Ion Acceleration and Outflow from Mars and Venus: An Overview

  • Rickard LundinEmail author
Part of the Space Sciences Series of ISSI book series (SSSI, volume 37)


Solar wind forcing of Mars and Venus results in outflow and escape of ionospheric ions. Observations show that the replenishment of ionospheric ions starts in the dayside at low altitudes (≈300–800 km), ions moving at a low velocity (5–10 km/s) in the direction of the external/ magnetosheath flow. At high altitudes, in the inner magnetosheath and in the central tail, ions may be accelerated up to keV energies. However, the dominating energization and outflow process, applicable for the inner magnetosphere of Mars and Venus, leads to outflow at energies ≈5–20 eV.

The aim of this overview is to analyze ion acceleration processes associated with the outflow and escape of ionospheric ions from Mars and Venus. Qualitatively, ion acceleration may be divided in two categories:
  1. (a)

    Modest ion acceleration, leading to bulk outflow and/or return flow (circulation).

  2. (b)

    Acceleration to well over escape velocity, up into the keV range.

In the first category we find a processes denoted “planetary wind”, the result of e.g. ambipolar diffusion, wave enhanced planetary wind, and mass-loaded ion pickup. In the second category we find ion pickup, current sheet acceleration, wave acceleration, and parallel electric fields, the latter above Martian crustal magnetic field regions. Both categories involve mass loading. Highly mass-loaded ion energization may lead to a low-velocity bulk flow—A consequence of energy and momentum conservation. It is therefore not self-evident what group, or what processes are connected with the low-energy outflow of ionospheric ions from Mars.

Experimental and theoretical findings on ionospheric ion acceleration and outflow from Mars and Venus are discussed in this report.


