Biogas Production from Algae and Cyanobacteria Through Anaerobic Digestion: A Review, Analysis, and Research Needs

  • Pavlo Bohutskyi
  • Edward Bouwer


Anaerobic digestion is a common process for the treatment of a variety of organic wastes and biogas production. Both, macro- and microalgae are suitable renewable substrates for the anaerobic digestion process. The process of biogas production from algal biomass is an alternative technology that has larger potential energy output compared to green diesel, biodiesel, bioethanol, and hydrogen production processes. Moreover, anaerobic digestion can be integrated into other conversion processes and, as a result, improve their sustainability and energy balance. Several techno-economic constraints need to be overcome before the production of biogas from algal biomass becomes economically feasible. These constraints include a high cost of biomass production, limited biodegradability of algal cells, a slow rate of biological conversion of biomass to biogas, and high sensitivity of methanogenic microorganisms. The research opportunities include a variety of engineering and scientific tasks, such as design of systems for algae cultivation and anaerobic digestion; optimization of algae cultivation in wastewater, nutrients recycling and algal concentration; enhancement of algal biomass digestibility and conversion rate by pretreatment; deep integration with other technological processes (e.g., wastewater treatment, co-digestion with other substrates, carbon dioxide sequestration); development and adaptation of molecular biology tools for the improvement of algae and anaerobic microorganisms; application of information technologies; and estimation of the environmental impact, energy and economical balance by performing a life cycle analysis.



This research was supported by The Bureau of Education and Cultural Affairs of United States Department of State though an International Fulbright Science and Technology Award to Pavlo Bohutskyi.


  1. 1.
    Meynell P-J (1976) Methane: planning a digester. C.T.T. series. Prism Press, DorchesterGoogle Scholar
  2. 2.
    McCabe J, Eckenfelder WW (1956) Biological treatment of sewage and industrial wastes, vol 2, Anaerobic digestion and solids-liquid separation. Reinhlod, New YorkGoogle Scholar
  3. 3.
    Buysman E (2009) Anaerobic digestion for developing countries with cold climates—utilizing solar heat to address technical challenges and facilitating dissemination through the use of carbon finance. Master Thesis, University of Wageningen, WageningenGoogle Scholar
  4. 4.
    Daxiong Q, Shuhua G, Baofen L, Gehua W (1990) Diffusion and innovation in the Chinese biogas program. World Dev 18(4):555–563CrossRefGoogle Scholar
  5. 5.
    Pathak H, Jain N, Bhatia A, Mohanty S, Gupta N (2009) Global warming mitigation potential of biogas plants in India. Environ Monit Assess 157(1):407–418CrossRefGoogle Scholar
  6. 6.
    Energy Statistics Database (2009) United Nations Statistics Division.—EDATA. Accessed 10 July 2010Google Scholar
  7. 7.
    Gunaseelan NV (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1–2):83–114. doi: 10.1016/s0961-9534(97)00020-2 CrossRefGoogle Scholar
  8. 8.
    USDOE (2010) National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, Washington, DCGoogle Scholar
  9. 9.
    Wassink EC (1959) Efficiency of light energy conversion in plant growth. Plant Physiol 34(3):356–361CrossRefGoogle Scholar
  10. 10.
    Klass DL (2004) Biomass for renewable energy and fuels, vol 1, Encyclopedia of energy. Elsevier, OxfordGoogle Scholar
  11. 11.
    Laws EA, Taguchi S, Hirata J, Pang L (1986) High algal production rates achieved in a shallow outdoor flume. Biotechnol Bioeng 28(2):191–197. doi: 10.1002/bit.260280207 CrossRefGoogle Scholar
  12. 12.
    Laws EA, Taguchi S, Hirata J, Pang L (1988) Optimization of microalgal production in a shallow outdoor flume. Biotechnol Bioeng 32(2):140–147. doi: 10.1002/bit.260320204 CrossRefGoogle Scholar
  13. 13.
    Chapin FS, Schulze E, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21(1):423–447. doi: 10.1146/ CrossRefGoogle Scholar
  14. 14.
    White LM (1973) Carbohydrate reserves of grasses: a review. J Range Manage 26(1):13–18CrossRefGoogle Scholar
  15. 15.
    Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234. doi: 10.1146/annurev-arplant-042809-112301 CrossRefGoogle Scholar
  16. 16.
    Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11(3):308–313. doi:S1369-5266(08)00041-1[pii]10.1016/j.pbi.2008.03.001CrossRefGoogle Scholar
  17. 17.
    Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211. doi:306/5705/2206[pii]10.1126/science.1102765CrossRefGoogle Scholar
  18. 18.
    Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366. doi: 10.1007/s10295-007-0291-8 CrossRefGoogle Scholar
  19. 19.
    Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455. doi:pp. 110.156646[pii]10.1104/pp.110.156646CrossRefGoogle Scholar
  20. 20.
    Kim Y, Hendrickson R, Mosier NS, Ladisch MR (2009) Liquid hot water pretreatment of cellulosic biomass. Methods Mol Biol 581:93–102. doi: 10.1007/978-1-60761-214-8_7 CrossRefGoogle Scholar
  21. 21.
    Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. doi:S0960-8524(08)00457-4[pii]CrossRefGoogle Scholar
  22. 22.
    Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Methods Mol Biol 581:61–77. doi: 10.1007/978-1-60761-214-8_5 CrossRefGoogle Scholar
  23. 23.
    Dawes C (1986) Seasonal proximate constituents and caloric values in seagrasses and algae on the west coast of Florida. J Coast Res 2(1):25–32Google Scholar
  24. 24.
    Dawes CJ, Bird K, Durako M, Goddard R, Hoffman W, McIntosh R (1979) Chemical fluctuations due to seasonal and cropping effects on an algal-seagrass community. Aquat Bot 6:79–86CrossRefGoogle Scholar
  25. 25.
    Dawes CJ, Guiry MD (1992) Proximate constituents in the sea-grasses Zostera marina and Z. noltii in Ireland: seasonal changes and the effect of blade removal. Mar Ecol 13(4):307–315. doi: 10.1111/j.1439-0485.1992.tb00357.x CrossRefGoogle Scholar
  26. 26.
    Dawes CJ, Orduña-rojas J, Robledo D (1998) Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J Appl Phycol 10(5):419–425. doi: 10.1023/a:1008021613399 CrossRefGoogle Scholar
  27. 27.
    Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97(18):2402–2406CrossRefGoogle Scholar
  28. 28.
    Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274. doi: 10.1146/annurev.mi.31.100177.001301 CrossRefGoogle Scholar
  29. 29.
    Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154(3):157–164CrossRefGoogle Scholar
  30. 30.
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411(6840):909–917. doi: 10.1038/35082000 CrossRefGoogle Scholar
  31. 31.
    Wolk CP (1973) Physiology and cytological chemistry blue-green algae. Bacteriol Rev 37(1):32–101Google Scholar
  32. 32.
    Cameron RE (1963) Morphology of representative blue-green algae. Ann N Y Acad Sci 108(2):412–420. doi: 10.1111/j.1749-6632.1963.tb13395.x CrossRefGoogle Scholar
  33. 33.
    Whitton B, Potts M (2002) Introduction to the cyanobacteria. In: Whitton B, Potts M (eds) The ecology of cyanobacteria. Springer, The Netherlands, pp 1–11. doi: 10.1007/0-306-46855-7_1 CrossRefGoogle Scholar
  34. 34.
    Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12CrossRefGoogle Scholar
  35. 35.
    Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89(1):11Google Scholar
  36. 36.
    Kraft GT, Woelkerling WJ (1990) Rhodophyta. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman, Melbourne, pp 41–85Google Scholar
  37. 37.
    Lee RE (2008) Phycology, 4th edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. 38.
    Bold HC, Wynne MJ (1978) Introduction to the algae: structure and reproduction. Prentice-Hall biological sciences series. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  39. 39.
    South GR, Whittick A (1987) Introduction to phycology. Blackwell Scientific, OxfordGoogle Scholar
  40. 40.
    Mumford TFJ, Miura A (1988) Porphyra as food: cultivation and economics. In: Waaland JR, Lembi CA (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 87–119Google Scholar
  41. 41.
    Armisén R (1991) Agar and agarose biotechnological applications. Hydrobiologia 221(1):157–166. doi: 10.1007/bf00028372 CrossRefGoogle Scholar
  42. 42.
    Renn DW (1984) Agar and agarose: indispensable partners in biotechnology. Ind Eng Chem Prod Res Dev 23(1):17–21. doi: 10.1021/i300013a004 CrossRefGoogle Scholar
  43. 43.
    Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. In: Steve LT (ed) Advances in food and nutrition research, vol 52. Academic, New York, pp 237–292Google Scholar
  44. 44.
    Rowan S (1989) Photosynthetic pigments of algae. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Smith GM (1955) Cryptogamic botany, vol 1. McGraw-Hill publications in the botanical sciences, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  46. 46.
    Sharma O (1986) Textbook of algae. Tata McGraw-Hill, DelhiGoogle Scholar
  47. 47.
    Round FE (1973) The biology of the algae, 2nd edn. St. Martin’s Press, New YorkGoogle Scholar
  48. 48.
    Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8–9):825–834CrossRefGoogle Scholar
  49. 49.
    Vandermeulen H, Gordin H (1990) Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J Appl Phycol 2(4):363–374. doi: 10.1007/bf02180927 CrossRefGoogle Scholar
  50. 50.
    Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. Prog Phycol Res 4:309–347Google Scholar
  51. 51.
    Cavalier-Smith T, Chao EE, Allsopp MTEP (1995) Ribosomal RNA evidence for chloroplast loss within heterokonta: pedinellid relationships and a revised classification of Ochristan algae. Paper presented at the International Society for Evolutionary Protistology ISEP. Biennial meeting No 10, HalifaxGoogle Scholar
  52. 52.
    Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91(10):1508–1522. doi: 10.3732/ajb.91.10.1508 CrossRefGoogle Scholar
  53. 53.
    Borowitzka M (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9(5):393–401. doi: 10.1023/a:1007921728300 CrossRefGoogle Scholar
  54. 54.
    Bozarth A, Maier U-G, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82(2):195–201. doi: 10.1007/s00253-008-1804-8 CrossRefGoogle Scholar
  55. 55.
    Lebeau T, Robert JM (2003) Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl Microbiol Biotechnol 60(6):624–632. doi: 10.1007/s00253-002-1177-3 Google Scholar
  56. 56.
    Hsiao TY, Blanch HW (2006) Physiological studies of eicosapentaenoic acid production in the marine microalga Glossomastix chrysoplasta. Biotechnol Bioeng 93(3):465–475. doi: 10.1002/bit.20761 CrossRefGoogle Scholar
  57. 57.
    Gacesa P (1988) Alginates. Carbohydr Polym 8(3):161–182CrossRefGoogle Scholar
  58. 58.
    Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF (1993) A revised structure for may explain some of its biological activities. J Biol Chem 268(29):21770–21776Google Scholar
  59. 59.
    Bilan MI, Grachev AA, Shashkov AS, Nifantiev NE, Usov AI (2006) Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr Res 341(2):238–245CrossRefGoogle Scholar
  60. 60.
    Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167Google Scholar
  61. 61.
    Ghosh S, Conrad JR, Klass DL (1975) Anaerobic acidogenesis of wastewater sludge. J Water Pollut Control Fed 47(1):30–45Google Scholar
  62. 62.
    Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064CrossRefGoogle Scholar
  63. 63.
    Lettinga G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19(9):363–370. doi: 10.1016/s0167-7799(01)01701-2 CrossRefGoogle Scholar
  64. 64.
    Wiegel J (1990) Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Lett 75(2–3):155–169. doi: 10.1016/0378-1097(90)90529-y Google Scholar
  65. 65.
    Speece RE (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17(9):416A–427A. doi: 10.1021/es00115a001 Google Scholar
  66. 66.
    El-Mashad HM, Zeeman G, van Loon WK, Bot GP, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol 95(2):191–201. doi:10.1016/j.biortech.2003.07.013S0960852404000574[pii]CrossRefGoogle Scholar
  67. 67.
    M-c Wu, K-w S, Zhang Y (2006) Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste. J Zhejiang Univ Sci B 7(3):180–185. doi: 10.1631/jzus.2006.B0180 CrossRefGoogle Scholar
  68. 68.
    Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Wiley-Blackwell, AmesCrossRefGoogle Scholar
  69. 69.
    Hansen K (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12. doi: 10.1016/s0043-1354(97)00201-7 CrossRefGoogle Scholar
  70. 70.
    Tchobanoglous G, Burton LF, Stensel HD (2003) Wastewater engineering: treatment disposal reuse. McGraw-Hill series in water resources and environmental engineering, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  71. 71.
    Eder B, Heinz S (2006) Biogas Praxis: Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit. Ökobuch Verlag u. Versand, StaufenGoogle Scholar
  72. 72.
    Chynoweth DP, Srivastava VJ, Conrad JR (1980) Research study to determine the feasibility of producing methane gas from kelp. Annual report. Institute of Gas Technology, ChicagoGoogle Scholar
  73. 73.
    Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S (2001) Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng 91(6):590–595. doi:S1389-1723(01)80179-1[pii]Google Scholar
  74. 74.
    Noyola A, Antonio TA (2005) Anaerobic thermophilic digestion of sludge from enhanced primary treatment of municipal wastewater. In: Proceedings of the Water Environment Federation, Washington, D.C., pp 8031–8042. doi: 10.2175/193864705783813601
  75. 75.
    Fermoso FG, Bartacek J, Jansen S, Lens PNL (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667. doi: 10.1016/j.scitotenv.2008.10.043 CrossRefGoogle Scholar
  76. 76.
    Gerardi MH (2003) The microbiology of anaerobic digesters. Wastewater microbiology series. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  77. 77.
    Schramm W, Lehnberg W (1984) Mass culture of brackish-water-adapted seaweeds in sewage-enriched seawater. II: fermentation for biogas production. Hydrobiologia 116–117(1):282–287. doi: 10.1007/bf00027685 CrossRefGoogle Scholar
  78. 78.
    de Baere LA, Devocht M, Van Assche P, Verstraete W (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18(5):543–548CrossRefGoogle Scholar
  79. 79.
    Chynoweth DP, Fannin KF, Srivastava VJ (1987) Biological gasification of marine algae. Seaweed cultivation for renewable resources. Elsevier, AmsterdamGoogle Scholar
  80. 80.
    Braun R, Huber P, Meyrath J (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechnol Lett 3(4). doi: 10.1007/bf00239655
  81. 81.
    Koster I, Rinzema A, Devegt A, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res 20(12):1561–1567. doi: 10.1016/0043-1354(86)90121-1 CrossRefGoogle Scholar
  82. 82.
    O’Flaherty V, Lens P, Leahy B, Colleran E (1998) Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res 32(3):815–825. doi: 10.1016/s0043-1354(97)00270-4 CrossRefGoogle Scholar
  83. 83.
    McCartney D, Oleszkiewicz J (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res 25(2):203–209. doi: 10.1016/0043-1354(91)90030-t CrossRefGoogle Scholar
  84. 84.
    Harada H, Uemura S, Momonoi K (1994) Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res 28(2):355–367. doi: 10.1016/0043-1354(94)90273-9 CrossRefGoogle Scholar
  85. 85.
    Conn EE (1987) Outlines of biochemistry, 5th edn. Wiley, New YorkGoogle Scholar
  86. 86.
    Vogels GD, Kejtjens JT, van der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, p 872Google Scholar
  87. 87.
    Gallert C, Bauer S, Winter J (1998) Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl Microbiol Biotechnol 50(4):495–501CrossRefGoogle Scholar
  88. 88.
    Sprott G, Patel G (1986) Ammonia toxicity in pure cultures of methanogenic bacteria. Syst Appl Microbiol 7(2–3):358–363CrossRefGoogle Scholar
  89. 89.
    Koster IW, Lettinga G (1984) The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agric Wastes 9(3):205–216. doi: 10.1016/0141-4607(84)90080-5 CrossRefGoogle Scholar
  90. 90.
    McCarty PL, McKinney RE (1961) Salt toxicity in anaerobic digestion. J Water Pollut Control Fed 33(4):399–415Google Scholar
  91. 91.
    Hendriksen HV, Ahring BK (1991) Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microbiol Lett 85(3):241–245CrossRefGoogle Scholar
  92. 92.
    Hobson PN, Shaw BG (1976) Inhibition of methane production by Methanobacterium formicicum. Water Res 10(10):849–852. doi: 10.1016/0043-1354(76)90018-x CrossRefGoogle Scholar
  93. 93.
    Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17(4):241–261CrossRefGoogle Scholar
  94. 94.
    Van Velsen AFM (1979) Adaptation of methanogenic sludge to high ammonia-nitrogen concentrations. Water Res 13(10):995–999CrossRefGoogle Scholar
  95. 95.
    Zhou H-B, Qiu G-Z (2006) Inhibitory effect of ammonia nitrogen on specific methanogenic activity of anaerobic granular sludge. J Cent South Univ Technol 13(1):63–67. doi: 10.1007/s11771-006-0108-3 CrossRefGoogle Scholar
  96. 96.
    Borja R, Sanchez E, Weiland P (1996) Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors. Process Biochem 31(5):477–483CrossRefGoogle Scholar
  97. 97.
    Wiegant W (1986) The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes. Agric Wastes 16(4):243–253. doi: 10.1016/0141-4607(86)90056-9 CrossRefGoogle Scholar
  98. 98.
    Rasi S, Lehtinen J, Rintala J (2010) Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renew Energy 35(12):2666–2673. doi: 10.1016/j.renene.2010.04.012 CrossRefGoogle Scholar
  99. 99.
    Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32(8):1375–1380. doi: 10.1016/ CrossRefGoogle Scholar
  100. 100.
    Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the Fresh Kills Municipal solid-waste landfill. Environ Sci Technol 32(15):2233–2237. doi: 10.1021/es980004s CrossRefGoogle Scholar
  101. 101.
    Reinhart DR (1993) A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a U.S. experience. Waste Manag Res 11(3):257–268. doi: 10.1177/0734242x9301100307 Google Scholar
  102. 102.
    Holm-Nielsen JB, Al Seadi T (2004) Manure-based biogas systems—Danish experience. In: Piet L, Hamelers B, Hoitink H, Bidlingmaier W (eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, pp 377–394Google Scholar
  103. 103.
    Tower P (2003) New technology for removal of siloxanes in digester gas results in lower maintenance costs and air quality benefits in power generation equipment. In: Proceedings of the Water Environment Federation, Los Angeles, CA, pp 440–447. doi: 10.2175/193864703784639859
  104. 104.
    Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Bioref 3(1):42–71. doi: 10.1002/bbb.117 CrossRefGoogle Scholar
  105. 105.
    Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535. doi: 10.1016/ Google Scholar
  106. 106.
    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci (China) 20(1):14–27CrossRefGoogle Scholar
  107. 107.
    Horikawa MS, Rossi F, Gimenes ML, Costa CMM, da Silva MGC (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21:415–422CrossRefGoogle Scholar
  108. 108.
    Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171. doi: 10.1016/j.renene.2009.02.023 CrossRefGoogle Scholar
  109. 109.
    Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7(4):219–227Google Scholar
  110. 110.
    Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of Algae. Appl Microbiol 5(1):47–55Google Scholar
  111. 111.
    Chynoweth D (1979) Anaerobic digestion of marine biomass. Paper presented at the biogas and alcohol production conference, ChicagoGoogle Scholar
  112. 112.
    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. doi: 10.1021/ie50507a033 CrossRefGoogle Scholar
  113. 113.
    Doi RH (2008) Cellulases of mesophilic microorganisms. Ann N Y Acad Sci 1125(1):267–279. doi: 10.1196/annals.1419.002 CrossRefGoogle Scholar
  114. 114.
    Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5):634–649. doi: 10.1007/s002530100710 CrossRefGoogle Scholar
  115. 115.
    Rees DA (1970) Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. In: Melville L, Wolfrom RST, Derek H (eds) Advances in carbohydrate chemistry and biochemistry, vol 24. Academic, New York, pp 267–332Google Scholar
  116. 116.
    Craigie JS, Correa JA, Gordon ME (1992) Cuticles from Chondrus crispus (Rhodophyta) I. J Phycol 28(6):777–786. doi: 10.1111/j.0022-3646.1992.00777.x CrossRefGoogle Scholar
  117. 117.
    Michel G, Helbert W, Kahn R, Dideberg O, Kloareg B (2003) The structural bases of the processive degradation of [iota]-carrageenan, a main cell wall polysaccharide of red algae. J Mol Biol 334(3):421–433CrossRefGoogle Scholar
  118. 118.
    Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71(1):23–33. doi: 10.1007/s00253-006-0377-7 CrossRefGoogle Scholar
  119. 119.
    Bird KT, Hanisak MD, Ryther JH (1981) Changes in agar and other chemical constituents of the seaweed Gracilaria tikvahiae when used as a substrate in methane digesters. Resour Conserv 6(3–4):321–327CrossRefGoogle Scholar
  120. 120.
    King GM, Guist GG, Lauterbach GE (1985) Anaerobic degradation of Carrageenan from the red macroalga Eucheuma cottonii. Appl Environ Microbiol 49(3):588–592Google Scholar
  121. 121.
    Bird K, Chynoweth D, Jerger D (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2(3):207–213. doi: 10.1007/bf02179777 CrossRefGoogle Scholar
  122. 122.
    Habig C, DeBusk TA, Ryther JH (1984) The effect of nitrogen content on methane production by the marine algae Gracilaria tikvahiae and Ulva sp. Biomass 4(4):239–251CrossRefGoogle Scholar
  123. 123.
    Biswas R (2009) Biomethanation of red algae from the eutrophied Baltic Sea. Master Thesis, Linköping University, LinköpingGoogle Scholar
  124. 124.
    Habig C, Ryther JH (1983) Methane production from the anaerobic digestion of some marine macrophytes. Resour Conserv 8(3):271–279CrossRefGoogle Scholar
  125. 125.
    Guiry MD, Guiry GM (2010) AlgaeBase. World-wide electronic publication. National University of Ireland. Accessed 7 Oct 2010
  126. 126.
    Morand P, Charlier RH, Mazé J (1990) European bioconversion projects and realizations for macroalgal biomass: Saint-Cast-Le-Guildo (France) experiment. Hydrobiologia 204–205(1):301–308. doi: 10.1007/bf00040249 CrossRefGoogle Scholar
  127. 127.
    Charlier R, Morand P, Finkl C, Thys A (2007) Green tides on the Brittany coasts. Environ Res Eng Manag 3(41):52–59Google Scholar
  128. 128.
    Charlier RH, Morand P, Finkl CW (2008) How Brittany and Florida coasts cope with green tides. Int J Environ Stud 65(2):191–208CrossRefGoogle Scholar
  129. 129.
    Briand X, Morand P (1997) Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. J Appl Phycol 9(6):511–524. doi: 10.1023/a:1007972026328 Google Scholar
  130. 130.
    Lahaye M, Kaeffer B (1997) Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology. Sci Aliments 17(6):563–584Google Scholar
  131. 131.
    Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6):1765–1774. doi: 10.1021/bm061185q CrossRefGoogle Scholar
  132. 132.
    Durand M, Beaumatin P, Bulman B, Bemalier A, Grivet J, Serezat M, Gramet G, Lahaye M (1997) Fermentation of green alga sea-lettuce (Ulva sp.) and metabolism of its sulphate by human colonic microbiota in a semi-continuous culture system. Reprod Nutr Dev 37(3):267–283CrossRefGoogle Scholar
  133. 133.
    Bobin-Dubigeon C, Lahaye M, Barry JL (1997) Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp.). J Sci Food Agric 73(2):149–159. doi:10.1002/(sici)1097-0010(199702)73:2<149::aid-jsfa685>;2-lCrossRefGoogle Scholar
  134. 134.
    Hansson G (1983) Methane production from marine, green macro-algae. Resour Conserv 8(3):185–194CrossRefGoogle Scholar
  135. 135.
    Fauchille S (1984) Digestion anaérobie de végétaux aquatiques. Institut Polytechnique de Lorraine, NancyGoogle Scholar
  136. 136.
    Carpentier B, Festino C, Aubart C (1988) Anaerobic digestion of flotation sludges from the alginic acid extraction process. Biol Wastes 23(4):269–278CrossRefGoogle Scholar
  137. 137.
    Rigoni-Stern S, Rismondo R, Szpyrkowicz L, Zilio-Grandi F, Vigato PA (1990) Anaerobic digestion of nitrophilic algal biomass from the Venice lagoon. Biomass 23(3):179–199CrossRefGoogle Scholar
  138. 138.
    Medcalf DG, Lionel T, Brannon JH, Scott JR (1975) Seasonal variation in the mucilaginous polysaccharides from Ulva lactuca. Bot Mar 18(2):67–70. doi: 10.1515/botm.1975.18.2.67 CrossRefGoogle Scholar
  139. 139.
    Dills SS, Apperson A, Schmidt MR, Saier MH Jr (1980) Carbohydrate transport in bacteria. Microbiol Rev 44(3):385–418Google Scholar
  140. 140.
    Forro J (1987) Microbial degradation of marine biomass. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources, vol 305–325. Elsevier, AmsterdamGoogle Scholar
  141. 141.
    Deville C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87(9):1717–1725. doi: 10.1002/jsfa.2901 CrossRefGoogle Scholar
  142. 142.
    Iwamoto Y, Araki R, Iriyama K, Oda T, Fukuda H, Hayashida S, Muramatsu T (2001) Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Biosci Biotechnol Biochem 65(1):133–142CrossRefGoogle Scholar
  143. 143.
    Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340. doi:10.1146/annurev.micro.54.1.28954/1/289[pii]CrossRefGoogle Scholar
  144. 144.
    Moen E, Ostgaard K (1997) Aerobic digestion of Ca-alginate gels studied as a model system of seaweed tissue degradation. J Appl Phycol 9(3):261–267. doi: 10.1023/a:1007953725317 CrossRefGoogle Scholar
  145. 145.
    Boyd J, Turvey JR (1978) Structural studies of alginic acid, using a bacterial poly-[alpha]-L-guluronate lyase. Carbohydr Res 66(1):187–194CrossRefGoogle Scholar
  146. 146.
    Preiss J, Ashwell G (1962) Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-L-erythro-5-hexoseulose uronic acid. J Biol Chem 237:309–316Google Scholar
  147. 147.
    Preiss J, Ashwell G (1962) Alginic acid metabolism in bacteria. II. The enzymatic reduction of 4-deoxy-L-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-D-gluconic acid. J Biol Chem 237:317–321Google Scholar
  148. 148.
    Sakai T, Ishizuka K, Kato I (2003) Isolation and characterization of a fucoidan-degrading marine bacterium. Marine Biotechnol 5(5):409–416. doi: 10.1007/s10126-002-0118-6 CrossRefGoogle Scholar
  149. 149.
    Kerner KN, Hanssen JF, Pedersen TA (1991) Anaerobic digestion of waste sludges from the alginate extraction process. Bioresour Technol 37(1):17–24CrossRefGoogle Scholar
  150. 150.
    Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315Google Scholar
  151. 151.
    Michel C, Lahaye M, Bonnet C, Mabeau S, Barry J-L (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 75(02):263–280. doi: 10.1017/BJN19960129 CrossRefGoogle Scholar
  152. 152.
    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883CrossRefGoogle Scholar
  153. 153.
    Fannin KF, Srivastava VJ, Chynoweth DP, Bird KT (1983) Effects of the interaction between composition and reactor design on anaerobic digester performance. Paper presented at the energy from biomass and wastes VII, ChicagoGoogle Scholar
  154. 154.
    Østgaard K, Indergaard M, Markussen S, Knutsen S, Jensen A (1993) Carbohydrate degradation and methane production during fermentation Laminaria saccharina (Laminariales, Phaeophyceae). J Appl Phycol 5(3):333–342. doi: 10.1007/bf02186236 CrossRefGoogle Scholar
  155. 155.
    Rui X, Pay E, Tianrong G, Fang Y, Wudi Z (2009) The potential of blue-green algae for producing methane in biogas fermentation. In: Goswami DY, Zhao Y (eds) Proceedings of ISES world congress 2007, vol I–V. Springer, Berlin, pp 2426–2429. doi: 10.1007/978-3-540-75997-3_491 Google Scholar
  156. 156.
    Chen PH (1987) Factors influencing methane fermentation of micro-algae. California University, BerkeleyGoogle Scholar
  157. 157.
    Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56CrossRefGoogle Scholar
  158. 158.
    Varel VH, Chen TH, Hashimoto AG (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycling 1(1):19–26CrossRefGoogle Scholar
  159. 159.
    Samson R, Leduy A (1982) Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 24(8):1919–1924. doi: 10.1002/bit.260240822 CrossRefGoogle Scholar
  160. 160.
    Samson R, Leduyt A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28(7):1014–1023. doi: 10.1002/bit.260280712 CrossRefGoogle Scholar
  161. 161.
    Gelin F, Boogers I, Noordeloos AAM, Damste JSS, Riegman R, De Leeuw JW (1997) Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications. Org Geochem 26(11–12):659–675. doi: 10.1016/s0146-6380(97)00035-1 CrossRefGoogle Scholar
  162. 162.
    Gelin F, Volkman JK, Largeau C, Derenne S, Sinninghe DamstÈ JS, De Leeuw JW (1999) Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Org Geochem 30(2–3):147–159. doi: 10.1016/s0146-6380(98)00206-x CrossRefGoogle Scholar
  163. 163.
    Atkinson AW, Gunning BES, John PCL (1972) Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107(1):1–32. doi: 10.1007/bf00398011 CrossRefGoogle Scholar
  164. 164.
    Burczyk J, Dworzanski J (1988) Comparison of sporopollenin-like algal resistant polymer from cell wall of Botryococcus, Scenedesmus and Lycopodium clavatum by GC-pyrolysis. Phytochemistry 27(7):2151–2153CrossRefGoogle Scholar
  165. 165.
    Good BH, Chapman RL (1978) The ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in the cell walls. Am J Bot 65(1):27–33CrossRefGoogle Scholar
  166. 166.
    Heslop-Harrison J (1971) Sporopollenin in the biological context. In: Brook J, Grant PR, Muir RD (eds) Sporopollenin. Academic, New York, pp 1–30Google Scholar
  167. 167.
    Takeda H (1988) Classification of Chlorella strains by cell wall sugar composition. Phytochemistry 27(12):3823–3826CrossRefGoogle Scholar
  168. 168.
    Takeda H (1991) Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J Phycol 27(2):224–232. doi: 10.1111/j.0022-3646.1991.00224.x CrossRefGoogle Scholar
  169. 169.
    Takeda H (1996) Cell wall sugars of some Scenedesmus species. Phytochemistry 42(3):673–675CrossRefGoogle Scholar
  170. 170.
    Goodenough UW, Heuser JE (1985) The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol 101(4):1550–1568CrossRefGoogle Scholar
  171. 171.
    Goodenough UW, Gebhart B, Mecham RP, Heuser JE (1986) Crystals of the Chlamydomonas reinhardtii cell wall: polymerization, depolymerization, and purification of glycoprotein monomers. J Cell Biol 103(2):405–417. doi: 10.1083/jcb.103.2.405 CrossRefGoogle Scholar
  172. 172.
    Imam SH, Buchanan MJ, Shin HC, Snell WJ (1985) The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol 101(4):1599–1607CrossRefGoogle Scholar
  173. 173.
    Chynoweth DP (2002) Review of biomethane from marine biomass. History, results and conclusions of the “US Marine Biomass Energy Program” (1968–1990) Gainsville: Department of Agricultural and Biological Engineering, University of Florida, pp 194Google Scholar
  174. 174.
    Santelices B (1999) A conceptual framework for marine agronomy. Hydrobiologia 398–399:15–23. doi: 10.1023/a:1017053413126 CrossRefGoogle Scholar
  175. 175.
    Briand X (1991) Seaweed harvesting in Europe. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 259–308Google Scholar
  176. 176.
    Kain JM (1991) Cultivation of attached seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 309–377Google Scholar
  177. 177.
    Schramm W (1991) Seaweeds for wastewater treatment and recycling of nutrients. In: Guiri MD, Bland G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 149–168Google Scholar
  178. 178.
    Titlyanov E, Titlyanova T (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36(4):227–242. doi: 10.1134/s1063074010040012 CrossRefGoogle Scholar
  179. 179.
    Gellenbeck KW, Chapman DJ (1983) Seaweed uses: the outlook for mariculture. Endeavour 7(1):31–37CrossRefGoogle Scholar
  180. 180.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. In: Osinga R, Tramper J, Burgess JG, Wijffels RH (eds) Progress in industrial microbiology, vol 35. Elsevier, Amsterdam, pp 313–321Google Scholar
  181. 181.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321CrossRefGoogle Scholar
  182. 182.
    Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506. doi: 10.1021/bp060065r Google Scholar
  183. 183.
    Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604. doi: 10.1007/bf02184638 CrossRefGoogle Scholar
  184. 184.
    Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315. doi: 10.1023/a:1017560006941 CrossRefGoogle Scholar
  185. 185.
    Brennan L, Owende P (2010) Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577CrossRefGoogle Scholar
  186. 186.
    Day JG, Benson EE, Roland AF (1999) In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In Vitro Cell Dev Biol Plant 35(2):127–136CrossRefGoogle Scholar
  187. 187.
    Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15(4):233–247CrossRefGoogle Scholar
  188. 188.
    Wagener K (1983) Mass cultures of marine algae for energy farming in coastal deserts. Int J Biometeorol 27(3):227–233. doi: 10.1007/bf02184238 CrossRefGoogle Scholar
  189. 189.
    Carrere H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183(1–3):1–15CrossRefGoogle Scholar
  190. 190.
    Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41(19):4273–4286CrossRefGoogle Scholar
  191. 191.
    González-Fernández C, León-Cofreces C, García-Encina PA (2008) Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresour Technol 99(18):8710–8714CrossRefGoogle Scholar
  192. 192.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. doi: 10.1021/ie801542g CrossRefGoogle Scholar
  193. 193.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651. doi: 10.3390/ijms9091621 CrossRefGoogle Scholar
  194. 194.
    Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci Technol 36(11):137–143CrossRefGoogle Scholar
  195. 195.
    Barjenbruch M, Kopplow O (2003) Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Adv Environ Res 7(3):715–720CrossRefGoogle Scholar
  196. 196.
    Bougrier C, Albasi C, Delgenes JP, Carrere H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process 45(8):711–718CrossRefGoogle Scholar
  197. 197.
    Bougrier C, CarrËre H, DelgenËs JP (2005) Solubilisation of waste-activated sludge by ultrasonic treatment. Chem Eng J 106(2):163–169CrossRefGoogle Scholar
  198. 198.
    Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717CrossRefGoogle Scholar
  199. 199.
    Climent M, Ferrer I, Del Mar Baeza M, Artola A, Vázquez F, Font X (2007) Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem Eng J 133(1–3):335–342CrossRefGoogle Scholar
  200. 200.
    Hwang K-Y, Shin E-B, Choi H-B (1997) A mechanical pretreatment of waste activated sludge for improvement of anaerobic digestion system. Water Sci Technol 36(12):111–116CrossRefGoogle Scholar
  201. 201.
    Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275Google Scholar
  202. 202.
    Kopp J, Müller J, Dichtl N, Schwedes J (1997) Anaerobic digestion and dewatering characteristics of mechanically disintegrated excess sludge. Water Sci Technol 36(11):129–136CrossRefGoogle Scholar
  203. 203.
    Lehne G, Muller A, Schwedes J (2001) Mechanical disintegration of sewage sludge. Water Sci Technol 43(1):19–26Google Scholar
  204. 204.
    Nah IW, Kang YW, Hwang K-Y, Song W-K (2000) Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res 34(8):2362–2368CrossRefGoogle Scholar
  205. 205.
    Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18CrossRefGoogle Scholar
  206. 206.
    Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98(1–3):51–67CrossRefGoogle Scholar
  207. 207.
    Stuckey DC, McCarty PL (1984) The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res 18(11):1343–1353CrossRefGoogle Scholar
  208. 208.
    Valo A, Carrère H, Delgenès JP (2004) Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J Chem Technol Biotechnol 79(11):1197–1203. doi: 10.1002/jctb.1106 CrossRefGoogle Scholar
  209. 209.
    Wilson CA, Novak JT (2009) Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res 43(18):4489–4498CrossRefGoogle Scholar
  210. 210.
    Goel R, Tokutomi T, Yasui H (2003) Anaerobic digestion of excess activated sludge with ozone pretreatment, vol 47. IWA, LondonGoogle Scholar
  211. 211.
    Rivero JAC, Madhavan N, Suidan MT, Ginestet P, Audic J-M (2006) Enhancement of anaerobic digestion of excess municipal sludge with thermal and/or oxidative treatment. J Environ Eng 132(6):638–644CrossRefGoogle Scholar
  212. 212.
    Weemaes M, Grootaerd H, Simoens F, Verstraete W (2000) Anaerobic digestion of ozonized biosolids. Water Res 34(8):2330–2336CrossRefGoogle Scholar
  213. 213.
    Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100(21):5140–5145CrossRefGoogle Scholar
  214. 214.
    Ge H, Jensen PD, Batstone DJ (2010) Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Water Res 44(1):123–130CrossRefGoogle Scholar
  215. 215.
    Lv W, Schanbacher FL, Yu Z (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101(24):9409–9414CrossRefGoogle Scholar
  216. 216.
    Erden G, Filibeli A (2010) Improving anaerobic biodegradability of biological sludges by Fenton pre-treatment: effects on single stage and two-stage anaerobic digestion. Desalination 251(1–3):58–63CrossRefGoogle Scholar
  217. 217.
    Khoufi S, Aloui F, Sayadi S (2006) Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res 40(10):2007–2016CrossRefGoogle Scholar
  218. 218.
    Eskicioglu C, Droste RL, Kennedy KJ (2007) Performance of anaerobic waste activated sludge digesters after microwave pretreatment. Water Environ Res 79(11):2265–2273CrossRefGoogle Scholar
  219. 219.
    Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007) Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41(11):2457–2466CrossRefGoogle Scholar
  220. 220.
    Kumakura M, Kojima T, Kaetsu I (1982) Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing. Biomass 2(4):299–308CrossRefGoogle Scholar
  221. 221.
    Lafitte-Trouque S, Forster CF (2002) The use of ultrasound and gamma-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures. Bioresour Technol 84(2):113–118CrossRefGoogle Scholar
  222. 222.
    Park B, Ahn JH, Kim J, Hwang S (2004) Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Sci Technol 50(9):17–23Google Scholar
  223. 223.
    Fox M, Noike T (2004) Wet oxidation pretreatment for the increase in anaerobic biodegradability of newspaper waste. Bioresour Technol 91(3):273–281CrossRefGoogle Scholar
  224. 224.
    Kim D-H, Jeong E, Oh S-E, Shin H-S (2010) Combined (alkaline  +  ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res 44(10):3093–3100CrossRefGoogle Scholar
  225. 225.
    Penaud V, DelgenËs JP, Moletta R (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb Technol 25(3–5):258–263CrossRefGoogle Scholar
  226. 226.
    Tanaka S, Kobayashi T, Kamiyama K-I, Lolita M, Signey Bildan N (1997) Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol 35(8):209–215CrossRefGoogle Scholar
  227. 227.
    Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53(3I):352–366Google Scholar
  228. 228.
    Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5):411–490CrossRefGoogle Scholar
  229. 229.
    Delgenes JP, Penaud V, Moletta R (2003) Pretreatments for the enhancement of anaerobic digestion of solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, London, pp 201–228Google Scholar
  230. 230.
    Hartmann H, Angelidaki I, Ahring BK (1999) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. In: Mata-Alvarez J (ed) Second international symposium on anaerobic digestion of solid wastes, Barcelona, pp 129–136Google Scholar
  231. 231.
    Wett B, Phothilangka P, Eladawy A (2010) Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag 30(6):1057–1062CrossRefGoogle Scholar
  232. 232.
    Gonze E, Pillot S, Valette E, Gonthier Y, Bernis A (2003) Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chem Eng Process 42(12):965–975CrossRefGoogle Scholar
  233. 233.
    Samson R, Leduy A (1983) Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Lett 5(10):671–676. doi: 10.1007/bf01386360 CrossRefGoogle Scholar
  234. 234.
    Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23(7):1591–1610. doi: 10.1002/bit.260230717 CrossRefGoogle Scholar
  235. 235.
    Li YY, Noike T (1992) Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci Technol 26(3–4):857–866Google Scholar
  236. 236.
    Stuckey DC, McCarty PL (1978) Thermochemical pretreatment of nitrogenous materials to increase methane yield. In: Biotechnology and bioengineering symposium. Stanford University, California, pp 219–233Google Scholar
  237. 237.
    De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304. doi: 10.1002/bit.22257 CrossRefGoogle Scholar
  238. 238.
    Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24(8):889–897CrossRefGoogle Scholar
  239. 239.
    Hanssen JF, Indergaard M, Ostgaard K, Baevre OA, Pedersen TA, Jensen A (1987) Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products. Biomass 14(1):1–13CrossRefGoogle Scholar
  240. 240.
    Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  241. 241.
    Lopez Torres M, MdC EL (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 28(11):2229–2234CrossRefGoogle Scholar
  242. 242.
    Hon D, Shiraishi N (2000) Wood and cellulosic chemistry, 2nd edn. CRC, New YorkGoogle Scholar
  243. 243.
    Andreozzi R, Longo G, Majone M, Modesti G (1998) Integrated treatment of olive oil mill effluents (OME): study of ozonation coupled with anaerobic digestion. Water Res 32(8):2357–2364CrossRefGoogle Scholar
  244. 244.
    Masse L, MassÈ DI, Kennedy KJ (2003) Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochem 38(9):1365–1372CrossRefGoogle Scholar
  245. 245.
    Carpentier B (1986) Digestion anaérobie de biomasse algale: Les résidus de l’extraction de l’acide alginique, les ulves de marées vertes. Université Pierre et Marie Curie, ParisGoogle Scholar
  246. 246.
    Morand P, Briand X (1999) Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices. J Appl Phycol 11(2):164–177. doi: 10.1023/a:1008028127701 CrossRefGoogle Scholar
  247. 247.
    Morand P, Briand X, Charlier R (2006) Anaerobic digestion of Ulva sp. 3. Liquefaction juices extraction by pressing and a technico-economic budget. J Appl Phycol 18(6):741–755. doi: 10.1007/s10811-006-9083-1 CrossRefGoogle Scholar
  248. 248.
    Legros A, Asinari Di San Marzano C-M, Naveau H, Nyns E-J (1982) Improved methane production from algae using 2nd generation digesters. In: Strub A, Chartier P, Schlesser G (eds) Energy from biomass. Second EC conference, Berlin. Elsevier Applied Science, London, pp 609–614Google Scholar
  249. 249.
    Legros A, di San A, Marzano CM, Naveau HP, Nyns EJ (1983) Fermentation profiles in bioconversions. Biotechnol Lett 5(1):7–12. doi: 10.1007/bf00189956 CrossRefGoogle Scholar
  250. 250.
    Yin L-J, Jiang S-T, Pon S-H, Lin H-H (2010) Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. J Food Sci 75(9):H317–H323. doi: 10.1111/j.1750-3841.2010.01867.x CrossRefGoogle Scholar
  251. 251.
    Fu C-C, Hung T-C, Chen J-Y, Su C-H, Wu W-T (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol 101(22):8750–8754. doi: 10.1016/j.biortech.2010.06.100 CrossRefGoogle Scholar
  252. 252.
    Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383. doi: 10.1016/s0734-9750(00)00041-0 CrossRefGoogle Scholar
  253. 253.
    Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49(5):568–577. doi:10.1002/(sici)1097-0290(19960305)49:5<568::aid-bit10>;2-6CrossRefGoogle Scholar
  254. 254.
    Lissens G, Thomsen AB, De Baere L, Verstraete W, Ahring BK (2004) Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environ Sci Technol 38(12):3418–3424. doi: 10.1021/es035092h CrossRefGoogle Scholar
  255. 255.
    Liu C-Z, Cheng X-Y (2009) Microwave-assisted acid pretreatment for enhancing biogas production from herbal-extraction process residue. Energy Fuel 23(12):6152–6155. doi: 10.1021/ef900607f CrossRefGoogle Scholar
  256. 256.
    Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21(2):239–246. doi: 10.1007/s10811-008-9355-z CrossRefGoogle Scholar
  257. 257.
    Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378CrossRefGoogle Scholar
  258. 258.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639. doi: 10.1111/j.1365-313X.2008.03492.x CrossRefGoogle Scholar
  259. 259.
    Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30(pt 6):1047–1050. doi: 10.1042/ Google Scholar
  260. 260.
    Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500CrossRefGoogle Scholar
  261. 261.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635CrossRefGoogle Scholar
  262. 262.
    Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23(1):67–73CrossRefGoogle Scholar
  263. 263.
    Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416CrossRefGoogle Scholar
  264. 264.
    Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636. doi: 10.1007/s00253-008-1681-1 CrossRefGoogle Scholar
  265. 265.
    Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804CrossRefGoogle Scholar
  266. 266.
    Harrison P, Thompson P, Calderwood G (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2(1):45–56. doi: 10.1007/bf02179768 CrossRefGoogle Scholar
  267. 267.
    Kilham S, Kreeger D, Goulden C, Lynn S (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshw Biol 38(3):591–596. doi: 10.1046/j.1365-2427.1997.00231.x CrossRefGoogle Scholar
  268. 268.
    La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K (1993) Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol 29(6):767–777. doi: 10.1111/j.0022-3646.1993.00767.x CrossRefGoogle Scholar
  269. 269.
    Larson TR, Rees TAV (1996) Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 32(3):388–393. doi: 10.1111/j.0022-3646.1996.00388.x CrossRefGoogle Scholar
  270. 270.
    Rhee G (1978) Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23(1):10–25CrossRefGoogle Scholar
  271. 271.
    Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green ajga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296. doi: 10.1111/j.1529-8817.1987.tb04137.x CrossRefGoogle Scholar
  272. 272.
    Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5(6):435–440CrossRefGoogle Scholar
  273. 273.
    Darley WM (1977) Biochemical composition. In: Werner D (ed) The biology of diatoms. University of California Press, Berkeley, pp 98–223Google Scholar
  274. 274.
    Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D (2005) Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol Lett 249(2):219–225CrossRefGoogle Scholar
  275. 275.
    Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stochiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36(3):510–522. doi: 10.1046/j.1529-8817.2000.98251.x CrossRefGoogle Scholar
  276. 276.
    Sigee DC, Bahrami F, Estrada B, Webster RE, Dean AP (2007) The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis. Phycologia 46(5):583–592. doi: 10.2216/07-14.1 CrossRefGoogle Scholar
  277. 277.
    Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43(7):717–726CrossRefGoogle Scholar
  278. 278.
    Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schutt of varied chemical composition. J Exp Mar Biol Ecol 96(1):15–26CrossRefGoogle Scholar
  279. 279.
    Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267(2):521–528CrossRefGoogle Scholar
  280. 280.
    Vaulot D, Olson RJ, Merkel S, Chisholm SW (1987) Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar Biol 95(4):625–630. doi: 10.1007/bf00393106 CrossRefGoogle Scholar
  281. 281.
    Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655CrossRefGoogle Scholar
  282. 282.
    Yeesang C, Cheirsilp B (2010) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040CrossRefGoogle Scholar
  283. 283.
    Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722CrossRefGoogle Scholar
  284. 284.
    Chen G-Q, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):607–616. doi: 10.1007/s10529-006-0025-4 CrossRefGoogle Scholar
  285. 285.
    Ceron Garcia MC, Garcia Camacho F, Sanchez M (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16(5):689–694Google Scholar
  286. 286.
    Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31(6):601–604CrossRefGoogle Scholar
  287. 287.
    Degrenne B, Pruvost J, Christophe G, Cornet JF, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrogen Energy 35(19):10741–10749CrossRefGoogle Scholar
  288. 288.
    Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122(4):1439–1446. doi:10.1104/pp. 122.4.1439CrossRefGoogle Scholar
  289. 289.
    Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18(1):199–205Google Scholar
  290. 290.
    Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162(7):1978–1995. doi: 10.1007/s12010-010-8974-4 CrossRefGoogle Scholar
  291. 291.
    Lee Y-K, Ding S-Y, Hoe C-H, Low C-S (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8(2):163–169. doi: 10.1007/bf02186320 CrossRefGoogle Scholar
  292. 292.
    Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049. doi: 10.1007/s10529-009-9975-7 CrossRefGoogle Scholar
  293. 293.
    O’Grady J, Morgan J (2010) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125. doi: 10.1007/s00449-010-0474-y CrossRefGoogle Scholar
  294. 294.
    Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. Appl Environ Microbiol 35(1):32–37Google Scholar
  295. 295.
    Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23(5):1121–1132. doi: 10.1002/bit.260230519 CrossRefGoogle Scholar
  296. 296.
    Shamala TR, Drawert F, Leupold G (1982) Studies on Scenedesmus acutus growth. I. Effect of autotrophic and mixotrophic conditions on the growth of Scenedesmus acutus. Biotechnol Bioeng 24(6):1287–1299. doi: 10.1002/bit.260240605 CrossRefGoogle Scholar
  297. 297.
    Azma M, Mohamed MS, Mohamad R, Rahim RA, Ariff AB (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53(2):187–195CrossRefGoogle Scholar
  298. 298.
    Xie J, Zhang Y, Li Y, Wang Y (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13(4):343–347. doi: 10.1023/a:1017532302360 CrossRefGoogle Scholar
  299. 299.
    Tanoi T, Kawachi M, Watanabe M (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33. doi: 10.1007/s10811-010-9528-4 Google Scholar
  300. 300.
    Bouarab L, Dauta A, Loudiki M (2004) Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose:effect of light and acetate gradient concentration. Water Res 38(11):2706–2712CrossRefGoogle Scholar
  301. 301.
    Cai M, Shi R, Huang S, Qi A (2008) Comparison of mixotrophic and hotoautotrophic growth of Haematococcus pluvialis for astaxanthin production. J Biotechnol 136(suppl 1):S575–S576CrossRefGoogle Scholar
  302. 302.
    Jeon Y-C, Cho C-W, Yun Y-S (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39(3):490–495CrossRefGoogle Scholar
  303. 303.
    Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74(1):17–20CrossRefGoogle Scholar
  304. 304.
    Barbera E, Tomas X, Moya M-J, Ibanez A, Molins M-B (1993) Significance tests in the study of the specific growth rate of Haematococcus lacustris: influence of carbon source and light intensity. J Ferment Bioeng 76(5):403–405CrossRefGoogle Scholar
  305. 305.
    Chen F, Chen H, Gong X (1997) Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour Technol 62(1–2):19–24CrossRefGoogle Scholar
  306. 306.
    Fábregas J, GarcÌa D, Morales ED, Lamela T, Otero A (1999) Mixotrophic production of phycoerythrin and exopolysaccharide by the microalga Porphyridium cruentum. Cryptogam Algol 20(2):89–94CrossRefGoogle Scholar
  307. 307.
    Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108(5):429–434CrossRefGoogle Scholar
  308. 308.
    Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36(4):633–638Google Scholar
  309. 309.
    Ceron Garcia MC, Fernandez Sevilla JM, Acién Fernandez FG, Molina Grima E, Garcia Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12(3):239–248. doi: 10.1023/a:1008123000002 CrossRefGoogle Scholar
  310. 310.
    Cooksey KE (1974) Acetate metabolism by whole cells of Phaeodactylum tricornutum bohlin12. J Phycol 10(3):253–257. doi: 10.1111/j.1529-8817.1974.tb02710.x Google Scholar
  311. 311.
    Fábregas J, Morales ED, Lamela T, Cabezas B, Otero A (1997) Mixotrophic productivity of the marine diatom Phaeodactylum tricornutum cultured with soluble fractions of rye, wheat and potato. World J Microbiol Biotechnol 13(3):349–351. doi: 10.1023/a:1018551527986 CrossRefGoogle Scholar
  312. 312.
    Fernández Sevilla JM, Cerón García MC, Sánchez Mirón A, Belarbi EH, Camacho FG, Grima EM (2004) Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol Prog 20(3):728–736. doi: 10.1021/bp034344f CrossRefGoogle Scholar
  313. 313.
    Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16(6):499–503. doi: 10.1007/s10811-004-5520-1 CrossRefGoogle Scholar
  314. 314.
    Xu F, Z-l C, Cong W, Ouyang F (2004) Growth and fatty acid composition of Nannochloropsis sp. grown mixotrophically in fed-batch culture. Biotechnol Lett 26(17):1319–1322. doi: 10.1023/B:BILE.0000045626.38354.1a CrossRefGoogle Scholar
  315. 315.
    Xu F, Hu H-H, Cong W, Cai Z-L, Ouyang F (2004) Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnol Lett 26(1):51–53. doi: 10.1023/ CrossRefGoogle Scholar
  316. 316.
    Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila. Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J Appl Phycol 9(6):559–563. doi: 10.1023/a:1007908618017 Google Scholar
  317. 317.
    Wen Z-Y, Chen F (2002) Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochem 38(4):523–529CrossRefGoogle Scholar
  318. 318.
    Kang R, Wang J, Shi D, Cong W, Cai Z, Ouyang F (2004) Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26(18):1429–1432. doi: 10.1023/B:BILE.0000045646.23832.a5 CrossRefGoogle Scholar
  319. 319.
    Vernotte C, Picaud M, Kirilovsky D, Olive J, Ajlani G, Astier C (1992) Changes in the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosynth Res 32(1):45–57. doi: 10.1007/bf00028797 CrossRefGoogle Scholar
  320. 320.
    Andrade MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264(1–4):130–134CrossRefGoogle Scholar
  321. 321.
    Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465CrossRefGoogle Scholar
  322. 322.
    Mühling M, Belay A, Whitton BA (2005) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17(2):129–135. doi: 10.1007/s10811-005-7214-8 CrossRefGoogle Scholar
  323. 323.
    Rym B, Nejeh G, Lamia T, Ali Y, Rafika C, Khemissa G, Jihene A, Hela O, Hatem B (2010) Modeling growth and photosynthetic response in Arthrospira platensis as function of light intensity and glucose concentration using factorial design. J Appl Phycol 22(6):745–752. doi: 10.1007/s10811-010-9515-9 CrossRefGoogle Scholar
  324. 324.
    Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. doi: 10.1007/s10811-008-9341-5 CrossRefGoogle Scholar
  325. 325.
    Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103(3):971–977. doi:10.1104/pp. 103.3.971CrossRefGoogle Scholar
  326. 326.
    Xin L, Hong-ying H, Jia Y (2010) Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. N Biotechnol 27(1):59–63CrossRefGoogle Scholar
  327. 327.
    Post A, Dubinsky Z, Wyman K, Falkowski P (1985) Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar Ecol Prog Ser 25(2):141–149CrossRefGoogle Scholar
  328. 328.
    Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93(2):157–191. doi: 10.1111/j.1469-8137.1983.tb03422.x CrossRefGoogle Scholar
  329. 329.
    Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32(1):64–73. doi: 10.1111/j.0022-3646.1996.00064.x CrossRefGoogle Scholar
  330. 330.
    Fábregas J, Maseda A, Domínguez A, Otero A (2004) The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J Microbiol Biotechnol 20(1):31–35. doi: 10.1023/B:WIBI.0000013288.67536.ed CrossRefGoogle Scholar
  331. 331.
    Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66(1):73–79CrossRefGoogle Scholar
  332. 332.
    Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26(3):393–399. doi: 10.1111/j.0022-3646.1990.00393.x CrossRefGoogle Scholar
  333. 333.
    Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31(1):87–93CrossRefGoogle Scholar
  334. 334.
    Kowallik W (1987) Blue light effects on carbohydrate and protein metabolism. In: Senger H (ed) Blue light responses: phenomena and occurrence in plants and microorganisms, vol 1. CRC Press, Florida, pp 8–13Google Scholar
  335. 335.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRefGoogle Scholar
  336. 336.
    Borowitzka MA (1988) Vitamins and fine chemicals from micro-algae. In: Borowitzka LJ, Borowitzka MA (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 153–196Google Scholar
  337. 337.
    Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167CrossRefGoogle Scholar
  338. 338.
    Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35(2):215–226. doi: 10.1046/j.1529-8817.1999.3520215.x CrossRefGoogle Scholar
  339. 339.
    Cannell RJP (1993) Algae as a source of biologically active products. Pestic Sci 39(2):147–153. doi: 10.1002/ps.2780390208 CrossRefGoogle Scholar
  340. 340.
    Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling RE, Harris GH, Salvatore MJ, Liesch JM, Yudin K (1990) Pharmaceuticals from cultured algae. J Ind Microbiol Biotechnol 5(2):113–123. doi: 10.1007/bf01573860 Google Scholar
  341. 341.
    Geresh S, Arad S (1991) The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol 38(2–3):195–201CrossRefGoogle Scholar
  342. 342.
    Wijesekara I, Pangestuti R, Kim S-K (2010) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84(11):14–21Google Scholar
  343. 343.
    Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28(6):910–918CrossRefGoogle Scholar
  344. 344.
    Walker T, Purton S, Becker D, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24(11):629–641. doi: 10.1007/s00299-005-0004-6 CrossRefGoogle Scholar
  345. 345.
    National Center for Biotechnology Information (2010) Genome. Accessed 22 December 2010
  346. 346.
    Zorin B, Hegemann P, Sizova I (2005) Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4(7):1264–1272. doi: 10.1128/ec.4.7.1264-1272.2005 CrossRefGoogle Scholar
  347. 347.
    Zorin B, Lu Y, Sizova I, Hegemann P (2009) Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. Gene 432(1–2):91–96CrossRefGoogle Scholar
  348. 348.
    Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27(6):733–743CrossRefGoogle Scholar
  349. 349.
    Kim E-J, Cerutti H (2009) Targeted gene silencing by RNA interference in Chlamydomonas. In: Stephen MK, Gregory JP (eds) Methods in cell biology, vol 93. Academic, New York, pp 99–110Google Scholar
  350. 350.
    Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174. doi: 10.1111/j.1365-313X.2008.03767.x CrossRefGoogle Scholar
  351. 351.
    Zhao T, Wang W, Bai X, Qi Y (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164. doi: 10.1111/j.1365-313X.2008.03758.x CrossRefGoogle Scholar
  352. 352.
    Bocobza SE, Aharoni A (2008) Switching the light on plant riboswitches. Trends Plant Sci 13(10):526–533CrossRefGoogle Scholar
  353. 353.
    Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci U S A 104(52):20770–20775. doi: 10.1073/pnas.0705786105 CrossRefGoogle Scholar
  354. 354.
    Hildebrand M (2008) Development of algal genetic tools. In: 2008 NREL-AFOSR joint workshop on algal oil for jet fuel production. NREL, GoldenGoogle Scholar
  355. 355.
    Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74(3):566–574. doi: 10.1111/j.1399-3054.1988.tb02020.x CrossRefGoogle Scholar
  356. 356.
    Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Biol 45(1):633–662CrossRefGoogle Scholar
  357. 357.
    Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31. doi: doi:10.1080/10408410590912961 CrossRefGoogle Scholar
  358. 358.
    Kruse O, Rupprecht J, Mussgnug J, Dismukes G, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970CrossRefGoogle Scholar
  359. 359.
    Melis A, Neidhardt J, Baroli I, Benemann JR (1999) Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) BioHydrogen. Springer, New York, pp 41–52. doi: 10.1007/978-0-585-35132-2_6 CrossRefGoogle Scholar
  360. 360.
    Melis A, Neidhardt J, Benemann J (1998) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10(6):515–525. doi: 10.1023/a:1008076231267 CrossRefGoogle Scholar
  361. 361.
    Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814. doi: 10.1111/j.1467-7652.2007.00285.x CrossRefGoogle Scholar
  362. 362.
    Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin JA (2010) Metabolic systems analysis to advance algal biotechnology. Biotechnol J 5(7):660–670. doi: 10.1002/biot.201000129 CrossRefGoogle Scholar
  363. 363.
    Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. doi: 10.1002/bit.10803 CrossRefGoogle Scholar
  364. 364.
    Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376. doi: 10.1101/gr.2872004 CrossRefGoogle Scholar
  365. 365.
    Bro C, Regenberg B, Förster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111CrossRefGoogle Scholar
  366. 366.
    Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306CrossRefGoogle Scholar
  367. 367.
    Biagioni DJ, Bortz DM, Alber DM, Chang CH, Graf P, Jones W, Kim K (2009) Engineering of algal communities for hydrogen production. University of Colorado. Accessed 22 Dec 2010
  368. 368.
    Chynoweth DP, Ghosh S, Klass DL (1981) Anaerobic digestion of kelp. In: Sorer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum Press, New York, pp 315–338CrossRefGoogle Scholar
  369. 369.
    Espino Lopez A, Chinnasamy S, Das K, Balagurusamy N (2011) Anaerobic co-digestion of dairy manure and algal biomass for biogas production.
  370. 370.
    Craggs R, Sukias J (2009) Digestion of wastewater pond microalgae and potential inhibition by alum and ammoniacal-N. In: 8th IWA Specialist Group conference on waste stabilization ponds, Belo Horizonte, Brazil, 26–30 April 2009Google Scholar
  371. 371.
    Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: An introduction. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  372. 372.
    Fannin KF, Biljetina R (1987) Reactor design. In: Chynoweth D, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier Applied Science, London, pp 141–171Google Scholar
  373. 373.
    Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev 4(2):135–156CrossRefGoogle Scholar
  374. 374.
    El-Shafie A, Bloodgood D (1973) Anaerobic treatment in a multiple upflow filter system. J Water Pollut Control Fed 45(11):2345–2357Google Scholar
  375. 375.
    Heijnen JJ, Mulder A, Enger W, Hoeks F (1989) Review on the application of anaerobic fluidized bed reactors in waste-water treatment. Chem Eng J 41(3):B37–B50CrossRefGoogle Scholar
  376. 376.
    Switzenbaum MS, Jewell WJ (1980) Anaerobic attached-film expanded-bed reactor treatment. J Water Pollut Control Fed 52(7):1953–1965Google Scholar
  377. 377.
    Tait SJ, Friedman AA (1980) Anaerobic rotating biological contactor for carbonaceous wastewaters. J Water Pollut Control Fed 52(8):2257–2269Google Scholar
  378. 378.
    Young JC (1991) Factors affecting the design and performance of upflow anaerobic filters. Water Sci Technol 24(8):133–155Google Scholar
  379. 379.
    Young JC, McCarty PL (1969) The anaerobic filter for waste treatment. J Water Pollut Control Fed 41(5):160–173Google Scholar
  380. 380.
    Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33(7):1559–1578CrossRefGoogle Scholar
  381. 381.
    Dague RR, Habben CE, Pidaparti SR (1992) Initial studies on the anaerobic sequencing batch reactor. Water Sci Technol 26(9):2429–2432Google Scholar
  382. 382.
    Kato MT, Field JA, Lettinga G (1997) The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Sci Technol 36(6–7):375–382Google Scholar
  383. 383.
    Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67(1):3–28. doi: 10.1007/bf00872193 CrossRefGoogle Scholar
  384. 384.
    Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734. doi: 10.1002/bit.260220402 CrossRefGoogle Scholar
  385. 385.
    Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3):229–246. doi:10.1002/(sici)1097-0290(19960205)49:3<229::aid-bit1>;2-mCrossRefGoogle Scholar
  386. 386.
    Seghezzo L, Zeeman G, van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190CrossRefGoogle Scholar
  387. 387.
    Sung S, Dague RR (1995) Laboratory studies on the anaerobic sequencing batch reactor. Water Environ Res 67(3):294–301CrossRefGoogle Scholar
  388. 388.
    Hamdi M, Garcia JL (1991) Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresour Technol 38(1):23–29CrossRefGoogle Scholar
  389. 389.
    Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49(6):601–610. doi:10.1002/(sici)1097-0290(19960320)49:6<601::aid-bit1>;2-sCrossRefGoogle Scholar
  390. 390.
    Harada H, Momonoi K, Yamazaki S, Takizawa S (1994) Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics. Water Sci Technol 30(12):307–319Google Scholar
  391. 391.
    Lew B, Tarre S, Beliavski M, Dosoretz C, Green M (2009) Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination 243(1–3):251–257CrossRefGoogle Scholar
  392. 392.
    Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77(7):743–755. doi: 10.1002/jctb.630 CrossRefGoogle Scholar
  393. 393.
    Ghosh S, Klass DL (1977) Two phase anaerobic digestion. US Patent 4,022,665. May 1977Google Scholar
  394. 394.
    Yu HW, Samani Z, Hanson A, Smith G (2002) Energy recovery from grass using two-phase anaerobic digestion. Waste Manag 22(1):1–5CrossRefGoogle Scholar
  395. 395.
    Vergara-Fernandez A, Vargas G, Alarcon N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32(4):338–344CrossRefGoogle Scholar
  396. 396.
    Karim K, Hoffmann R, Thomas Klasson K, Al-Dahhan MH (2005) Anaerobic digestion of animal waste: effect of mode of mixing. Water Res 39(15):3597–3606CrossRefGoogle Scholar
  397. 397.
    Karim K, Thomas Klasson K, Hoffmann R, Drescher SR, DePaoli DW, Al-Dahhan MH (2005) Anaerobic digestion of animal waste: effect of mixing. Bioresour Technol 96(14):1607–1612CrossRefGoogle Scholar
  398. 398.
    McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions–II: microbial population dynamics. Water Res 35(7):1817–1827CrossRefGoogle Scholar
  399. 399.
    Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions–I. Digester performance. Water Res 35(7):1804–1816CrossRefGoogle Scholar
  400. 400.
    Bianchi A, Randriamahefa H (1987) Méthanisation de macro-algues marines à 37 et à 15 C. University Provence, MarseilleGoogle Scholar
  401. 401.
    Rui X, Tianrong G, Pay E, Chaofeng X (2007) Biochemical methane potential of blue-green algae in biogas fermentation progress. J Yunnan Norm Univ (Nat Sci Ed) 05. doi:CNKI:SUN:YNSK.0.2007-05-009Google Scholar
  402. 402.
    Chynoweth DP, Klass DL, Ghosh S (1978) Biomethanation of giant brown kelp Macrocystis pyrifera. Paper presented at the Energy from Biomass and Wastes II, Washington, DCGoogle Scholar
  403. 403.
    Keenan JD (1977) Bioconversion of solar energy to methane. Energy 2(4):365–373CrossRefGoogle Scholar
  404. 404.
    Holm-Nielsen JB, Al Seadi T (1998) Biogas in Europe: a general overview. Bioenergy Department, South Jutland University Center, DenmarkGoogle Scholar
  405. 405.
    Braun R, Wellinger A (2003) Potential of co-digestion. IEA Bioenergy Task 37 – Energy from Biogas and Landfill Gas, pp 15Google Scholar
  406. 406.
    Alvarez R, LidÈn G (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew Energy 33(4):726–734CrossRefGoogle Scholar
  407. 407.
    Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 22(1):71–77CrossRefGoogle Scholar
  408. 408.
    Mshandete A, Kivaisi A, Rubindamayugi M, Mattiasson B (2004) Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour Technol 95(1):19–24CrossRefGoogle Scholar
  409. 409.
    Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616CrossRefGoogle Scholar
  410. 410.
    Yen H-W, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134CrossRefGoogle Scholar
  411. 411.
    Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5(10):677–682. doi: 10.1007/bf01386361 CrossRefGoogle Scholar
  412. 412.
    Morand P, Carpentier B, Charlier H, Mazé J, Orlandini M, Plunkett A, de Waart J (1991) Bioconversion of seaweeds. In: Guiry MD, Blunden J (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 95–148Google Scholar
  413. 413.
    Rao PS, Tarwade SJ, Sarma KSR (1980) Seaweed as a source of energy: I. Effect of a specific bacterial strain on biogas production. Bot Mar 23:599–601Google Scholar
  414. 414.
    Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338. doi:71/1/331[pii] 10.1128/AEM.71.1.331-338.2005CrossRefGoogle Scholar
  415. 415.
    Cardayré SB (2005) Developments in strain improvement technology. In: Zhang L, Demain AL (eds) Natural products. Humana, Totowa, pp 107–125. doi: 10.1007/978-1-59259-976-9_6 CrossRefGoogle Scholar
  416. 416.
    Yang S-T, Liu X, Zhang Y (2007) Metabolic engineering—applications, methods, and challenges. In: Shang-Tian Y (ed) Bioprocessing for value-added products from renewable resources. Elsevier, Amsterdam, pp 73–118CrossRefGoogle Scholar
  417. 417.
    Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci U S A 101(8):2235–2240. doi: 10.1073/pnas.0308171100 CrossRefGoogle Scholar
  418. 418.
    Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425Google Scholar
  419. 419.
    Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529–2536. doi: 10.1099/mic.0.29028-0 CrossRefGoogle Scholar
  420. 420.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  421. 421.
    Davis L, Jeon Y-J, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29(1):49–59CrossRefGoogle Scholar
  422. 422.
    JaeJeon Y, Svenson CJ, Rogers PL (2005) Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 244(1):85–92CrossRefGoogle Scholar
  423. 423.
    Sprenger GA (1996) Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett 145(3):301–307. doi: 10.1111/j.1574-6968.1996.tb08593.x CrossRefGoogle Scholar
  424. 424.
    Cheng K-K, Liu Q, Zhang J-A, Li J-P, Xu J-M, Wang G-H (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45(4):613–616CrossRefGoogle Scholar
  425. 425.
    Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96(2):155–168CrossRefGoogle Scholar
  426. 426.
    Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5):425–441CrossRefGoogle Scholar
  427. 427.
    Jeffries T, Shi N-Q (1999) Genetic engineering for improved xylose fermentation by yeasts. In: Tsao G, Brainard A, Bungay H et al (eds) Recent progress in bioconversion of lignocellulosics, vol 65, Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 117–161CrossRefGoogle Scholar
  428. 428.
    Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. doi: 10.1016/j.femsyr.2004.09.010 CrossRefGoogle Scholar
  429. 429.
    Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664. doi: 10.1016/j.femsyr.2004.01.003 CrossRefGoogle Scholar
  430. 430.
    Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58. doi: 10.1128/aem.68.1.53-58.2002 CrossRefGoogle Scholar
  431. 431.
    Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55(4):1545–1549. doi: 10.1099/ijs.0.63627-0 CrossRefGoogle Scholar
  432. 432.
    Taylor LE II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188(11):3849–3861. doi: 10.1128/jb.01348-05 CrossRefGoogle Scholar
  433. 433.
    Ryan C (2009) Cultivating clean energy: the promise of algae biofuels. Natural Resources Defense Council, New YorkGoogle Scholar
  434. 434.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefGoogle Scholar
  435. 435.
    Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35(1):741–747CrossRefGoogle Scholar
  436. 436.
    Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2010) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88(10):3454–3563Google Scholar
  437. 437.
    Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. Glob Change Biol Bioenergy 1(6):371–381. doi: 10.1111/j.1757-1707.2009.01029.x CrossRefGoogle Scholar
  438. 438.
    Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143:204–205CrossRefGoogle Scholar
  439. 439.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240. doi:10.1085/jgp. 26.2.219CrossRefGoogle Scholar
  440. 440.
    Abraham S (2002) Towards a more secure and cleaner energy future for America: national hydrogen energy roadmap; production, delivery, storage, conversion, applications, public education and outreach. U.S. Department of Energy, Washington, DCGoogle Scholar
  441. 441.
    Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271CrossRefGoogle Scholar
  442. 442.
    Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(11):1965–1979. doi: 10.1128/ec.00418-07 CrossRefGoogle Scholar
  443. 443.
    Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284(51):35996. doi: 10.1074/jbc.A109.003541 CrossRefGoogle Scholar
  444. 444.
    Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O (2010) The interplay of proton, electron and metabolite supply for photosynthetic H2 production in C. reinhardtii. J Biol Chem. doi: 10.1074/jbc.M110.122812
  445. 445.
    Chiao M, Lam KB, Lin L (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16(12):2547CrossRefGoogle Scholar
  446. 446.
    He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43(5):1648–1654. doi: 10.1021/es803084a CrossRefGoogle Scholar
  447. 447.
    Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264CrossRefGoogle Scholar
  448. 448.
    Strik D, Terlouw H, Hamelers H, Buisman C (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81(4):659–668. doi: 10.1007/s00253-008-1679-8 CrossRefGoogle Scholar
  449. 449.
    Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi: 10.1016/j.biortech.2010.07.017 CrossRefGoogle Scholar
  450. 450.
    Kayombo S, Mbwette TS, Katima JH, Jorgensen SE (2003) Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Res 37(12):2937–2943. doi:S0043-1354(03)00014-9[pii]10.1016/S0043-1354(03)00014-9CrossRefGoogle Scholar
  451. 451.
    Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707CrossRefGoogle Scholar
  452. 452.
    Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67(1):62–69CrossRefGoogle Scholar
  453. 453.
    Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390. doi: 10.1023/a:1020238520948 CrossRefGoogle Scholar
  454. 454.
    Nurdogan Y, Oswald WJ (1995) Enhanced nutrient removal in high-rate ponds. Water Sci Technol 31(12):33–43CrossRefGoogle Scholar
  455. 455.
    Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58(1):19–34CrossRefGoogle Scholar
  456. 456.
    Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyrun R, Dominguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55(3):181–186CrossRefGoogle Scholar
  457. 457.
    Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43(11):1001–1009. doi: 10.1002/bit.260431102 CrossRefGoogle Scholar
  458. 458.
    Leusch A, Holan ZR, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J Chem Technol Biotechnol 62(3):279–288. doi: 10.1002/jctb.280620311 CrossRefGoogle Scholar
  459. 459.
    Tien CJ (2002) Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem 38(4):605–613CrossRefGoogle Scholar
  460. 460.
    Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16(4):545–560CrossRefGoogle Scholar
  461. 461.
    Mara DD, Mills SW, Pearson HW, Alabaster GP (1992) Waste stabilization ponds: a viable alternative for small community treatment systems. Water Environ J 6(3):72–78. doi: 10.1111/j.1747-6593.1992.tb00740.x CrossRefGoogle Scholar
  462. 462.
    Golueke CG, Oswald WJ (1968) Power from solar energy via algae-produced methane. Solar Energy 7(3):86–92CrossRefGoogle Scholar
  463. 463.
    Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. In: Wayne WU (ed) Advances in applied microbiology, vol 2. Academic, New York, pp 223–262Google Scholar
  464. 464.
    Douskov I, Kastnek F, Maleterov Y, Kastnek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Conversion Manag 51(3):606–611CrossRefGoogle Scholar
  465. 465.
    Kumar MS, Miao ZH, Wyatt SK (2010) Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour Technol 101(15):6012–6018CrossRefGoogle Scholar
  466. 466.
    Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628CrossRefGoogle Scholar
  467. 467.
    Ward AJ, Kumar MS (2010) Bio-conversion rate and optimum harvest intervals for Moina australiensis using digested piggery effluent and Chlorella vulgaris as a food source. Bioresour Technol 101(7):2210–2216CrossRefGoogle Scholar
  468. 468.
    Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819. doi: 10.1021/es902838n CrossRefGoogle Scholar
  469. 469.
    Banat I, Puskas K, Esen I, Al-Daher R (1990) Wastewater treatment and algal productivity in an integrated ponding system. Biol Wastes 32(4):265–275CrossRefGoogle Scholar
  470. 470.
    Al-Shayji YA, Puskas K, Al-Daher R, Esen II (1994) Production and separation of algae in a high-rate ponds system. Environ Int 20(4):541–550CrossRefGoogle Scholar
  471. 471.
    Green FB, Bernstone L, Lundquist TJ, Muir J, Tresan RB, Oswald WJ (1995) Methane fermentation, submerged gas collection, and the fate of carbon in advanced integrated wastewater pond systems. Water Sci Technol 31(12):55–65CrossRefGoogle Scholar
  472. 472.
    Green FB, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217CrossRefGoogle Scholar
  473. 473.
    Oswald W, Green F, Lundquist T (1994) Performance of methane fermentation pits in advanced integrated wastewater pond systems. Water Sci Technol 30(12):287–295Google Scholar
  474. 474.
    Oswald WJ (1990) Advanced integrated wastewater pond systems. In: ASCE Convention EE Div/ASCE, San Francisco, CA, 5–8 Nov 1990Google Scholar
  475. 475.
    Oswald WJ (1995) Ponds in the twenty-first century. Water Sci Technol 31(12):1–8CrossRefGoogle Scholar
  476. 476.
    Green FB, Lundquist TJ, Oswald WJ (1995) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31(12):9–20CrossRefGoogle Scholar
  477. 477.
    Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15(2):99–106. doi: 10.1023/a:1023871903434 CrossRefGoogle Scholar
  478. 478.
    Wahal S (2010) Nutrient utilization from anaerobic digester effluent through algae cultivation. Utah State University, LoganGoogle Scholar
  479. 479.
    Woertz IC (2007) Lipid productivity of algae grown on dairy wastewater as a possible feedstock for biodiesel. California Polytechnic University, San Luis ObispoGoogle Scholar
  480. 480.
    Lincoln EP, Wilkie AC, French BT (1996) Cyanobacterial process for renovating dairy wastewater. Biomass Bioenergy 10(1):63–68CrossRefGoogle Scholar
  481. 481.
    Aragon AB, Ros F, de Ursinos JA, Padilla RB (1992) Algal cultures with effluents from biological treatment of urban wastewaters by anaerobiosis. Resour Conserv Recycling 6(4):303–314CrossRefGoogle Scholar
  482. 482.
    Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102(1):200–206CrossRefGoogle Scholar
  483. 483.
    Ryther JH (1982) Cultivation of macroscopic marine algae. University of Florida, GainesvilleGoogle Scholar
  484. 484.
    Olaizola M, Bridges T, Flores S, Griswold L, Morency J, Nakamura T (2004) Microalgal removal of CO2 from flue gases: CO2 capture from a coal combustor. Proceedings of the third annual conference on carbon capture & sequestration, Alexandria, VAGoogle Scholar
  485. 485.
    Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413CrossRefGoogle Scholar
  486. 486.
    Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics, and biotechnology, vol 14. Science Publishers, New Hampshire, pp 445–474Google Scholar
  487. 487.
    Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24(7):4062–4077. doi: 10.1021/ef1003123 CrossRefGoogle Scholar
  488. 488.
    Razon LF, Tan RR (2010) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Applied Energy 88(10):3507–3514Google Scholar
  489. 489.
    Lardon L, HeÃÅlias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi: 10.1021/es900705j CrossRefGoogle Scholar
  490. 490.
    Collet P, Hèlias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214CrossRefGoogle Scholar
  491. 491.
    Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158CrossRefGoogle Scholar
  492. 492.
    Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25CrossRefGoogle Scholar
  493. 493.
    Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. N Z J Mar Freshw Res 21(3):457–465. doi: 10.1080/00288330.1987.9516241 CrossRefGoogle Scholar
  494. 494.
    Lockau W, Ziegler K (2006) Cyanophycin inclusions: biothynthesis and applications. In: Rehm B (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon bioscience. Wymondham, England, pp 79–107Google Scholar
  495. 495.
    Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–187. doi: 10.1146/annurev.mi.28.100174.001123 CrossRefGoogle Scholar
  496. 496.
    Stal L (1992) Poly(hydroxyalkanoate) in cyanobacteria: an overview. FEMS Microbiol Lett 103(2–4):169–180. doi: 10.1016/0378-1097(92)90307-a CrossRefGoogle Scholar
  497. 497.
    Bertocchi C (1990) Polysaccharides from cyanobacteria. Carbohydr Polym 12(2):127–153. doi: 10.1016/0144-8617(90)90015-k CrossRefGoogle Scholar
  498. 498.
    Dunn JH, Wolk CP (1970) Composition of the cellular envelopes of Anabaena cylindrica. J Bacteriol 103(1):153–158Google Scholar
  499. 499.
    Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177(9):2387–2395Google Scholar
  500. 500.
    Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182(5):1191–1199CrossRefGoogle Scholar
  501. 501.
    Jurgens UJ, Drews G, Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol 154(1):471–478Google Scholar
  502. 502.
    Jurgens UJ, Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol 168(2):568–573Google Scholar
  503. 503.
    Pritzer M, Weckesser J, Jürgens UJ (1989) Sheath and outer membrane components from the cyanobacterium Fischerella sp. PCC 7414. Arch Microbiol 153(1):7–11. doi: 10.1007/bf00277533 CrossRefGoogle Scholar
  504. 504.
    Schneider S, Jürgens UJ (1991) Cell wall and sheath constituents of the cyanobacterium Gloeobacter violaceus. Arch Microbiol 156(4):312–318. doi: 10.1007/bf00263004 CrossRefGoogle Scholar
  505. 505.
    de Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture Int 7(4):261–275. doi: 10.1023/a:1009233230706 CrossRefGoogle Scholar
  506. 506.
    Milner HW (1976) The chemical composition of algae. In: Burlew JS (ed) Algae culture: from laboratory to pilot plant. Carnegir Institution of Washington Publication, Washington, DC, pp 285–303Google Scholar
  507. 507.
    Gribovskaya I, Kalacheva G, Bayanova Y, Kolmakova A (2009) Physiology-biochemical properties of the cyanobacterium Oscillatoria deflexa. Appl Biochem Microbiol 45(3):285–290. doi: 10.1134/s0003683809030089 CrossRefGoogle Scholar
  508. 508.
    Carlozzi P (2000) Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Appl Microbiol Biotechnol 54(1):14–22. doi: 10.1007/s002530000355 CrossRefGoogle Scholar
  509. 509.
    Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315. doi: 10.1002/bit.10478 CrossRefGoogle Scholar
  510. 510.
    Gouveia L, Oliveira A (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274. doi: 10.1007/s10295-008-0495-6 CrossRefGoogle Scholar
  511. 511.
    Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Botanical monographs, vol 10. University of California Press, Berkeley, pp 206–235Google Scholar
  512. 512.
    Dixon PS (1973) Biology of the Rhodophyta (University reviews in botany, 4). Hafner Press, New YorkGoogle Scholar
  513. 513.
    Karsten U, West JA, Zuccarello GC, Engbrodt R, Yokoyama A, Hara Y, Brodie J (2003) Low molecular weight carbohydrates of the Bangiophycidae (Rhodophyta). J Phycol 39(3):584–589. doi: 10.1046/j.1529-8817.2003.02192.x CrossRefGoogle Scholar
  514. 514.
    Lee RE (1974) Chloroplast structure and starch grain production as phylogenetic indicators in the lower Rhodophyceae. Br Phycol J 9(3):291–295CrossRefGoogle Scholar
  515. 515.
    Meeuse BJD (1962) Storage products. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 289–313Google Scholar
  516. 516.
    Brody M, Vatter AE (1959) Observations on cellular structures of Porphyridium cruentum. J Biophys Biochem Cytol 5(2):289–294CrossRefGoogle Scholar
  517. 517.
    Gantt E, Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26(2):365–381CrossRefGoogle Scholar
  518. 518.
    Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21(3):358–364. doi:S0958-1669(10)00024-8[pii]10.1016/j.copbio.2010.02.008CrossRefGoogle Scholar
  519. 519.
    Gretz MR, Aronson JM, Sommerfeld MR (1980) Cellulose in the cell walls of the bangiophyceae (Rhodophyta). Science 207(4432):779–781. doi:207/4432/779[pii]10.1126/science.207.4432.779CrossRefGoogle Scholar
  520. 520.
    Siegel BZ, Siegel SM (1973) The chemical composition of algal cell walls. CRC Crit Rev Microbiol 3(1):1–26CrossRefGoogle Scholar
  521. 521.
    O’Colla PS (1962) Mucilages. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 337–356Google Scholar
  522. 522.
    Rubio FC, Fernández FGA, Pérez JAS, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86. doi:10.1002/(sici)1097-0290(19990105)62:1<71::aid-bit9>;2-tCrossRefGoogle Scholar
  523. 523.
    Ugarte R, Santelices B (1992) Experimental tank cultivation of Gracilaria chilensis in central Chile. Aquaculture 101(1–2):7–16CrossRefGoogle Scholar
  524. 524.
    Pickering TD, Gordon ME, Tong LJ (1995) A preliminary trial of a spray culture technique for growing the agarophyte Gracilaria chilensis (Gracilariales, Rhodophyta). Aquaculture 130(1):43–49CrossRefGoogle Scholar
  525. 525.
    Lapointe BE, Ryther JH (1978) Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15(3):185–193CrossRefGoogle Scholar
  526. 526.
    Hanisak DM, Ryther JH (1984) Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116–117(1):295–298. doi: 10.1007/bf00027688 CrossRefGoogle Scholar
  527. 527.
    Hanisak MD (1987) Cultivation of Gracilaria and other macroalgae in Florida for energy production. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Elsevier Science, Amsterdam, pp 191–218Google Scholar
  528. 528.
    Chiang YM (1981) Cultivation of Gracilaria (Rhodophycophyta, Gigartinales) in Taiwan. In: Levring T (ed) Tenth international seaweed symposium. Walter de Gruyter, Berlin, pp 569–574Google Scholar
  529. 529.
    Vadas RL, Beal BF, Wright WA, Emerson S, Nickl S (2004) Biomass and productivity of red and green algae in Cobscook Bay, Maine. Northeast Nat 11(sp2):163–196. doi:10.1656/1092-6194(2004) 11[163:bapora];2CrossRefGoogle Scholar
  530. 530.
    Waaland JR (1976) Growth of the red alga Iridaea cordata (Turner) Bory in semi-closed culture. J Exp Mar Biol Ecol 23(1):45–53CrossRefGoogle Scholar
  531. 531.
    Tompkins AN (1981) Marine biomass program. Annual report for 1980. General Electric Company, PhiladelphiaGoogle Scholar
  532. 532.
    Fuentes MM, Fernandez GG, Pèrez JA, Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70(3):345–353CrossRefGoogle Scholar
  533. 533.
    Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. doi: 10.1146/annurev.arplant.54.031902.134927 CrossRefGoogle Scholar
  534. 534.
    Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161(1):115–134. doi: 10.1016/0022-0981(92)90193-e CrossRefGoogle Scholar
  535. 535.
    Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45(1):53–60. doi: 10.2216/04-79.1 CrossRefGoogle Scholar
  536. 536.
    Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507. doi: 10.1007/s10811-008-9392-7 CrossRefGoogle Scholar
  537. 537.
    Huang Y, Beal C, Cai W, Ruoff R, Terentjev E (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105(5):889–898. doi: 10.1002/bit.22617 Google Scholar
  538. 538.
    Libessart N, Maddelein ML, Koornhuyse N, Decq A, Delrue B, Mouille G, D’Hulst C, Ball S (1995) Storage, photosynthesis, and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas. Plant Cell 7(8):1117–1127. doi:10.1105/tpc.7.8.11177/8/1117[pii]Google Scholar
  539. 539.
    Metzger P, Largeau C (2005) Botryococcus braunii a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496. doi: 10.1007/s00253-004-1779-z CrossRefGoogle Scholar
  540. 540.
    Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868. doi:EC.00272-09[pii]10.1128/EC.00272-09CrossRefGoogle Scholar
  541. 541.
    Adair WS, Steinmetz SA, Mattson DM, Goodenough UW, Heuser JE (1987) Nucleated assembly of Chlamydomonas and Volvox cell walls. J Cell Biol 105(5):2373–2382CrossRefGoogle Scholar
  542. 542.
    Becker B, Perasso L, Kammann A, Salzburg M, Melkonian M (1996) Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) form high-molecular-weight complexes between the scale layers and the flagellar membrane. Planta 199(4):503–510. doi: 10.1007/bf00195179 CrossRefGoogle Scholar
  543. 543.
    Dodge JD (1973) The fine structure of algal cells. Academic, LondonGoogle Scholar
  544. 544.
    Frei EVA, Preston RD (1961) Variants in the structural polysaccharides of algal cell walls. Nature 192(4806):939–943. doi: 10.1038/192939a0 CrossRefGoogle Scholar
  545. 545.
    Huizing HJ, Rietema H (1975) Xylan and mannan as cell wall constituents of different stages in the life-histories of some siphoneous green algae. Br Phycol J 10(1):13–16CrossRefGoogle Scholar
  546. 546.
    Huizing HJ, Rietema H, Sietsma JH (1979) Cell wall constituents of several siphoneous green algae in relation to morphology and taxonomy. Br Phycol J 14(1):25–32CrossRefGoogle Scholar
  547. 547.
    Mackie I, Percival E (1959) The constitution of xylan from the green seaweed Caulerpa filiformis. J Chem Soc 30:10–15Google Scholar
  548. 548.
    Mackie W, Preston RD (1974) Cell wall and intercellular region polysaccharides. In: Stewart WDP (ed) Algal physiology and biochemistry, vol 10, Botanical monographs. University of California Press, Berkeley, pp 40–85Google Scholar
  549. 549.
    Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  550. 550.
    Ugwu C, Ogbonna J, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58(5):600–607. doi: 10.1007/s00253-002-0940-9 CrossRefGoogle Scholar
  551. 551.
    Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74(2):136–144. doi: 10.1002/bit.1103 CrossRefGoogle Scholar
  552. 552.
    Doucha J, Straka F, Lívansky K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412. doi: 10.1007/s10811-005-8701-7 CrossRefGoogle Scholar
  553. 553.
    Doucha J, Lívansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117. doi: 10.1007/s10811-008-9336-2 CrossRefGoogle Scholar
  554. 554.
    Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102(1):150–158CrossRefGoogle Scholar
  555. 555.
    Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506. doi: 10.1023/a:1008159127672 CrossRefGoogle Scholar
  556. 556.
    Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12(4):573–608. doi: 10.1007/s11027-006-7304-1 CrossRefGoogle Scholar
  557. 557.
    Kanazawa T, Fujita C, Yuhara T, Sasa T (1958) Mass culture of unicellular algae using the “open circulation method”. J Gen Appl Microbiol 4(3):135–152CrossRefGoogle Scholar
  558. 558.
    Beck LA, Oswald WJ, Goldman JC (1969) Nitrate removal from agricultural tile drainage by photosynthetic systems. Paper presented at the second national symposium on sanitary engineering research, development and design, Cornell University, Ithaca, 15 July 1969Google Scholar
  559. 559.
    Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943CrossRefGoogle Scholar
  560. 560.
    Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100(23):5988–5995CrossRefGoogle Scholar
  561. 561.
    Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Conversion Manag 47(6):791–799CrossRefGoogle Scholar
  562. 562.
    DeBusk TA, Blakeslee M, Ryther JH (1986) Studies on the outdoor cultivation of Ulva lactuca L. Bot Mar 29(5):381–386. doi: 10.1515/botm.1986.29.5.381 CrossRefGoogle Scholar
  563. 563.
    Baloni WG, Florenzano A, Materassi R, Tredici M, Soeder CJ, Wagner K (1982) Mass culture of algae for energy farming in coastal deserts. In: Sturb A, Chartier P, Scheleser G (eds) Energy from biomass. Second E.C. conference, Berlin, 20–23 September 1982. Elsevier Applied Science, London, pp 291–294Google Scholar
  564. 564.
    Ryther JH, Hanisak MD (1981) Biomass production, anaerobic digestion, and nutrient recycling of small benthic or floating seaweeds. Paper presented at the Energy from Biomass and Wastes V, Lake Buena Vista, Florida, 26–30 Jan 1981Google Scholar
  565. 565.
    Lehnberg W, Schramm W (1984) Mass culture of brackish-water-adapted seaweeds in sewage-enriched seawater I. Productivity and nutrient accumulation. Hydrobiologia 116–117(1):276–281. doi: 10.1007/bf00027684 CrossRefGoogle Scholar
  566. 566.
    Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145(1):79–99CrossRefGoogle Scholar
  567. 567.
    Brown MR, Jeffrey SW (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J Exp Mar Biol Ecol 161(1):91–113CrossRefGoogle Scholar
  568. 568.
    Beattie A, Hirst EL, Percival E (1961) Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae. Biochem J 79:531–537Google Scholar
  569. 569.
    Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61(1):15–24. doi:S0031942202002017[pii]CrossRefGoogle Scholar
  570. 570.
    Shifrin NS (1985) Oils from microalgae. In: Ratledge C, Dawson P, Rattray J (eds) Biotechnology for the oils and fats industry. AOCS monograph, vol 11. American Oil Chemists’ Society, Illinois, pp 145–162Google Scholar
  571. 571.
    Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128(3):219–240. doi: 10.1016/0022-0981(89)90029-4 CrossRefGoogle Scholar
  572. 572.
    Ben-Amotz A, Tornabene TG, Thomas WH (2004) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21(1):72–81. doi: 10.1111/j.0022-3646.1985.00072.x CrossRefGoogle Scholar
  573. 573.
    Opute FI (1974) Lipid and fatty-acid composition of Diatoms. J Exp Bot 25(4):823–835CrossRefGoogle Scholar
  574. 574.
    Herth W, Zugenmaier P (1977) Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastruct Res 61(2):230–239. doi: 10.1016/s0022-5320(77)80090-7 CrossRefGoogle Scholar
  575. 575.
    Herth W, Zugenmaier P (1979) The lorica of Dinobryon. J Ultrastruct Res 69(2):262–272. doi: 10.1016/s0022-5320(79)90115-1 CrossRefGoogle Scholar
  576. 576.
    Kristiansen J (1972) Studies on the lorica structure in Chrysophyceae. Svensk Botanisk Tidskrift 66(3):184–190Google Scholar
  577. 577.
    Nicolai E, Preston RD (1952) Cell-wall studies in the Chlorophyceae. I. A general survey of submicroscopic structure in filamentous species. Proc R Soc Lond B Biol Sci 140(899):244–274CrossRefGoogle Scholar
  578. 578.
    Okuda K (2002) Structure and phylogeny of cell coverings. J Plant Res 115(4):283–288. doi: 10.1007/s10265-002-0034-x CrossRefGoogle Scholar
  579. 579.
    Belcher JH (1969) A morphological study of the phytoflagellate Chrysococcus Rufescens Klebs in culture. Br Phycol J 4(1):105–117CrossRefGoogle Scholar
  580. 580.
    Belcher JH (1974) Chrysophaera magna sp. nov., a new coccoid member of the Chrysophyceae. Br Phycol J 9(2):139–144CrossRefGoogle Scholar
  581. 581.
    Hibberd DJ (1986) Ultrastructure of the Chrysophyceae—phylogetic implications and taxonomy. In: Kristiansen J, Andersen RA (eds) Chrysophytes: aspects and problems. Cambridge University Press, Cambridge, pp 23–37Google Scholar
  582. 582.
    Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195(1–2):35–49CrossRefGoogle Scholar
  583. 583.
    Acien Fernandez FG, Fernandez Sevilla JM, Sanchez Perez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732CrossRefGoogle Scholar
  584. 584.
    Molina E, Fernandez J, Acièn FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131CrossRefGoogle Scholar
  585. 585.
    Acien Fernandez FG, Hall DO, Canizares Guerrero E, Krishna Rao K, Molina Grima E (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 103(2):137–152CrossRefGoogle Scholar
  586. 586.
    Vadas RL Sr, Wright WA, Beal BF (2004) Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum LeJolis) in Cobscook Bay. Northeast Nat 11:123–142CrossRefGoogle Scholar
  587. 587.
    Lignell A, Pedersen M (1986) Spray cultivation of seaweeds with emphasis on their light requirements. Bot Mar 29(6):509–516. doi: 10.1515/botm.1986.29.6.509 CrossRefGoogle Scholar
  588. 588.
    Kelly MS, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production: a feasibility study with recommendations for further research. The Crown Estate, Oban, ArgyllGoogle Scholar
  589. 589.
    Lapointe BE, Hanisak MD (1985) Productivity and nutrition of marine biomass systems in Florida. In: Energy from biomass and waste IX, Lake Buena Vista, Florida. Institute of Gas Technology, Chicago, pp 111–126Google Scholar
  590. 590.
    Leese T (1976) The conversion of ocean farm kelp to methane and other products. In: Clean fuels from biomass, sewage, urban refuse, and agricultural wastes. Institute of Gas Technology, Orlando, FL, pp 253–266Google Scholar
  591. 591.
    Chynoweth DP, Fannin KF, Srivastava VJ (1987) Biological gasification of marine algae. In: Bird KT, Benson PH (eds) Seaweed cultivation for renewable resources. Developments in aquaculture and fisheries science, vol 16. Elsevier, Amsterdam, pp 285–303Google Scholar
  592. 592.
    Horn SJ (2000) Bioenergy from brown seaweeds. Doctorate, Norwegian University of Science and Technology, TrondheimGoogle Scholar
  593. 593.
    Reith J, Deurwaarder E, Hemmes K, Curvers A, Kamermans P, Brandenburg W, Zeeman G (2005) Bio-offshore: grootschalige teelt van zeewieren in combinatie met offshore windparken in de Noordzee. ECN, Energy Research Centre of the Netherlands, The NetherlandsGoogle Scholar
  594. 594.
    Uziel M (1978) Solar energy fixation and conversion with algal bacterial systems. PhD thesis, University of California, BerkeleyGoogle Scholar
  595. 595.
    Archipretre M (1981) Culture et utilisation d’algues marines: etude de methanisation. Memoire de Diplome d’Etudes Approfondies: Amélioration et transformation des productions vegetales et microbiennes. University of Science and Technology Lille, France, p 52Google Scholar
  596. 596.
    Wise DL, Augenstein DC, Ryther JH (1979) Methane fermentation of aquatic biomass. Resour Recover Conserv 4(3):217–237CrossRefGoogle Scholar
  597. 597.
    Amon T, Kryvoruchko V, Bodiroza V, Machmuller A, Amon B (2007) Methane yield and biogas quality of Aegina Karnagio Kolona (seaweed). Methods (2007) Issue: February, pages: 1–8Google Scholar
  598. 598.
    Brouard F, Bories A, Sauze F (1982) Advance in anaerobic digestion of aquatic plants. Paper presented at the Energy from Biomass. 2nd EC Conference, Berlin, 20–23 Sept 1982Google Scholar
  599. 599.
    Croatto U (1982) Energy from macroalgae of the Venice lagoon. In: Strub A, Chartier P, Schlesser G (eds) Energy from biomass. Second EC conference, Berlin, 20–23 Sept 1982. Elsevier Applied Science, London, pp 329–333Google Scholar
  600. 600.
    Nicolini S, Viglia A (1985) Anaerobic digestion of macroalgae in the lagoon of Venice: experiences with a 5m3 capacity pilot reactor. In: Palz W, Coombs H, Hall DO (eds) Energy from the biomass: third EC conference, Venice. Elsevier Applied Science, London, pp 614–616Google Scholar
  601. 601.
    Missoni M, Mazzagardi M (1985) Production of algal biomass in Venice lagoon, environmental and energetics aspects. In: Palz W, Coombs H, Hall DO (eds) Energy from the biomass: third EC conference, Venice. Elsevier Applied Science, London, pp 384–386Google Scholar
  602. 602.
    De Waart J (1988) Biogas from seaweeds. In: Morand P, Schulte EH (eds) Aquatic primary biomass (marine macroalgae): biomass conversion, removal and use of nutrients. I. Proceedings of the first workshop of the COST48 SubGroup 3, L’Houmeau, France. Commission of the European Communities, DG XII/F Biotechnology, pp 109–110Google Scholar
  603. 603.
    Orlandini M, Favretto L (1988) Utilization of macroalgae in Italy for pollution abatement and as source of energy and chemicals. In: Morand P, Schulte EH (eds) Aquatic primary biomass (marine macroalgae): biomass conversion, removal and use of nutrients. I. Proceedings of the first workshop of the COST48 Sub-Group 3, L’Houmeau, France. Commission of the European Communities, DG XII/F Biotechnology, pp 25–28Google Scholar
  604. 604.
    Cecchi F, Pavan P, Mata-Alvarez J (1996) Anaerobic co-digestion of sewage sludge: application to the macroalgae from the Venice lagoon. Resour Conserv Recycling 17(1):57–66. doi: 10.1016/0921-3449(96)88182-1 CrossRefGoogle Scholar
  605. 605.
    Rye C (1988) The use of algal for nutrient removal and as raw material for the industry with examples from Danish activities. In: de Waart J, Nienhuis PH (eds) Aquatic primary biomass (marine macroalgae): biomass conversion, removal and use of nutrients. II. Proceedings of the second workshop of the COST 48 Sub-Group 3., Zeist and Yerseke, The Netherlands, 25–27 October 1988. Commission of the European Communities, DG XII/F Biotechnology, Brussels, pp 8–11Google Scholar
  606. 606.
    Fannin KF, Srivastava VJ, Chynoweth D (1982) Unconventional anaerobic digester design for improving methane yield. In: Energy from biomass and wastes VI, Lake Buena Vista, pp 373–396Google Scholar
  607. 607.
    Ghosh S, Conrad JR, Sedzielarz FS, Griswold KH, Henry MP, Bortz SJ, Klass DL (1976) Research study to determine the feasibility of production methane gas from sea kelp. Institute of Gas Technology, ChicagoGoogle Scholar
  608. 608.
    Tarwadi SJ, Chauhan VD (1987) Seaweed biomass as a source of energy. Energy 12(5):375–378CrossRefGoogle Scholar
  609. 609.
    Asinari Di San Marzano CM, Legros A, Naveau H, Nyns E (1982) Biomethanation of the marine algae Tetraselmis. Int J Sustain Energy 1(4):263–272Google Scholar
  610. 610.
    Yokoyama S, Jonouchi K, Imou K (2008) Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed. Int J Appl Sci Eng Technol 4:168–175Google Scholar
  611. 611.
    Troiano R, Wise D, Augenstein D, Kispert R, Cooney C (1976) Fuel gas production by anaerobic digestion of kelp. Resour Recover Conserv 2:171–176CrossRefGoogle Scholar
  612. 612.
    Sanchez Hernandez EP, Travieso Cordoba L (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour Conserv Recycling 9(1–2):127–132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Geography and Environmental EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations