Functional and Structural MRI: Theoretical Background and Practical Aspects

  • Lukas ScheefEmail author
  • Henning Boecker


The following chapter will provide a treatise of MRI-based functional and structural imaging methods. It will start with a short summary of the physiological foundations of contemporary MRI-based functional imaging methods. We will continue with a general overview of pre- and post-processing steps that are relevant for the analysis of functional imaging time series. Data analysis issues will be presented as well as paradigm designs for assessing brain function. The subsequent discussion of structural image analysis methods will primarily focus on voxel-based morphometry (VBM), deformation-based morphometry (DBM), and diffusion tensor imaging (DTI).


Fractional Anisotropy Diffusion Tensor Imaging Independent Component Analysis Mean Diffusibility Arterial Spin Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8:360–369PubMedCrossRefGoogle Scholar
  2. Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500PubMedCrossRefGoogle Scholar
  3. Akgoren N, Dalgaard P, Lauritzen M (1996) Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain Res 710:204–214PubMedCrossRefGoogle Scholar
  4. Alexander DC (2005) Multiple-fiber reconstruction algorithms for diffusion MRI. Ann N Y Acad Sci 1064:113–133PubMedCrossRefGoogle Scholar
  5. Amaro E Jr, Barker GJ (2006) Study design in fMRI: basic principles. Brain Cogn 60:220–232PubMedCrossRefGoogle Scholar
  6. Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. Neuroimage 13:903–919PubMedCrossRefGoogle Scholar
  7. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113PubMedCrossRefGoogle Scholar
  8. Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11:805–821PubMedCrossRefGoogle Scholar
  9. Ashburner J, Friston K (2007a) Non-linear registration. In: Friston KJ, Ashburner J, Kiebel S, Nichols TE, Penny W (eds) Statistical parametric mapping: the analysis of functional brain images. Academic, London, pp 63–80Google Scholar
  10. Ashburner J, Friston KJ (2007b) Rigid body registration. In: Friston KJ, Ashburner J, Kiebel S, Nichols TE, Penny W (eds) Statistical parametric mapping: the analysis of functional brain images. Academic Press, London, pp 49–60Google Scholar
  11. Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K (1998) Identifying global anatomical differences: deformation-based morphometry. Hum Brain Mapp 6:348–357PubMedCrossRefGoogle Scholar
  12. Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol 2:79–88PubMedCrossRefGoogle Scholar
  13. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625PubMedCrossRefGoogle Scholar
  14. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243PubMedCrossRefGoogle Scholar
  15. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedCrossRefGoogle Scholar
  16. Bandettini PA, Wong EC, DeYoe EA, Binder JR, Rao SM, Birzer D (1993) The functional dynamics of blood oxygenlevel dependent contrast in the motor cortex. Proc Int Soc Magn Reson Med, New York, p 1382Google Scholar
  17. Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. Neuroimage 20:1052–1063PubMedCrossRefGoogle Scholar
  18. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Phil Trans R Soc Lond B Biol Sci 360:1001–1013CrossRefGoogle Scholar
  19. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003a) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757PubMedCrossRefGoogle Scholar
  20. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003b) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088PubMedCrossRefGoogle Scholar
  21. Behzadi Y, Liu TT (2006) Caffeine reduces the initial dip in the visual BOLD response at 3 T. Neuroimage 32:9–15PubMedCrossRefGoogle Scholar
  22. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 57:289–300Google Scholar
  23. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155PubMedCrossRefGoogle Scholar
  24. Bennett CM, Miller MB, Wolford GL (2009) Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: an argument for multiple comparisons correction. NeuroImage 47(Suppl 1):S125CrossRefGoogle Scholar
  25. Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11069–11073PubMedCrossRefGoogle Scholar
  26. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  27. Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3:243–249PubMedCrossRefGoogle Scholar
  28. Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JD (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187PubMedCrossRefGoogle Scholar
  29. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951PubMedCrossRefGoogle Scholar
  30. Buckner RL, Bandettini PA, O’Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93:14878–14883PubMedCrossRefGoogle Scholar
  31. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRefGoogle Scholar
  32. Buxton RB (2001) The elusive initial dip. Neuroimage 13:953–958PubMedCrossRefGoogle Scholar