Mars and Venus Ionospheric ion acceleration Plasma escape 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.H. Acuña et al., Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279, 1676 (1999) ADSGoogle Scholar
  2. H. Alfvén, On the Origin of the Solar System (Oxford University Press, London, 1953) Google Scholar
  3. P.M. Banks, T.E. Holzer, The polar wind. J. Geophys. Res. 73, 6846 (1968) ADSCrossRefGoogle Scholar
  4. S. Barabash, R. Lundin, H. Andersson, K. Brinkfeldt et al., The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Sci. Rev. 126(1–4), 113–164 (2006) ADSGoogle Scholar
  5. S. Barabash, J.-A. Sauvaud, and the ASPERA-4 Team, The analyzer of space plasmas and energetic atoms (ASPERA-4) for the Venus Express Mission. Planet. Space Sci. 55(12), 1772–1792 (2007a) ADSCrossRefGoogle Scholar
  6. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007b) ADSCrossRefGoogle Scholar
  7. S. Barabash, A. Fedorov, J.J. Sauvaud, R. Lundin, C.T. Russell, Y. Futaana, T.L. Zhang, H. Andersson, K. Brinkfeldt, A. Grigoriev, M. Holmström, M. Yamauchi et al., The loss of ions from Venus through the plasma wake. Nature 450, 770, 650–653 (2007c). doi: 10.038/nature06434 ADSCrossRefGoogle Scholar
  8. D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, D.H. Crider, C. Mazelle, D.L. Mitchell, N.F. Ness, Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107(A6), SMP 9-1 (2002). doi: 10.1029/2000JA000416 CrossRefGoogle Scholar
  9. D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, Geophys Res Lett, 33(1) (2006). doi: 10.1029/2005GL024782
  10. J.C. Brandt, Y. Yi, C.C. Petersen, M. Snow, Comet de Vico (122P) and latitude variations of plasma phenomena. Planet. Space Sci. 45, 813–819 (1997) ADSCrossRefGoogle Scholar
  11. S.H. Brecht, J.R. Ferrante, Global hybrid simulation of unmagnetized planets: comparison of Venus and Mars. J. Geophys. Res. 96, 11209 (1991) ADSCrossRefGoogle Scholar
  12. S.H. Brecht, J.R. Ferrrante, J.G. Luhmann, Three-dimensional simulations of the solar wind interaction with Mars. J. Geophys. Res. 98, 1345 (1993) ADSCrossRefGoogle Scholar
  13. L.H. Brace, A.J. Kliore, The structure of the Venus ionosphere. Space Sci. Rev. 55, 81–164 (1990) ADSGoogle Scholar
  14. L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982) ADSCrossRefGoogle Scholar
  15. L.H. Brace, W.T. Kasprzak, H.A. Taylor, R.F. Theis, C.T. Russell, A. Barnes, J.D. Mihalov, D.M. Hunten, The ionotail of Venus: its configuration and evidence for ion escape. J. Geophys. Res. 92, 15 (1987) ADSCrossRefGoogle Scholar
  16. M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (1996). doi: 10.1029/2002JE001963 CrossRefGoogle Scholar
  17. E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: application to the cases of Venus and Mars. Icarus 124, 537–552 (1996) ADSCrossRefGoogle Scholar
  18. D.H. Crider, D.A. Brain, M.H. Acuña et al., Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111, 203–221 (2004) ADSCrossRefGoogle Scholar
  19. A.J. Coates, Cometary plasma energization. Ann. Geophys. 9, 158–169 (1991) ADSGoogle Scholar
  20. E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55(3), 343–357 (2007) ADSCrossRefGoogle Scholar
  21. C.C. Chaston, L.M. Peticolas, C.W. Carlson, J.P. McFadden et al., Energy deposition by Alfveń waves into the dayside auroral oval:Cluster and FAST observations. J. Geophys. Res. 110, A02211 (2005). doi: 10.1029/2004JA010483 CrossRefGoogle Scholar
  22. M. Delva, T.L. Zhang, M. Volwerk, C.T. Russell, H.Y. Wei, Upstream proton cyclotron waves at Venus. Planet. Space Sci. 56(9), 1293–1299 (2008) ADSCrossRefGoogle Scholar
  23. E.M. Dubinin, R. Lundin, W. Riedler, K. Schwingenshuh, J.G. Luhmann, C.T. Russell, L.H. Brace, Comparison of observed plasma and magnetic field structures in the wakes of Mars and Venus. J. Geophys. Res. 96, 11189 (1991) ADSCrossRefGoogle Scholar
  24. E. Dubinin, R. Lundin, H. Koskinen, N. Pissarenko, Ion acceleration in the martian tail: PHOBOS observations. J. Geophys. Res. 98, 3991 (1993) ADSCrossRefGoogle Scholar
