A Survey of Text Classification Algorithms

  • Charu C. AggarwalEmail author
  • ChengXiang Zhai


The problem of classification has been widely studied in the data mining, machine learning, database, and information retrieval communities with applications in a number of diverse domains, such as target marketing, medical diagnosis, news group filtering, and document organization. In this paper we will provide a survey of a wide variety of text classification algorithms.


Text Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Aggarwal, S. C. Gates, P. S. Yu. On Using Partial Supervision for Text Categorization, IEEE Transactions on Knowledge and Data Engineering, 16(2), 245–255, 2004.CrossRefGoogle Scholar
  2. 2.
    C. C. Aggarwal, N. Li. On Node Classification in Dynamic Contentbased Networks, SDM Conference, 2011.Google Scholar
  3. 3.
    I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, C. Spyropoulos. An Evaluation of Naive Bayesian Anti-Spam Filtering. Workshop on Machine Learning in the New Information Age, in conjunction with ECML Conference, 2000. Scholar
  4. 4.
    R. Angelova, G. Weikum. Graph-based text classification: learn from your neighbors. ACM SIGIR Conference, 2006.Google Scholar
  5. 5.
    C. Apte, F. Damerau, S. Weiss. Automated Learning of Decision Rules for Text Categorization, ACM Transactions on Information Systems, 12(3), pp. 233–251, 1994.CrossRefGoogle Scholar
  6. 6.
    M. Aizerman, E. Braverman, L. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control, 25: pp. 821–837, 1964.MathSciNetGoogle Scholar
  7. 7.
    L. Baker, A. McCallum. Distributional Clustering ofWords for Text Classification, ACM SIGIR Conference, 1998.Google Scholar
  8. 8.
    R. Bekkerman, R. El-Yaniv, Y. Winter, N. Tishby. On Feature Distributional Clustering for Text Categorization. ACM SIGIR Conference, 2001.Google Scholar
  9. 9.
    S. Basu, A. Banerjee, R. J. Mooney. Semi-supervised Clustering by Seeding. ICML Conference, 2002.Google Scholar
  10. 10.
    P. Bennett, S. Dumais, E. Horvitz. Probabilistic Combination of Text Classifiers using Reliability Indicators: Models and Results. ACM SIGIR Conference, 2002.Google Scholar
  11. 11.
    P. Bennett, N. Nguyen. Refined experts: improving classification in large taxonomies. ACM SIGIR Conference, 2009.Google Scholar
  12. 12.
    S. Bhagat, G. Cormode, S. Muthukrishnan. Node Classification in Social Networks, Book Chapter in Social Network Data Analytics, Ed. Charu Aggarwal, Springer, 2011.Google Scholar
  13. 13.
    A. Blum, T. Mitchell. Combining labeled and unlabeled data with co-training. COLT, 1998.Google Scholar
  14. 14.
    D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher, J. Moore. Partitioning-based clustering for web document categorization. Decision Support Systems, Vol. 27, pp. 329–341, 1999.CrossRefGoogle Scholar
  15. 15.
    L. Brieman, J. Friedman, R. Olshen, C. Stone. Classification and Regression Trees, Wadsworth Advanced Books and Software, CA, 1984.Google Scholar
  16. 16.
    L. Breiman. Bagging Predictors. Machine Learning, 24(2), pp. 123– 140, 1996.MathSciNetzbMATHGoogle Scholar
  17. 17.
    L. Cai, T. Hofmann. Text categorization by boosting automatically extracted concepts. ACM SIGIR Conference, 2003.Google Scholar
  18. 18.
    S. Chakrabarti, S. Roy, M. Soundalgekar. Fast and Accurate Text Classification via Multiple Linear Discriminant Projections, VLDB Journal, 12(2), pp. 172–185, 2003.Google Scholar
  19. 19.
    S. Chakrabarti, B. Dom. R. Agrawal, P. Raghavan. Using taxonomy, discriminants and signatures for navigating in text databases, VLDB Conference, 1997.Google Scholar
  20. 20.