  33. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72PubMedCrossRefGoogle Scholar
  34. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864PubMedCrossRefGoogle Scholar
  35. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132, A journal devoted to the study of the nervous system and behaviorPubMedCrossRefGoogle Scholar
  36. Chein JM, Schneider W (2003) Designing Efficient fMRI Experiments. In: Grafman J, Robertson IH (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 299–326Google Scholar
  37. Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS (2009) Disease state prediction from resting state functional connectivity. Magn Reson Med 62:1619–1628PubMedCrossRefGoogle Scholar
  38. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP (2005) Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 24:1548–1565PubMedCrossRefGoogle Scholar
  39. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340PubMedCrossRefGoogle Scholar
  40. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194PubMedCrossRefGoogle Scholar
  41. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441PubMedCrossRefGoogle Scholar
  42. Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clinical Neurophysiol 113:621–634CrossRefGoogle Scholar
  43. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL (2001) Dissociating state and item components of recognition memory using fMRI. NeuroImage 13:129–142CrossRefGoogle Scholar
  44. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312PubMedCrossRefGoogle Scholar
  45. Ernst T, Hennig J (1994) Observation of a fast response in functional MR. Magn Reson Med 32:146–149PubMedCrossRefGoogle Scholar
  46. Figley CR, Stroman PW (2011) The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588PubMedCrossRefGoogle Scholar
  47. Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207PubMedCrossRefGoogle Scholar
  48. Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284PubMedCrossRefGoogle Scholar
  49. Friston KJ (1998) Modes or models: a critique on independent component analysis for fMRI. Trends Cogn Sci 2:373–375PubMedCrossRefGoogle Scholar
  50. Friston KJ (2005) Models of brain function in neuroimaging. Annu Rev Psychol 56:57–87PubMedCrossRefGoogle Scholar
  51. Friston K (2011) Functional and effective connectivity: a review. Brain Connectivity 1:13–36PubMedCrossRefGoogle Scholar
  52. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1994a) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  53. Friston KJ, Tononi G, Reeke GN Jr, Sporns O, Edelman GM (1994b) Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 59:229–243PubMedCrossRefGoogle Scholar
  54. Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ (1996) The trouble with cognitive subtraction. Neuroimage 4:97–104PubMedCrossRefGoogle Scholar
  55. Friston KJ, Zarahn E, Josephs O, Henson RN, Dale AM (1999) Stochastic designs in event-related fMRI. Neuroimage 10:607–619PubMedCrossRefGoogle Scholar
  56. Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512PubMedCrossRefGoogle Scholar
  57. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302, Official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in MedicinePubMedCrossRefGoogle Scholar
  58. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRefGoogle Scholar
  59. Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K (2007) Brain functional localization: a survey of image registration techniques. IEEE Trans Med Imaging 26:427–451PubMedCrossRefGoogle Scholar
  60. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36PubMedCrossRefGoogle Scholar
  61. Gossl C, Auer DP, Fahrmeir L (2000) Dynamic models in fMRI. Magn Reson Med 43:72–81PubMedCrossRefGoogle Scholar
  62. Harris JJ, Reynell C, Attwell D (2011) The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 1:199–216PubMedCrossRefGoogle Scholar
  63. Hartman D, Hlinka J, Palus M, Mantini D, Corbetta M (2011) The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21:013119PubMedCrossRefGoogle Scholar
  64. Hoenig K, Kuhl CK, Scheef L (2005) Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging? Radiology 234:860–868PubMedCrossRefGoogle Scholar
  65. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999a) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42:849–863PubMedCrossRefGoogle Scholar
  66. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999b) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96:9403–9408PubMedCrossRefGoogle Scholar
  67. Holmes AP, Blair RC, Watson JD, Ford I (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRefGoogle Scholar
  68. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430PubMedCrossRefGoogle Scholar
  69. Josephs O, Henson RN (1999) Event-related functional magnetic resonance imaging: modelling, inference and optimization. Phil Trans R Soc Lond B Biol Sci 354:1215–1228CrossRefGoogle Scholar
  70. Kingsley PB (2006a) Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concept Magn Reson A 28A:101–122CrossRefGoogle Scholar