  25. E. Dubinin, D. Winningham, M. Fränz, the ASSPERA-3 team, Solar wind plasma protrusion into the martian magnetosphere—ASPERA-3 observations. Icarus 182(2), 343 (2006a) ADSCrossRefGoogle Scholar
  26. E. Dubinin, R. Lundin, M. Fränz, J. Woch et al., Electric fields within the martian magnetosphere and ion extraction—ASPERA-3 observations. Icarus 182(2), 337 (2006b) ADSCrossRefGoogle Scholar
  27. N.J.T. Edberg, D.A. Brain, M. Lester, S.W.H. Cowley, R. Modolo, M. Fraenz, S. Barabash, Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys. 27, 3537–3550 (2010) ADSCrossRefGoogle Scholar
  28. R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33, 14 (2006). doi: 10.1029/2006GL025785 CrossRefGoogle Scholar
  29. J.R. Espley, P.A. Cloutier, D.H. Crider, D.A. Brain, M.H. Acuña, Low frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. (2005). 2004AGUFMSA13A1120E Google Scholar
  30. Y. Futaana, S. Barabash, A.A. Grigorieva, M. Holmström et al., Sub solar ENA jet at Mars. Icarus 182(2), 413 (2006) ADSCrossRefGoogle Scholar
  31. A. Fedorov et al., Comparative analysis of Venus and Mars magnetotails. Planet. Space Sci. 56, 812–817 (2008). doi: 10.1016/j.pss.2007.12.012 ADSCrossRefGoogle Scholar
  32. A. Fedorov, S. Barabash, J.-A. Sauvaud, Y. Futaana et al., Venus Express measurement of ion escape rates for solar minimum. J. Geophys Res. 116, A07220 (2011). doi: 10.1029/2011JA016-427 CrossRefGoogle Scholar
  33. J. Fox, A. Hac, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009) ADSCrossRefGoogle Scholar
  34. K.I. Gringauz, V.V. Bezrukikh, M.I. Vergin, A.P. Rezimnov, On the electron and ion components of plasma in the antisolar part of near-martian space. J. Geophys. Res. 81, 3349–3352 (1976a) ADSCrossRefGoogle Scholar
  35. K.I. Gringauz, V.V. Bezrukikh, T.K. Berus, T. Gombosi et al., Plasma observations near Venus on board the Venera 9 and 10 satellites by means of wide-angle plasma detectors, in Physics of Solar Planetary environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976b), p. 918 Google Scholar
  36. A. Guglielmi, R. Lundin, Ponderomotive upward acceleration of ions by ion-cyclotron and Alfvén waves over the polar regions. J. Geophys. Res. 106, 13219–13236 (2001) ADSCrossRefGoogle Scholar
  37. T.I. Gombosi, D.L. De Zeeuw, R.M. Häberli, K.G. Powell, Three-dimensional multiscale MHD model of cometary plasma environments. J. Geophys. Res. 101(A7), 15233–15252 (1996) ADSCrossRefGoogle Scholar
  38. H. Gunell, U.V. Amerstorfer, H. Nilsson, C. Grima, M. Koepke, M. Fränz, J.D. Winningham, R.A. Frahm, J.-A. Sauvaud, A. Fedorov, N.V. Erkaev, H.K. Biernat, M. Holmström, R. Lundin, S. Barabash, Shear driven waves in the induced magnetosphere of Mars. Plasma Phys. Control. Fusion 50, 074018 (2008). (9 pp.). doi: 10.1088/0741-3335/50/7/074018 ADSCrossRefGoogle Scholar
  39. M. Güdel, The Sun in time: activity and environment. Living Rev. Solar Physics, 4, 1–137 (2007) ADSGoogle Scholar
  40. W.B. Hanson, S. Sanatani, D.R. Zuccaro, The martian ionosphere as observed by the Viking retarding potential analyzer. J. Geophys. Res. 82, 4351–4363 (1977) ADSCrossRefGoogle Scholar
  41. B. Hultqvist, M. Oieroset, G. Paschmann, R. Treumann (eds.), Magnetospheric plasma sources and losses. Space Sci.Rev. 88, 1–2 (1999) ADSCrossRefGoogle Scholar
  42. D.S. Intriligator, H.R. Collard, J.D. Mihalov, R.C. Whitten, J.H. Wolfe, Electron observations and ion flows from the Pioneer Venus Orbiter plasma analyzer experiment. Science 205, 116–119 (1979) ADSCrossRefGoogle Scholar
  43. R. Järvinen, E. Kallio, P. Jahnunen, et al., Oxygen ion escape from Venus in a global hybrid simulation: role of the ionospheric O+ ions. Ann. Geophys. 27, 4333–4348 (2009) ADSCrossRefGoogle Scholar
  44. E. Kallio, P. Janhunen, Ion escape from Mars in a quasi-neutral hybrid model. J. Geophys. Res. 107, 1035 (2002). doi: 10.1029/2001JA000090 CrossRefGoogle Scholar
  45. E. Kallio, R. Järvinen, P. Janhunen, Venus solar wind interaction: asymmetries and the escape of O + ions. Planet. Space Sci. 54, 1472–1481 (2006). doi: 10.1016/j.pss.2006.04.030 ADSCrossRefGoogle Scholar
