Bioprocess Engineering Aspects of Biodiesel and Bioethanol Production from Microalgae

  • Ronald Halim
  • Razif Harun
  • Paul A. Webley
  • Michael K. Danquah


Rapid increase of atmospheric carbon dioxide together with depleted supplies of fossil fuel has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation and high carbohydrate storage capacity, microalgae are viewed as promising feedstocks for carbon-neutral biofuels. This chapter discusses process engineering steps for the production of biodiesel and bioethanol from microalgal biomass (harvesting, dewatering, pre-treatment, lipid extraction, lipid transmethylation, anaerobic fermentation). The suitability of microalgal lipid compositions for biodiesel conversion and the feasibility of using microalgae as raw materials for bioethanol production will also be evaluated. Specific to biodiesel production, the chapter provides an updated discussion on two of the most commonly used technologies for microalgal lipid extraction (organic solvent extraction and supercritical fluid extraction) and evaluates the effects of biomass pre-treatment on lipid extraction kinetics.


Polar Lipid Neutral Lipid Lipid Extraction Supercritical Fluid Extraction Microalgal Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by an Australian Research Council (ARC) Linkage grant between Bio-Fuel Pty Ltd (Victoria, Australia) and Monash University Department of Chemical Engineering (Victoria, Australia).


  1. 1.
    Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R (2005) Supercritical fluid extraction of bioactive lipids from the microalgae Nannochloropsis sp. Eur J Lipid Sci Technol 107:381–386CrossRefGoogle Scholar
  2. 2.
    Andrich G, Zinnai A, Nesti U, Venturi F, Fiorentini R (2006) Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Aliment 35(2):195–203CrossRefGoogle Scholar
  3. 3.
    Applied separations website (2009) Accessed 30 June 2009
  4. 4.
    Ballesteros I, Ballesteros M, Manzanares P, Negro MJ, Oliva JM, Sailez F (2008) Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochem Eng J 42:84–91CrossRefGoogle Scholar
  5. 5.
    Becker EW (1994) Microalgae: biotechnology and microbiology. In: Baddiley J, Carey NH, Higgins IJ, Potter WG (eds) Cambridge studies in biotechnology. Cambridge University Press, New York, p 178Google Scholar
  6. 6.
    Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331CrossRefGoogle Scholar
  7. 7.
    Canela APRF, Rosa PTV, Marques MOM, Meireles MAA (2002) Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima. Ind Eng Chem Res 41:3012–3018CrossRefGoogle Scholar
  8. 8.
    Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. Crit rev microbiol 13:219–280CrossRefGoogle Scholar
  9. 9.
    Chen M, Zhao J, Xia L (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenerg 33:1381–1385CrossRefGoogle Scholar
  10. 10.
    Cheung P (1999) Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem 65:399–403CrossRefGoogle Scholar
  11. 11.
    Chisti Y (2007) Research review paper: biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  12. 12.
    Chisti Y, Moo-Young M (1986) Review: disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204CrossRefGoogle Scholar
  13. 13.
    Choi S, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336CrossRefGoogle Scholar
  14. 14.
    Christie WW (2007) Methylation of fatty acids—a beginner’s guide. Accessed 5 Apr 2009
  15. 15.
    Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78CrossRefGoogle Scholar
  16. 16.
    De Angelis L, Rise P, Giavarini F, Galli C, Bolis CL, Colombo ML (2005) Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. J Mass Spectrom 40:1605–1608CrossRefGoogle Scholar
  17. 17.
    Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energ Convers Manage 49:125–130CrossRefGoogle Scholar
  18. 18.
    Demirbas A (2009) Biofuels from agricultural biomass. Energ Source Part A, 31:1573–1582Google Scholar
  19. 19.
    Demirbas A, Karslioglu S (2007) Biodiesel production facilities from vegetable oils and animal fats. Energy Sources Part A 29:133–141CrossRefGoogle Scholar
  20. 20.
    Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J appl phycol 5:71–83CrossRefGoogle Scholar
  21. 21.
    Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134CrossRefGoogle Scholar
  22. 22.
    Fajardo AR, Cerdan LE, Medina AR, Fernandez FGA, Moreno PAG, Grima EM (2007) Lipid extraction from the microalga Phaedactylum tricornutum. Eur J Lipid Sci Tech 109:120–126CrossRefGoogle Scholar
  23. 23.
    Folch J, Ascoli I, Lees M, Meath JA, Lebaron FN (1951) Preparation of lipide extracts from brain tissue. J Biol Chem 191(2):833–841Google Scholar
  24. 24.
    Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65Google Scholar
  25. 25.
    Garcia Sanchez R, Karhumaa K, Fonseca C (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13CrossRefGoogle Scholar
  26. 26.
    Guckert JB, Cooksey KE, Jackson LL (1988) Lipid solvent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8:139–149CrossRefGoogle Scholar
  27. 27.
    Harun R, Singh M, Forde GM (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRefGoogle Scholar
  28. 28.
    Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae, a review. Food Chem 98:136–148CrossRefGoogle Scholar
  29. 29.
    Hu G, Heitmann JA, Rojas OJ (2008) Feedstock pre-treatment strategies for ethanol from wood, bark and forest residues. Bioresour Technol 3:270–294Google Scholar
