungar, I., and Janson, P.O. (2001). Effects of electro-acupuncture on corticotropin-releasing factor in rats with experimentally-induced polycystic ovaries. Neuropeptides 35, 227–231.PubMedCrossRefGoogle Scholar
  85. Stener-Victorin, E., Lundeberg, T., Waldenstrom, U., Manni, L., Aloe, L., Gunnarsson, S., and Janson, P.O. (2000a). Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biol Reprod 63, 1497–1503.PubMedCrossRefGoogle Scholar
  86. Stener-Victorin, E., Waldenstrom, U., Tagnfors, U., Lundeberg, T., Lindstedt, G., and Janson, P.O. (2000b). Effects of electro-acupuncture on anovulation in women with polycystic ovary syndrome. Acta Obstet Gynecol Scand 79, 180–188.PubMedCrossRefGoogle Scholar
  87. Stener-Victorin, E., Wikland, M., Waldenstrom, U., and Lundeberg, T. (2002). Alternative treatments in reproductive medicine: much ado about nothing. Acupuncture-a method of treatment in reproductive medicine: lack of evidence of an effect does not equal evidence of the lack of an effect. Hum Reprod 17, 1942–1946.PubMedCrossRefGoogle Scholar
  88. Streitberger, K., and Kleinhenz, J. (1998). Introducing a placebo needle into acupuncture research. Lancet 352, 364–365.PubMedCrossRefGoogle Scholar
  89. Tarkun, I., Canturk, Z., Arslan, B.C., Turemen, E., and Tarkun, P. (2004). The plasminogen activator system in young and lean women with polycystic ovary syndrome. Endocr J 51, 467–472.PubMedCrossRefGoogle Scholar
  90. Taylor, A.E. (1998). Polycystic ovary syndrome. Endocrinology and metabolism clinics of North America 27, 877–902, ix.Google Scholar
  91. Taylor, A.E., McCourt, B., Martin, K.A., Anderson, E.J., Adams, J.M., Schoenfeld, D., and Hall, J.E. (1997). Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 82, 2248–2256.PubMedCrossRefGoogle Scholar
  92. Vincent, C. (2001). The safety of acupuncture. BMJ (Clinical research ed 323, 467–468.Google Scholar
  93. Walters, K.A., Allan, C.M., and Handelsman, D.J. (2008). Androgen actions and the ovary. Biol Reprod 78, 380–389.PubMedCrossRefGoogle Scholar
  94. White, P., Lewith, G., Hopwood, V., and Prescott, P. (2003). The placebo needle, is it a valid and convincing placebo for use in acupuncture trials? A randomised, single-blind, cross-over pilot trial. Pain 106, 401–409.PubMedCrossRefGoogle Scholar
  95. Witkin, J.W. (1999). Synchronized neuronal networks: the GnRH system. Microsc Res Tech 44, 11–18.PubMedCrossRefGoogle Scholar
  96. Wood, J.R., Nelson, V.L., Ho, C., Jansen, E., Wang, C.Y., Urbanek, M., McAllister, J.M., Mosselman, S., and Strauss, J.F., 3 rd (2003). The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem 278, 26380–26390.PubMedCrossRefGoogle Scholar
  97. Wu-Peng, X.S., Chua, S.C., Jr., Okada, N., Liu, S.M., Nicolson, M., and Leibel, R.L. (1997). Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513–518.PubMedCrossRefGoogle Scholar
  98. Wu, T.J., Gibson, M.J., Rogers, M.C., and Silverman, A.J. (1997). New observations on the development of the gonadotropin-releasing hormone system in the mouse. J Neurobiol 33, 983–998.PubMedCrossRefGoogle Scholar
  99. Xiaoming, M.O., Ding, L.I., Yunxing, P.U., Guifang, X.I., Xiuzhen, L.E., and Zhimin, F.U. (1993). Clinical studies on the mechanism for acupuncture stimulation of ovulation. Journal of Traditional Chinese Medicine 13, 115–119.Google Scholar
  100. Zacche, M.M., Caputo, L., Filippis, S., Zacche, G., Dindelli, M., and Ferrari, A. (2009). Efficacy of myo-inositol in the treatment of cutaneous disorders in young women with polycystic ovary syndrome. Gynecol Endocrinol, 1–6.Google Scholar
  101. Zawadski, J.K., and Dunaif, A. (1992). Diagnostic criteria for polycystic ovary syndrome: towards a rational approach (Oxford, Blackwell Scientific Publications).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yi Feng
    • 1
    • 2
    Email author
  • Elisabet Stener-Victorin
    • 3
    • 4
  • Boying Chen
    • 1
    • 2
  1. 1.Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  2. 2.Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institutes of Brain ScienceFudan UniversityShanghaiChina
  3. 3.Department of Physiology/EndocrinologyInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at University of GothenburgGothenburgSweden
  4. 4.Department of Obstetrics and GynecologyThe First Affiliated Hospital, Heilongjiang University of Chinese MedicineHarbinChina

Personalised recommendations