  46. Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash, H.K. Biernat, Atmospheric and water loss from early Venus. Planet. Space Sci. 54(13–14), 1425–1444 (2006) ADSCrossRefGoogle Scholar
  47. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 106, 9–25 (2003) ADSCrossRefGoogle Scholar
  48. J.G. Luhmann, The solar wind interaction with Venus and Mars: cometary analogies and contrasts. Geophys. Monogr. 61, 5 (1991) CrossRefGoogle Scholar
  49. J.G. Luhmann, S.J. Bauer, Solar wind effects on atmospheric evolution at Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, AGU Monograph, vol. 66, pp. 417–430 (1992) CrossRefGoogle Scholar
  50. J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457 (1991) ADSCrossRefGoogle Scholar
  51. J.G. Luhmann, S.A. Ledvina, J.G. Lyon, C.T. Russell, Venus O+ pickup ions: collected PVO results and expectations for Venus Express. Planet. Space Sci. 54, 1457–1471 (2006) ADSCrossRefGoogle Scholar
  52. R. Lundin, E. Dubinin, Solar wind energy transfer regions inside the dayside magnetopause. I. Evidence for magnetosheath plasma penetration. Planet. Space Sci. 32, 745–755 (1984) ADSCrossRefGoogle Scholar
  53. R. Lundin, E.M. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars. Adv. Space Res. 12(9), 255 (1992) ADSCrossRefGoogle Scholar
  54. R. Lundin, A. Guglielmi, Ponderomotive forces in Cosmos. Space Sci. Rev. 127(1–4), 1–116 (2006). doi: 10.1007/s11214-006-8314-8 ADSGoogle Scholar
  55. R. Lundin, A. Zakharov, R. Pellinen, B. Hultqvist, H. Borg, E.M. Dubinin, S. Barabasj, N. Pissarenko, H. Koskinen, I. Liede, First results of the ionospheric plasma escape from Mars. Nature 341, 609 (1989) ADSCrossRefGoogle Scholar
  56. R. Lundin, S. Barabash, H. Andersson, M. Holmström et al., Solar wind induced atmospheric erosion at Mars—first results from ASPERA-3 on Mars Express. Science 305, 1933 (2004) ADSCrossRefGoogle Scholar
  57. R. Lundin, D. Winningham, S. Barabash and the ASPERA-3 Team, Plasma acceleration above martian magnetic anomalies. Science 311, 980–983 (2006a) ADSCrossRefGoogle Scholar
  58. R. Lundin, D. Winningham, S. Barabash et al., Auroral plasma acceleration above martian magnetic anomalies. Space Sci. Rev. 126(1–4), 333–354 (2006b) ADSGoogle Scholar
  59. R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Sci. Rev. 129(1–3), 245–278 (2007) ADSCrossRefGoogle Scholar
  60. R. Lundin, S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, E.M. Dubinin, A comet-like escape of ionospheric plasma from Mars. Geophys. Res. Lett. 35, L18203 (2008a). doi: 10.1029/2008GL034811 ADSCrossRefGoogle Scholar
  61. R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.-A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008b). doi: 10.1029/2007GL032884 CrossRefGoogle Scholar
  62. R. Lundin, S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E.M. Dubinin, M. Fraenz, Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). doi: 10.1029/2009GL039341 ADSCrossRefGoogle Scholar
  63. R. Lundin, S. Barabash, E. Dubinin, D. Winningham, M. Yamauchi, Low-altitude acceleration of ionospheric ions at Mars. Geophys. Res. Lett. 38, L047064 (2011) doi: 10.1029/2011GL047064 Google Scholar
  64. Y.A. Ma, A.F. Nagy, K.C. Hansen, D.L. DeZeeuw, Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107, 1282 (2002). doi: 10.1029/2002JA009293 CrossRefGoogle Scholar
  65. C. Martinecz, A. Boesswetter, M. Fränz et al., Plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3-D hybrid simulations. J. Geophys. Res. 114, E00B30 (2009). doi: 10.1029/2008JE003174 CrossRefGoogle Scholar
  66. J.D. Mihalov, A. Barnes, Evidence for the acceleration of ionospheric O+ in the magnetosheath of Venus. Geophys. Res. Lett. 8, 1277–1280 (1981). doi: 10.1029/GL008i012p01277 ADSCrossRefGoogle Scholar
  67. T.E. Moore, R. Lundin, D. Alcayde, M. Andre, S.B. Ganguli, M. Temerin, A. Yau, Source processes in the high-latitude ionosphere. Space Science Review 88, 7–84 (1999) ADSCrossRefGoogle Scholar