    S. Chakrabarti, B. Dom, P. Indyk. Enhanced hypertext categorization using hyperlinks. ACM SIGMOD Conference, 1998.Google Scholar
  21. 21.
    S. Chakraborti, R. Mukras, R. Lothian, N. Wiratunga, S. Watt, D. Harper. Supervised Latent Semantic Indexing using Adaptive Sprinkling, IJCAI, 2007.Google Scholar
  22. 22.
    D. Chickering, D. Heckerman, C. Meek. A Bayesian approach for learning Bayesian networks with local structure. Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997.Google Scholar
  23. 23.
    V. R. de Carvalho, W. Cohen. On the collective classification of email ”speech acts”, ACM SIGIR Conference, 2005.Google Scholar
  24. 24.
    V. Castelli, T. M. Cover. On the exponential value of labeled samples. Pattern Recognition Letters, 16(1), pp. 105–111, 1995.CrossRefGoogle Scholar
  25. 25.
    W. Cohen, H. Hirsh. Joins that generalize: text classification using Whirl. ACM KDD Conference, 1998.Google Scholar
  26. 26.
    W. Cohen, Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2), pp. 141–173, 1999.CrossRefGoogle Scholar
  27. 27.
    W. Cohen. Learning rules that classify e-mail. AAAI Conference, 1996.Google Scholar
  28. 28.
    W. Cohen. Learning with set-valued features. AAAI Conference, 1996.Google Scholar
  29. 29.
    W. Cooper. Some inconsistencies and misnomers in probabilistic information retrieval. ACM Transactions on Information Systems, 13(1), pp. 100–111, 1995.CrossRefGoogle Scholar
  30. 30.
    C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, 20: pp. 273–297, 1995.zbMATHGoogle Scholar
  31. 31.
    T. M. Cover, J. A. Thomas. Elements of information theory. New York: John Wiley and Sons, 1991.Google Scholar
  32. 32.
    M. Craven, S. Slattery. Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning, 43: pp. 97–119, 2001.zbMATHCrossRefGoogle Scholar
  33. 33.
    M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S. Slattery. Learning to Extract Symbolic Knowledge from the Worldwide Web. AAAI Conference, 1998.Google Scholar
  34. 34.
    I. Dagan, Y. Karov, D. Roth. Mistake-driven Learning in Text Categorization, Proceedings of EMNLP, 1997.Google Scholar
  35. 35.
    A. Dayanik, D. Lewis, D. Madigan, V. Menkov, A. Genkin. Constructing informative prior distributions from domain knowledge in text classification. ACM SIGIR Conference, 2006.Google Scholar
  36. 36.
    A. P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1): pp. 1–38, 1977.MathSciNetzbMATHGoogle Scholar
  37. 37.
    F. Denis, A. Laurent. Text Classification and Co-Training from Positive and Unlabeled Examples, ICML 2003 Workshop: The Continuum from Labeled to Unlabeled Data. http://www.grappa. Scholar
  38. 38.
    S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R. Harshman. Indexing by Latent Semantic Analysis. JASIS, 41(6), pp. 391–407, 1990.Google Scholar
  39. 39.
    P. Domingos, M. J. Pazzani. On the the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2–3), pp. 103–130, 1997.zbMATHCrossRefGoogle Scholar
  40. 40.
    P. Domingos. MetaCost: A General Method for making Classifiers Cost-Sensitive. ACM KDD Conference, 1999.Google Scholar
  41. 41.
    H. Drucker, D. Wu, V. Vapnik. Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks, 10(5), pp. 1048–1054, 1999.CrossRefGoogle Scholar
  42. 42.
    R. Duda, P. Hart, W. Stork. Pattern Classification, Wiley Interscience, 2000.Google Scholar
  43. 43.
    S. Dumais, J. Platt, D. Heckerman, M. Sahami. Inductive learning algorithms and representations for text categorization. CIKM Conference, 1998.Google Scholar
  44. 44.
    S. Dumais, H. Chen. Hierarchical Classification of Web Content. ACM SIGIR Conference, 2000.Google Scholar
  45. 45.