  71. Kingsley PB (2006b) Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concept Magn Reson A 28A:123–154CrossRefGoogle Scholar
  72. Kingsley PB (2006c) Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concept Magn Reson A 28A:155–179CrossRefGoogle Scholar
  73. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802PubMedCrossRefGoogle Scholar
  74. Kruggel F, von Cramon DY (1999) Modeling the hemodynamic response in single-trial functional MRI experiments. Magn Reson Med 42:787–797PubMedCrossRefGoogle Scholar
  75. Kwong KK (2011) Record of a single fMRI experiment in May of 1991. Neuroimage. doi: 10.1016/j.neuroimage.2011.07.089 [Epub ahead of print]
  76. Li YO, Yang FG, Nguyen CT, Cooper SR, Lahue SC, Venugopal S, Mukherjee P (2011) Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Hum Brain Mapp. doi: 10.1002/hbm.21292 [Epub ahead of print]
  77. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768PubMedCrossRefGoogle Scholar
  78. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878PubMedCrossRefGoogle Scholar
  79. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  80. Magri C, Logothetis NK, Panzeri S (2011) Investigating static nonlinearities in neurovascular coupling. Magn Reson Imaging 29:1358–1364PubMedCrossRefGoogle Scholar
  81. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97:4398–4403PubMedCrossRefGoogle Scholar
  82. Mandeville JB, Marota JJ, Ayata C, Zaharchuk G, Moskowitz MA, Rosen BR, Weisskoff RM (1999) Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19:679–689PubMedCrossRefGoogle Scholar
  83. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K (2009) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29:441–463PubMedCrossRefGoogle Scholar
  84. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188PubMedCrossRefGoogle Scholar
  85. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216PubMedCrossRefGoogle Scholar
  86. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33:453–459PubMedCrossRefGoogle Scholar
  87. Menon RS, Luknowsky DC, Gati JS (1998) Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci USA 95:10902–10907PubMedCrossRefGoogle Scholar
  88. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11:735–759PubMedCrossRefGoogle Scholar
  89. Muthukumaraswamy SD, Evans CJ, Edden RA, Wise RG, Singh KD (2011) Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition. Hum Brain Mapp 33:455–465PubMedCrossRefGoogle Scholar
  90. Neggers SF, Hermans EJ, Ramsey NF (2008) Enhanced sensitivity with fast three-dimensional blood-oxygen-level-dependent functional MRI: comparison of SENSE-PRESTO and 2D-EPI at 3 T. NMR Biomed 21:663–676PubMedCrossRefGoogle Scholar
  91. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRefGoogle Scholar
  92. Nirkko AC (2003) Nitric oxide-an endogenous contrast agent contributing to “the elusive initial dip?”. NeuroImage 20:611–612PubMedCrossRefGoogle Scholar
  93. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  94. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedCrossRefGoogle Scholar
  95. Osterbauer RA, Wilson JL, Calvert GA, Jezzard P (2006) Physical and physiological consequences of passive intra-oral shimming. Neuroimage 29:245–253PubMedCrossRefGoogle Scholar
  96. Parker GJ, Alexander DC (2003) Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. Inf Process Med Imaging 18:684–695PubMedCrossRefGoogle Scholar
  97. Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging: JMRI 18:242–254PubMedCrossRefGoogle Scholar
  98. Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 22:210–216PubMedCrossRefGoogle Scholar
  99. Petersson KM, Nichols TE, Poline JB, Holmes AP (1999a) Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Phil Trans R Soc Lond B Biol Sci 354:1239–1260CrossRefGoogle Scholar
  100. Petersson KM, Nichols TE, Poline JB, Holmes AP (1999b) Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. Philos Trans R Soc Lond B Biol Sci 354:1261–1281PubMedCrossRefGoogle Scholar
  101. Poline JB, Worsley KJ, Evans AC, Friston KJ (1997) Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5:83–96PubMedCrossRefGoogle Scholar
  102. Roche A (2011) A four-dimensional registration algorithm with application to joint correction of motion and slice timing in FMRI. IEEE Trans Med Imaging 30:1546–1554PubMedCrossRefGoogle Scholar
  103. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedCrossRefGoogle Scholar
  104. Savoy RL (2005) Experimental design in brain activation MRI: cautionary tales. Brain Res Bull 67:361–367PubMedCrossRefGoogle Scholar
  105. Savoy RL, O’Craven KM, Weisskoff RM, Davis TL, Baker J, Rosen BR (1994) Exploring the tempral boundaries of fMRI: measuring responses to very brief stimuli. 24th. Annual Meeting of the Society of Neuroscience, Miami, p 1264Google Scholar
  106. Schmiedeskamp H, Newbould RD, Pisani LJ, Skare S, Glover GH, Pruessmann KP, Bammer R (2010) Improvements in parallel imaging accelerated functional MRI using multiecho echo-planar imaging. Magn Reson Med 63:959–969PubMedCrossRefGoogle Scholar