  68. A.F. Nagy, T.E. Cravens, S.G. Smith, H.A. Taylor, H.C. Brinton, Model calculations of the dayside ionosphere of Venus—Ionic composition. J. Geophys. Res. 85, 7795–7801 (1980) ADSCrossRefGoogle Scholar
  69. A.F. Nagy, D. Winterhalter, K. Sauer et al., The plasma environment of Mars. Space Sci. Rev. 111(1), 33–114 (2004) ADSCrossRefGoogle Scholar
  70. H. Nilsson, E. Carlsson, D. Brain, A. Yamauchi, M. Holmström et al., Ion escape from Mars as a function of solar wind conditions: a statistical study. Icarus 206(1), 40–49 (2010) ADSCrossRefGoogle Scholar
  71. G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics. Space Sci. Rev. 103, 1–4 (2002) CrossRefGoogle Scholar
  72. H. Pérez-de Tejada, Plasma flow in the Mars magnetosphere. J. Geophys. Res. 92, 4713 (1987) ADSCrossRefGoogle Scholar
  73. H. Pérez-de-Tejada, Momentum transport in the solar wind erosion of the Mars ionosphere. J. Geophys. Res. 103, 31499–31508 (1998) ADSCrossRefGoogle Scholar
  74. C.T. Russell, J.G. Luhmann, K. Schwingenschuh, W. Riedler, Ye. Yeroshenko, Upstream waves at Mars—PHOBOS observations. Geophys. Res. Lett. 17, 897–900 (1990) ADSCrossRefGoogle Scholar
  75. Y. Soobiah, A.J. Coates, D.R. Linde, D.O. Kataria et al., Icarus 182(2), 396 (2006). doi: 10.1016/j.icarus.2005.10.034 ADSCrossRefGoogle Scholar
  76. N. Terada, Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Tanaka, H. Shinagawa, T. Zhang, Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9(1), 55–70 (2009) ADSCrossRefGoogle Scholar
  77. H.A. Taylor, H.C. Brinton, S.J. Bauer, R.E. Hartle, Global observations of the composition and dynamics of the ionosphere of Venus: implications for the solar wind interaction. J. Geophys. Res. 85(A13), 7765–7777 (1980) ADSCrossRefGoogle Scholar
  78. J.S. Wang, E. Nielsen, Possible hydrodynamic waves in the topside ionosphere of Mars and Venus. J. Geophys. Res. 107(A4), 1039 (2002). doi: 10.1029/2001JA900142 CrossRefGoogle Scholar
  79. J.D. Winningham, R.A. Frahm, J.R. Sharber, the ASPERA-3 Team, Electron oscillations in the induced Martian magnetosphere. Icarus 182(2), 360 (2006) ADSCrossRefGoogle Scholar
  80. B.E. Wood, H.-R. Müller, G. Zank, J.L. Linsky, Measured mass loss rates of solar-like stars as a function of age and activity. Astrophys. J. 574, 412–425 (2002) ADSCrossRefGoogle Scholar
  81. B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, New mass-loss measurements from astrospheric Ly-a absorption. Astrophys. J. 628, L143–L146 (2005) ADSCrossRefGoogle Scholar
  82. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005) ADSCrossRefGoogle Scholar
  83. C.T. Russell, M.A. Saunders, J.G. Luhmann, Mass-loading and the formation of the Venus tail. Adv. Space Res. 5, 177 (1985) ADSCrossRefGoogle Scholar
  84. C.T. Russell, J.G. Luhmann, R.J. Strangeway, The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet. Space Sci. 54, 1482–1495 (2006) ADSCrossRefGoogle Scholar
  85. O.L. Vaisberg, Mars-plasma environment, in Physics of Solar Planetary Environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976), p. 845 Google Scholar
  86. O.L. Vaisberg, S.A. Romanov, V.N. Smirnov, I.P. Karpinsky et al., Ion flux parameters in the solar wind-Venus interaction region according to Venera-9 and Venera-10 data, in Physics of Solar Planetary Environment, vol. 2, ed. by D.J. Williams (AGU, Washington, 1976), p. 904 Google Scholar
  87. D. Vignes et al., The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor. Geophys. Res. Lett. 27, 49 (2000) ADSCrossRefGoogle Scholar
  88. A.W. Yau, W.K. Peterson, E.G. Shelley, Quantitative parametrization of energetic ionospheric ion outflow, modeling magnetospheric plasma. In: Proceedings of the First Huntsville Workshop on Magnetosphere/Ionosphere Plasma Models, Guntersville, AL, 14–16 October 1987 (A89-13779 03-46) (American Geophysical Union, Washington, 1988), pp. 211–217 Google Scholar
  89. T.L. Zhang, J.G. Luhmann, C.T. Russell, The magnetic barrier at Venus. J. Geophys. Res. 96, 11145–11153 (1991) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Swedish Institute of Space PhysicsUmeaSweden

Personalised recommendations