    C. Elkan. The foundations of cost-sensitive learning, IJCAI Conference, 2001.Google Scholar
  46. 46.
    R. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, pp. 179–188, 1936.CrossRefGoogle Scholar
  47. 47.
    R. El-Yaniv, O. Souroujon. Iterative Double Clustering for Unsupervised and Semi-supervised Learning. NIPS Conference, 2002.Google Scholar
  48. 48.
    Y. Freund, R. Schapire. A decision-theoretic generalization of online learning and an application to boosting. In Proc. Second European Conference on Computational Learning Theory, pp. 23–37, 1995.Google Scholar
  49. 49.
    Y. Freund, R. Schapire, Y. Singer, M. Warmuth. Using and combining predictors that specialize. Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 334–343, 1997.Google Scholar
  50. 50.
    S. Gao, W. Wu, C.-H. Lee, T.-S. Chua. A maximal figure-of-merit learning approach to text categorization. SIGIR Conference, 2003.Google Scholar
  51. 51.
    R. Gilad-Bachrach, A. Navot, N. Tishby. Margin based feature selection – theory and algorithms. ICML Conference, 2004.Google Scholar
  52. 52.
    S. Gopal, Y. Yang. Multilabel classification with meta-level features. ACM SIGIR Conference, 2010.Google Scholar
  53. 53.
    L. Guthrie, E.Walker. Document Classification by Machine: Theory and Practice. COLING, 1994.Google Scholar
  54. 54.
    E.-H. Han, G. Karypis, V. Kumar. Text Categorization using Weighted-Adjusted k-nearest neighbor classification, PAKDD Conference, 2001.Google Scholar
  55. 55.
    E.-H. Han, G. Karypis. Centroid-based Document Classification: Analysis and Experimental Results, PKDD Conference, 2000.Google Scholar
  56. 56.
    D. Hardin, I. Tsamardinos, C. Aliferis. A theoretical characterization of linear SVM-based feature selection. ICML Conference, 2004.Google Scholar
  57. 57.
    T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, 1999.Google Scholar
  58. 58.
    P. Howland, M. Jeon, H. Park. Structure Preserving Dimension Reduction for Clustered Text Data based on the Generalized Singular Value Decomposition. SIAM Journal of Matrix Analysis and Applications, 25(1): pp. 165–179, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    P. Howland, H. Park. Generalizing discriminant analysis using the generalized singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), pp. 995–1006, 2004.CrossRefGoogle Scholar
  60. 60.
    D. Hull, J. Pedersen, H. Schutze. Method combination for document filtering. ACM SIGIR Conference, 1996.Google Scholar
  61. 61.
    R. Iyer, D. Lewis, R. Schapire, Y. Singer, A. Singhal. Boosting for document routing. CIKM Conference, 2000.Google Scholar
  62. 62.
    M. James. Classification Algorithms, Wiley Interscience, 1985.Google Scholar
  63. 63.
    D. Jensen, J. Neville, B. Gallagher. Why collective inference improves relational classification. ACM KDD Conference, 2004.Google Scholar
  64. 64.
    T. Joachims. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. ICML Conference, 1997.Google Scholar
  65. 65.
    T. Joachims. Text categorization with support vector machines: learning with many relevant features. ECML Conference, 1998.Google Scholar
  66. 66.
    T. Joachims. Transductive inference for text classification using support vector machines. ICML Conference, 1999.Google Scholar
  67. 67.
    T. Joachims. A Statistical Learning Model of Text Classification for Support Vector Machines. ACM SIGIR Conference, 2001.Google Scholar
  68. 68.
    D. Johnson, F. Oles, T. Zhang, T. Goetz. A Decision Tree-based Symbolic Rule Induction System for Text Categorization, IBM Systems Journal, 41(3), pp. 428–437, 2002.CrossRefGoogle Scholar
  69. 69.
    I. T. Jolliffee. Principal Component Analysis. Springer, 2002.Google Scholar
  70. 70.
    T. Kalt, W. B. Croft. A new probabilistic model of text classification and retrieval. Technical Report IR-78, University of Massachusetts Center for Intelligent Information Retrieval, 1996. http://ciir. Scholar
  71. 71.