  107. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075PubMedCrossRefGoogle Scholar
  108. Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43:554–561PubMedCrossRefGoogle Scholar
  109. Sladky R, Friston KJ, Trostl J, Cunnington R, Moser E, Windischberger C (2011) Slice-timing effects and their correction in functional MRI. NeuroImage 58:588–594PubMedCrossRefGoogle Scholar
  110. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155PubMedCrossRefGoogle Scholar
  111. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505PubMedCrossRefGoogle Scholar
  112. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54:875–891PubMedCrossRefGoogle Scholar
  113. Sporns O (2011) Networks of the brain. MIT Press, Cambridge, MAGoogle Scholar
  114. Stephan KE, Friston KJ (2010) Analyzing effective connectivity with fMRI. Wiley interdisciplinary reviews. Cogn Sci 1:446–459Google Scholar
  115. Stone JV (2002) Independent component analysis: an introduction. Trends Cogn Sci 6:59–64PubMedCrossRefGoogle Scholar
  116. Takao H, Hayashi N, Ohtomo K (2011) Effect of scanner in longitudinal studies of brain volume changes. J Magn Reson Imaging: JMRI 34:438–444PubMedCrossRefGoogle Scholar
  117. Talairach J, Tournoux P (1988) Co-planar stereotaxic Atlas of the human brain. Thieme, StuttgardGoogle Scholar
  118. Teipel SJ, Bokde AL, Meindl T, Amaro E Jr, Soldner J, Reiser MF, Herpertz SC, Moller HJ, Hampel H (2010) White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 49:2021–2032PubMedCrossRefGoogle Scholar
  119. Tepest R, Wang L, Csernansky JG, Neubert P, Heun R, Scheef L, Jessen F (2008) Hippocampal surface analysis in subjective memory impairment, mild cognitive impairment and Alzheimer’s dementia. Dement Geriatr Cogn Disord 26:323–329PubMedCrossRefGoogle Scholar
  120. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270PubMedCrossRefGoogle Scholar
  121. Tian P, Teng IC, May LD, Kurz R, Lu K, Scadeng M, Hillman EM, De Crespigny AJ, D’Arceuil HE, Mandeville JB, Marota JJ, Rosen BR, Liu TT, Boas DA, Buxton RB, Dale AM, Devor A (2010) Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc Natl Acad Sci USA 107:15246–15251PubMedCrossRefGoogle Scholar
  122. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250PubMedCrossRefGoogle Scholar
  123. Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 30:2701–2721PubMedCrossRefGoogle Scholar
  124. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534PubMedCrossRefGoogle Scholar
  125. van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434PubMedCrossRefGoogle Scholar
  126. Vanzetta I, Grinvald A (2001) Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging. Neuroimage 13:959–967PubMedCrossRefGoogle Scholar
  127. Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309PubMedCrossRefGoogle Scholar
  128. Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281:1188–1191PubMedCrossRefGoogle Scholar
  129. Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802PubMedCrossRefGoogle Scholar
  130. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  131. Weiskopf N, Hutton C, Josephs O, Turner R, Deichmann R (2007) Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. MAGMA 20:39–49PubMedCrossRefGoogle Scholar
  132. Wilson JL, Jezzard P (2003) Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magn Reson Med 50:1089–1094PubMedCrossRefGoogle Scholar
  133. Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546PubMedCrossRefGoogle Scholar
  134. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM (2004a) Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21:1732–1747PubMedCrossRefGoogle Scholar
  135. Woolrich MW, Behrens TE, Smith SM (2004b) Constrained linear basis sets for HRF modelling using Variational Bayes. Neuroimage 21:1748–1761PubMedCrossRefGoogle Scholar
  136. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73PubMedCrossRefGoogle Scholar
  137. Wright IC, McGuire PK, Poline JB, Travere JM, Murray RM, Frith CD, Frackowiak RS, Friston KJ (1995) A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 2:244–252PubMedCrossRefGoogle Scholar
  138. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001a) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594PubMedCrossRefGoogle Scholar
  139. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X (2001b) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14:408–412PubMedCrossRefGoogle Scholar
  140. Zarahn E, Aguirre G, D’Esposito M (1997) A trial-based experimental design for fMRI. Neuroimage 6:122–138PubMedCrossRefGoogle Scholar
  141. Zeineh MM, Engel SA, Thompson PM, Bookheimer SY (2001) Unfolding the human hippocampus with high resolution structural and functional MRI. Anat Rec 265:111–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Functional Neuroimaging Group, Department of RadiologyUniversity of BonnBonnGermany

Personalised recommendations