  30. 30.
    Kates M (1986) Definition and classification of lipids. In: Bordon RH, Knippenberg PH (eds) Techniques of lipidology: isolation, analysis, and identification of lipids. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80:53–62CrossRefGoogle Scholar
  32. 32.
    Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77CrossRefGoogle Scholar
  33. 33.
    Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green algae Botryococcus braunii. Biotechnol Tech 7:553–556CrossRefGoogle Scholar
  34. 34.
    Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  35. 35.
    Luque de Castro MD, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10CrossRefGoogle Scholar
  36. 36.
    Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energ Environ 21:403–465CrossRefGoogle Scholar
  37. 37.
    Macias-Sanchez MD, Mantell C, Rodriguez M, de la Ossa EM, Lubian LM, Montero O (2007) Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. J Supercrit Fluid 39:323–329CrossRefGoogle Scholar
  38. 38.
    Madigan MT, Martinko JM, Parker J (2000) Nutrition and metabolism. In: Madigan MT, Martinko JM, Parker J (eds) Brock biology of microbiology. Prentice-Hall, New JerseyGoogle Scholar
  39. 39.
    Medina AR, Grima EM, Gimenez AG, Ibanez MJ (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16(3):517–580CrossRefGoogle Scholar
  40. 40.
    Mendes RL, Coelho JP, Fernandes HL, Marrucho IJ, Cabral JM, Novais JM, Palavra AF (1995) Applications of supercritical CO2 extraction to microalgae and plants. J Chem Technol Biotechnol 62:53–59CrossRefGoogle Scholar
  41. 41.
    Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 357:328–334CrossRefGoogle Scholar
  42. 42.
    Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of gamma-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: comparison with organic solvent extraction. Food Chem 99:57–63CrossRefGoogle Scholar
  43. 43.
    Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects of astaxanthin recovery and implications for bio-availability. J appl phycol 13:19–24CrossRefGoogle Scholar
  44. 44.
    Moen E (2008) Biological degradation of brown seaweeds. The potential of marine biomass for anaerobic biogas production. Scottish Association for Marine Science, Oban, ScotlandGoogle Scholar
  45. 45.
    Molina Grima E, Belarbi E-H, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  46. 46.
    Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24:355–361CrossRefGoogle Scholar
  47. 47.
    Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161CrossRefGoogle Scholar
  48. 48.
    Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith R, Inomata H (2009) Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresour Technol 100:5237–5242CrossRefGoogle Scholar
  49. 49.
    Pimentel D, Patzek TW (2008) Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. In: Pimentel D (ed) Biofuels, solar, wind as renewable energy systems. Springer, Netherlands, pp 357–371CrossRefGoogle Scholar
  50. 50.
    Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis—review. J Chromatogr A 1163:2–24CrossRefGoogle Scholar
  51. 51.
    Ramadan MF, Asker MHS, Ibrahim ZK (2008) Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech J Food Sci 26(3):211–222Google Scholar
  52. 52.
    Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc Biochem 40:3693–3700CrossRefGoogle Scholar
  53. 53.
    Sajilata MG, Singhal RS, Kamat MY (2008) Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J Food Eng 84:321–326CrossRefGoogle Scholar
  54. 54.
    Schenk P, Thomas-Hall S, Stephens E (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. BioEnerg Res 1:20–43CrossRefGoogle Scholar
  55. 55.
    Schwartzberg HG (1997) Mass transfer in a countercurrent, supercritical extraction system for solutes in moist solids. Chem Eng Commun 157:1–22CrossRefGoogle Scholar
  56. 56.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. In: Close-Out Report by National Renewable Energy Laboratory, Golden, Colorado. Report no.: NREL/TP-580-24190. Accessed 10 April 2009
  57. 57.
    Shenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnerg Res 1(1):20–43CrossRefGoogle Scholar
  58. 58.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  59. 59.
    Taylor LT (1996) Supercritical fluid extraction. Wiley, New YorkGoogle Scholar
  60. 60.
    Usov AI, Smirnova GP, Klochkova NG (2001) Polysaccharides of algae: 55 polysaccharide composition of several brown algae from Kamchatka Russian. J Bioorgan Chem 27:395–399CrossRefGoogle Scholar
  61. 61.
    Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240CrossRefGoogle Scholar
  62. 62.
    Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Tech 17:300–312CrossRefGoogle Scholar
  63. 63.
    Wayman M (1969) Cellulases and their applications. American Chemical Society, Washington, DCGoogle Scholar
  64. 64.
    Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20CrossRefGoogle Scholar
  65. 65.
    Zhang X, Shen Y, Shi W (2010) Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol 101:7104–7110Google Scholar
  66. 66.
    Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101(13):4992–5002CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ronald Halim
    • 1
  • Razif Harun
    • 1
  • Paul A. Webley
    • 1
  • Michael K. Danquah
    • 1
  1. 1.Bio Engineering Laboratory (BEL), Department of Chemical EngineeringMonash UniversityVictoriaAustralia

Personalised recommendations