    G. Karypis, E.-H. Han. Fast Supervised Dimensionality Reduction with Applications to Document Categorization and Retrieval, ACM CIKM Conference, 2000.Google Scholar
  72. 72.
    T. Kawatani. Topic difference factor extraction between two document sets and its application to text categorization. ACM SIGIR Conference, 2002.Google Scholar
  73. 73.
    Y.-H. Kim, S.-Y. Hahn, B.-T. Zhang. Text filtering by boosting naive Bayes classifiers. ACM SIGIR Conference, 2000.Google Scholar
  74. 74.
    D. Koller, M. Sahami. Hierarchically classifying documents with very few words, ICML Conference, 2007.Google Scholar
  75. 75.
    S. Lam, D. Lee. Feature reduction for neural network based text categorization. DASFAA Conference, 1999.Google Scholar
  76. 76.
    W. Lam, C. Y. Ho. Using a generalized instance set for automatic text categorization. ACM SIGIR Conference, 1998.Google Scholar
  77. 77.
    W. Lam, K.-Y. Lai. A meta-learning approach for text categorization. ACM SIGIR Conference, 2001.Google Scholar
  78. 78.
    K. Lang. Newsweeder: Learning to filter netnews. ICML Conference, 1995.Google Scholar
  79. 79.
    L. S. Larkey, W. B. Croft. Combining Classifiers in text categorization. ACM SIGIR Conference, 1996.Google Scholar
  80. 80.
    D. Lewis, J. Catlett. Heterogeneous uncertainty sampling for supervised learning. ICML Conference, 1994.Google Scholar
  81. 81.
    D. Lewis, M. Ringuette. A comparison of two learning algorithms for text categorization. SDAIR, 1994.Google Scholar
  82. 82.
    D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. ECML Conference, 1998.Google Scholar
  83. 83.
    D. Lewis. An Evaluation of Phrasal and Clustered Representations for the Text Categorization Task, ACM SIGIR Conference, 1992.Google Scholar
  84. 84.
    D. Lewis, W. Gale. A sequential algorithm for training text classifiers, SIGIR Conference, 1994.Google Scholar
  85. 85.
    D. Lewis, K. Knowles. Threading electronic mail: A preliminary study. Information Processing and Management, 33(2), pp. 209– 217, 1997.CrossRefGoogle Scholar
  86. 86.
    H. Li, K. Yamanishi. Document classification using a finite mixture model. Annual Meeting of the Association for Computational Linguistics, 1997.Google Scholar
  87. 87.
    Y. Li, A. Jain. Classification of text documents. The Computer Journal, 41(8), pp. 537–546, 1998.zbMATHCrossRefGoogle Scholar
  88. 88.
    B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. ACM KDD Conference, 1998.Google Scholar
  89. 89.
    B. Liu, L. Zhang. A Survey of Opinion Mining and Sentiment Analysis. Book Chapter in Mining Text Data, Ed. C. Aggarwal, C. Zhai, Springer, 2011.Google Scholar
  90. 90.
    N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2: pp. 285– 318, 1988.Google Scholar
  91. 91.
    P. Long, R. Servedio. Random Classification Noise defeats all Convex Potential Boosters. ICML Conference, 2008.Google Scholar
  92. 92.
    S. A. Macskassy, F. Provost. Classification in Networked Data: A Toolkit and a Univariate Case Study, Journal of Machine Learning Research, Vol. 8, pp. 935–983, 2007.Google Scholar
  93. 93.
    A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. http://www.cs.cmu. edu/~mccallum/bow, 1996.Google Scholar
  94. 94.
    A. McCallum, K. Nigam. A Comparison of Event Models for Naive Bayes Text Classification. AAAI Workshop on Learning for Text Categorization, 1998.Google Scholar
  95. 95.
    A. McCallum, R. Rosenfeld, T. Mitchell, A. Ng. Improving text classification by shrinkage in a hierarchy of classes. ICML Conference, 1998.Google Scholar
  96. 96.
