Closed Bioreactors as Tools for Microalgae Production

  • Robert Dillschneider
  • Clemens Posten


A variety of high value products have so far been produced with algae and the transition to algae mass cultures for the energy market currently arouses the interest of research and industry. The key to efficient cultivation of microalgae is the optimization of photobioreactors that does not only allow for efficient light capture but also takes account of the specific physiological requirements of microalgae. Three fundamental reactor designs (bubble columns, flat plate reactors, and tubular reactors) are common and are discussed together with some elaborate derivatives in the following. Every concept excels with specific advantages in terms of light distribution, fluid dynamics, avoidance of gradients, and utilization of the intermittent light effect. However, the integration of all beneficial characteristics and simultaneously the compliance with energetic and economic constraints still imposes demanding challenges on engineering.


Tubular Reactor Bubble Column Energy Market Light Distribution Cycle Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it, Biotechnology Advances, ISSN 0734–9750, 10.1016/j.biotechadv.2012.02.055. Accessed 14 Feb 2012CrossRefGoogle Scholar
  2. 2.
    Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143(2):113–134CrossRefGoogle Scholar
  3. 3.
    Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14(3):169–184CrossRefGoogle Scholar
  4. 4.
    Ben-Gurion University of the Negev—Microalgal Biotechnology Laboratory—facilities. Accessed 15 Aug 2010
  5. 5.
    Borowitzka M (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9(5):393–401CrossRefGoogle Scholar
  6. 6.
    Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448CrossRefGoogle Scholar
  7. 7.
    Buehner M, Young P, Willson B et al (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. In: American control conference, vol 1–9. IEEE Press, Piscataway, NJGoogle Scholar
  8. 8.
    Camacho Rubio F et al (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376CrossRefGoogle Scholar
  9. 9.
    Chini Zittelli G et al (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943CrossRefGoogle Scholar
  10. 10.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefGoogle Scholar
  11. 11.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  12. 12.
    Chiu S et al (2009) The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng Life Sci 9(3):254–260CrossRefGoogle Scholar
  13. 13.
    Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21(3):741–750CrossRefGoogle Scholar
  14. 14.
    Degen J et al (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94CrossRefGoogle Scholar
  15. 15.
    Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412CrossRefGoogle Scholar
  16. 16.
    Eriksen N, Poulsen B, Lønsmann Iversen J (1998) Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J Appl Phycol 10(4):377–382CrossRefGoogle Scholar
  17. 17.
    Fan L-H et al (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325(1):336–345CrossRefGoogle Scholar
  18. 18.
    Hall DO et al (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73CrossRefGoogle Scholar
  19. 19.
    Holland L, Siddall G (1958) Heat-reflecting windows using gold and bismuth oxide films. Br J Appl Phys 9(9):359CrossRefGoogle Scholar
  20. 20.
    Janssen M et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210CrossRefGoogle Scholar
  21. 21.
    Janssen M et al (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 29(4–5):298–305CrossRefGoogle Scholar
  22. 22.
    Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21(2):245–258CrossRefGoogle Scholar
  23. 23.
    Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526CrossRefGoogle Scholar
  24. 24.
    Molina E et al (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12(3):355–368CrossRefGoogle Scholar
  25. 25.
    Molina E et al (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131CrossRefGoogle Scholar
  26. 26.
    Morweiser M et al (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301CrossRefGoogle Scholar
  27. 27.
    Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285CrossRefGoogle Scholar
  28. 28.
    Perner-Nochta I, Lucumi A, Posten C (2007) Photoautotrophic cell and tissue culture in a tubular photobioreactor. Eng Life Sci 7(2):127–135CrossRefGoogle Scholar
  29. 29.
    Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels–a process view. J Biotechnol 142(1):64–69CrossRefGoogle Scholar
  30. 30.
    Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177CrossRefGoogle Scholar
  31. 31.
    Proviron (2009) Accessed 20 July 2010
  32. 32.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648CrossRefGoogle Scholar
  33. 33.
    Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293CrossRefGoogle Scholar
  34. 34.
    Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512(1):33–37CrossRefGoogle Scholar
  35. 35.
    Ripplinger P (2009) Industrial production of microalgal biomass with a Flat-Panel-Airlift-Bioreactor. Biotechnology Colloquium, KöthenGoogle Scholar
  36. 36.
    Rodolfi L et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  37. 37.
    Rosello Sastre R et al (2007) Scale-down of microalgae cultivations in tubular photo-bioreactors–a conceptual approach. J Biotechnol 132(2):127–133CrossRefGoogle Scholar
  38. 38.
    Rosenberger S, Olbers G, Heinz D (2008) Infrared-reflective material comprising interference pigments having higher transmission in the visible region than in the NIR region. United States Patent 7410685Google Scholar
  39. 39.
    Rubio FC et al (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86CrossRefGoogle Scholar
  40. 40.
    Sánchez Mirón A et al (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1–3):249–270CrossRefGoogle Scholar
  41. 41.
    Sánchez Mirón A et al (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31(7):1015–1023CrossRefGoogle Scholar
  42. 42.
    Sierra E et al (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1–3):136–147CrossRefGoogle Scholar
  43. 43.
    Solix Biofuels (2010) Accessed 20 July 2010
  44. 44.
    Sukenik A et al (1991) Optimizing algal biomass production in an outdoor pond: a simulation model. J Appl Phycol 3(3):191–201CrossRefGoogle Scholar
  45. 45.
    Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. Patent WO 2004/074423 A2 (to Universita `degli Studi di Firenze)Google Scholar
  46. 46.
    Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162CrossRefGoogle Scholar
  47. 47.
    Willson B (2009) Low-cost photobioreactors for production of algae-biofuels. In: GTOBiofuels: science and innovation for sustainable development conference, San Francisco, CAGoogle Scholar
  48. 48.
    Willson B (2010) Got impact? Cross-disciplinary partnerships for large-scale global change. In: EWB-USA international conferenceGoogle Scholar
  49. 49.
    Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15(5):379–389CrossRefGoogle Scholar
  50. 50.
    Yatabe T, Nishihara T, Suzuki N (1987) Optical laminar structure. United States Patent 4639069Google Scholar
  51. 51.
    Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159CrossRefGoogle Scholar
  52. 52.
    Zijffers J-W et al (2008) Design process of an area-efficient photobioreactor. Marine Biotechnol 10(4):404–415CrossRefGoogle Scholar
  53. 53.
    Zittelli GC, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15(2):107–114CrossRefGoogle Scholar
  54. 54.
    Jacobi A, Ivanova D, Posten C (2010) Photobioreactors: Hydrodynamics and mass transfer in Computer Applications in Biotechnology (CAB). Leuven: IFAC. 162–167Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division III: Bioprocess EngineeringInstitute of Life Science EngineeringKarlsruheGermany

Personalised recommendations