    McCallum, Andrew Kachites. ”MALLET: A Machine Learning for Language Toolkit.” 2002.Google Scholar
  97. 97.
    T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.Google Scholar
  98. 98.
    T. M. Mitchell. The role of unlabeled data in supervised learning. Proceedings of the Sixth International Colloquium on Cognitive Science, 1999.Google Scholar
  99. 99.
    D. Mladenic, J. Brank, M. Grobelnik, N. Milic-Frayling. Feature selection using linear classifier weights: interaction with classification models. ACM SIGIR Conference, 2004.Google Scholar
  100. 100.
    K. Myers, M. Kearns, S. Singh, M. Walker. A boosting approach to topic spotting on subdialogues. ICML Conference, 2000.Google Scholar
  101. 101.
    H. T. Ng, W. Goh, K. Low. Feature selection, perceptron learning, and a usability case study for text categorization. ACM SIGIR Conference, 1997.Google Scholar
  102. 102.
    A. Y. Ng, M. I. Jordan. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. NIPS. pp. 841- 848, 2001.Google Scholar
  103. 103.
    K. Nigam, A. McCallum, S. Thrun, T. Mitchell. Learning to classify text from labeled and unlabeled documents. AAAI Conference, 1998.Google Scholar
  104. 104.
    H.-J. Oh, S.-H. Myaeng, M.-H. Lee. A practical hypertext categorization method using links and incrementally available class information. ACM SIGIR Conference, 2000.Google Scholar
  105. 105.
    X. Qi, B. Davison. Classifiers without borders: incorporating fielded text from neighboring web pages. ACM SIGIR Conference, 2008.Google Scholar
  106. 106.
    J. R. Quinlan, Induction of Decision Trees, Machine Learning, 1(1), pp 81–106, 1986.Google Scholar
  107. 107.
    H. Raghavan, J. Allan. An interactive algorithm for asking and incorporating feature feedback into support vector machines. ACM SIGIR Conference, 2007.Google Scholar
  108. 108.
    S. E. Robertson, K. Sparck-Jones. Relevance weighting of search terms. Journal of the American Society for Information Science, 27: pp. 129–146, 1976.CrossRefGoogle Scholar
  109. 109.
    J. Rocchio. Relevance feedback information retrieval. The Smart Retrieval System- Experiments in Automatic Document Processing, G. Salton, Ed. Prentice Hall, Englewood Cliffs, NJ, pp 313–323, 1971.Google Scholar
  110. 110.
    M. Ruiz, P. Srinivasan. Hierarchical neural networks for text categorization. ACM SIGIR Conference, 1999.Google Scholar
  111. 111.
    F. Sebastiani. Machine Learning in Automated Text Categorization, ACM Computing Surveys, 34(1), 2002.Google Scholar
  112. 112.
    M. Sahami. Learning limited dependence Bayesian classifiers, ACM KDD Conference, 1996.Google Scholar
  113. 113.
    M. Sahami, S. Dumais, D. Heckerman, E. Horvitz. A Bayesian approach to filtering junk e-mail. AAAI Workshop on Learning for Text Categorization. Tech. Rep. WS-98-05, AAAI Press. http:// Scholar
  114. 114.
    T. Salles, L. Rocha, G. Pappa, G. Mourao, W. Meira Jr., M. Goncalves. Temporally-aware algorithms for document classification. ACM SIGIR Conference, 2010.Google Scholar
  115. 115.
    G. Salton. An Introduction to Modern Information Retrieval, Mc Graw Hill, 1983.Google Scholar
  116. 116.
    R. Schapire, Y. Singer. BOOSTEXTER: A Boosting-based System for Text Categorization, Machine Learning, 39(2/3), pp. 135–168, 2000.zbMATHCrossRefGoogle Scholar
  117. 117.
    H. Schutze, D. Hull, J. Pedersen. A comparison of classifiers and document representations for the routing problem. ACM SIGIR Conference, 1995.Google Scholar
  118. 118.
    R. Shapire, Y. Singer, A. Singhal. Boosting and Rocchio applied to text filtering. ACM SIGIR Conference, 1998.Google Scholar
  119. 119.
    J. Shavlik, T. Eliassi-Rad. Intelligent agents for web-based tasks: An advice-taking approach. AAAI-98 Workshop on Learning for Text Categorization. Tech. Rep. WS-98-05, AAAI Press, 1998. Scholar
  120. 120.
    V. Sindhwani, S. S. Keerthi. Large scale semi-supervised linear SVMs. ACM SIGIR Conference, 2006.Google Scholar
  121. 121.
    N. Slonim, N. Tishby. The power of word clusters for text classification. European Colloquium on Information Retrieval Research (ECIR), 2001.Google Scholar
  122. 122.
    N. Slonim, N. Friedman, N. Tishby. Unsupervised document classification using sequential information maximization. ACM SIGIR Conference, 2002.Google Scholar
  123. 123.
    J.-T. Sun, Z. Chen, H.-J. Zeng, Y. Lu, C.-Y. Shi, W.-Y. Ma. Supervised Latent Semantic Indexing for Document Categorization. ICDM Conference, 2004.Google Scholar
  124. 124.
    V. Vapnik. Estimations of dependencies based on statistical data, Springer, 1982.Google Scholar
  125. 125.
    V. Vapnik. The Nature of Statistical Learning Theory, Springer, New York, 1995.Google Scholar
  126. 126.
    A. Weigand, E. Weiner, J. Pedersen. Exploiting hierarchy in text catagorization. Information Retrieval, 1(3), pp. 193–216, 1999.CrossRefGoogle Scholar
  127. 127.
    S, M. Weiss, C. Apte, F. Damerau, D. Johnson, F. Oles, T. Goetz, T. Hampp. Maximizing text-mining performance. IEEE Intelligent Systems, 14(4), pp. 63–69, 1999.Google Scholar
  128. 128.
    S. M. Weiss, N. Indurkhya. Optimized Rule Induction, IEEE Exp., 8(6), pp. 61–69, 1993.CrossRefGoogle Scholar
  129. 129.
    E. Wiener, J. O. Pedersen, A. S. Weigend. A Neural Network Approach to Topic Spotting. SDAIR, pp. 317–332, 1995.Google Scholar
  130. 130.
    G.-R. Xue, D. Xing, Q. Yang, Y. Yu. Deep classification in largescale text hierarchies. ACM SIGIR Conference, 2008.Google Scholar
  131. 131.
    J. Yan, N. Liu, B. Zhang, S. Yan, Z. Chen, Q. Cheng, W. Fan, W.-Y. Ma. OCFS: optimal orthogonal centroid feature selection for text categorization. ACM SIGIR Conference, 2005.Google Scholar
  132. 132.
    Y. Yang, L. Liu. A re-examination of text categorization methods, ACM SIGIR Conference, 1999.Google Scholar
  133. 133.
    Y. Yang, J. O. Pederson. A comparative study on feature selection in text categorization, ACM SIGIR Conference, 1995.Google Scholar
  134. 134.
    Y. Yang, C.G. Chute. An example-based mapping method for text categorization and retrieval. ACM Transactions on Information Systems, 12(3), 1994.Google Scholar
  135. 135.
    Y. Yang. Noise Reduction in a Statistical Approach to Text Categorization, ACM SIGIR Conference, 1995.Google Scholar
  136. 136.
    Y. Yang. A Study on Thresholding Strategies for Text Categorization. ACM SIGIR Conference, 2001.Google Scholar
  137. 137.
    Y. Yang, T. Ault, T. Pierce. Combining multiple learning strategies for effective cross-validation. ICML Conference, 2000.Google Scholar
  138. 138.
    J. Zhang, Y. Yang. Robustness of regularized linear classification methods in text categorization. ACM SIGIR Conference, 2003.Google Scholar
  139. 139.
    T. Zhang, A. Popescul, B. Dom. Linear prediction models with graph regularization for web-page categorization, ACM KDD Conference, 2006.Google Scholar
  140. 140.
    S. Zhu, K. Yu, Y. Chi, Y. Gong. Combining content and link for classification using matrix factorization. ACM SIGIR Conference, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations