A Survey of Text Clustering Algorithms

  • Charu C. AggarwalEmail author
  • ChengXiang Zhai


Clustering is a widely studied data mining problem in the text domains. The problem finds numerous applications in customer segmentation, classification, collaborative filtering, visualization, document organization, and indexing. In this chapter, we will provide a detailed survey of the problem of text clustering. We will study the key challenges of the clustering problem, as it applies to the text domain. We will discuss the key methods used for text clustering, and their relative advantages. We will also discuss a number of recent advances in the area in the context of social network and linked data.


Text Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Aggarwal, Y. Zhao, P. S. Yu. On Text Clustering with Side Information, ICDE Conference, 2012.Google Scholar
  2. 2.
    C. C. Aggarwal, P. S. Yu. On Effective Conceptual Indexing and Similarity Search in Text, ICDM Conference, 2001.Google Scholar
  3. 3.
    C. C. Aggarwal, P. S. Yu. A Framework for Clustering Massive Text and Categorical Data Streams, SIAM Conference on Data Mining, 2006.Google Scholar
  4. 4.
    C. C. Aggarwal, S. C. Gates, P. S. Yu. On Using Partial Supervision for Text Categorization, IEEE Transactions on Knowledge and Data Engineering, 16(2), 245–255, 2004.CrossRefGoogle Scholar
  5. 5.
    C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, J.-S. Park. Fast Algorithms for Projected Clustering, ACM SIGMOD Conference, 1999.Google Scholar
  6. 6.
    C. C. Aggarwal, P. S. Yu. Finding Generalized Projected Clusters in High Dimensional Spaces, ACM SIGMOD Conference, 2000.Google Scholar
  7. 7.
    R. Agrawal, J. Gehrke, P. Raghavan. D. Gunopulos. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications, ACM SIGMOD Conference, 1999.Google Scholar
  8. 8.
    R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases, VLDB Conference, 1994.Google Scholar
  9. 9.
    J. Allan, R. Papka, V. Lavrenko. Online new event detection and tracking. ACM SIGIR Conference, 1998.Google Scholar
  10. 10.
    P. Andritsos, P. Tsaparas, R. Miller, K. Sevcik. LIMBO: Scalable Clustering of Categorical Data. EDBT Conference, 2004.Google Scholar
  11. 11.
    P. Anick, S. Vaithyanathan. Exploiting Clustering and Phrases for Context-Based Information Retrieval. ACM SIGIR Conference, 1997.Google Scholar
  12. 12.
    R. Angelova, S. Siersdorfer. A neighborhood-based approach for clustering of linked document collections. CIKM Conference, 2006.Google Scholar
  13. 13.
    R. A. Baeza-Yates, B. A. Ribeiro-Neto, Modern Information Retrieval - the concepts and technology behind search, Second edition, Pearson Education Ltd., Harlow, England, 2011.Google Scholar
  14. 14.
    S. Basu, M. Bilenko, R. J. Mooney. A probabilistic framework for semi-supervised clustering. ACM KDD Conference, 2004.Google Scholar
  15. 15.
    S. Basu, A. Banerjee, R. J. Mooney. Semi-supervised Clustering by Seeding. ICML Conference, 2002.Google Scholar
  16. 16.
    F. Beil, M. Ester, X. Xu. Frequent term-based text clustering, ACM KDD Conference, 2002.Google Scholar
  17. 17.
    L. Baker, A. McCallum. Distributional Clustering ofWords for Text Classification, ACM SIGIR Conference, 1998.Google Scholar
  18. 18.
    R. Bekkerman, R. El-Yaniv, Y. Winter, N. Tishby. On Feature Distributional Clustering for Text Categorization. ACM SIGIR Conference, 2001.Google Scholar
  19. 19.
    D. Blei, J. Lafferty. Dynamic topic models. ICML Conference, 2006.Google Scholar
  20. 20.
    D. Blei, A. Ng, M. Jordan. Latent Dirichlet allocation, Journal of Machine Learning Research, 3: pp. 993–1022, 2003.zbMATHGoogle Scholar
  21. 21.
    P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J/ C. Lai. Class-based n-gram models of natural language, Computational Linguistics, 18, 4 (December 1992), 467-479.Google Scholar
  22. 22.
    K. Chakrabarti, S. Mehrotra. Local Dimension reduction: A new Approach to Indexing High Dimensional Spaces, VLDB Conference, 2000.Google Scholar
  23. 23.
    J. Chang, D. Blei. Topic Models for Document Networks. AISTASIS, 2009.Google Scholar
  24. 24.
    W. B. Croft. Clustering large files of documents using the single-link method. Journal of the American Society of Information Science, 28: pp. 341–344, 1977.CrossRefGoogle Scholar
  25. 25.
    D. Cutting, D. Karger, J. Pedersen, J. Tukey. Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. ACM SIGIR Conference, 1992.Google Scholar
  26. 26.
    D. Cutting, D. Karger, J. Pederson. Constant Interaction-time Scatter/ Gather Browsing of Large Document Collections, ACM SIGIR Conference, 1993.Google Scholar
  27. 27.
    M. Dash, H. Liu. Feature Selection for Clustering, PAKDD Conference, pp. 110–121, 1997.Google Scholar
  28. 28.
    S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R. Harshman. Indexing by Latent Semantic Analysis. JASIS, 41(6), pp. 391–407, 1990.Google Scholar
  29. 29.
    I. Dhillon, D. Modha. Concept Decompositions for Large Sparse Data using Clustering, 42(1), pp. 143–175, 2001.zbMATHGoogle Scholar
  30. 30.
    I. Dhillon. Co-clustering Documents and Words using bipartite spectral graph partitioning, ACM KDD Conference, 2001.Google Scholar
  31. 31.
    I. Dhillon, S. Mallela, D. Modha. Information-theoretic Co- Clustering, ACM KDD Conference, 2003.Google Scholar
  32. 32.
    C. Ding, X. He, H. Zha, H. D. Simon. Adaptive Dimension Reduction for Clustering High Dimensional Data, ICDM Conference, 2002.Google Scholar
  33. 33.
    C. Ding, X. He, H. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. SDM Conference, 2005.Google Scholar
  34. 34.
    B. Dorow, D. Widdows. Discovering corpus-specific word senses, Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics - Volume 2 (EACL ’03), pages 79-82, 2003.Google Scholar
  35. 35.
    R. El-Yaniv, O. Souroujon. Iterative Double Clustering for Unsupervised and Semi-supervised Learning. NIPS Conference, 2002.Google Scholar
  36. 36.
    H. Fang, T. Tao, C. Zhai, A formal study of information retrieval heuristics, Proceedings of ACM SIGIR 2004, 2004.Google Scholar
  37. 37.
    D. Fisher. Knowledge Acquisition via incremental conceptual clustering. Machine Learning, 2: pp. 139–172, 1987.Google Scholar
  38. 38.
    M. Franz, T. Ward, J. McCarley, W.-J. Zhu. Unsupervised and supervised clustering for topic tracking. ACM SIGIR Conference, 2001.Google Scholar
  39. 39.
    G. P. C. Fung, J. X. Yu, P. Yu, H. Lu. Parameter Free Bursty Events Detection in Text Streams, VLDB Conference, 2005.Google Scholar
  40. 40.
    J. H. Gennari, P. Langley, D. Fisher. Models of incremental concept formation. Journal of Artificial Intelligence, 40 pp. 11–61, 1989.CrossRefGoogle Scholar
  41. 41.
    D. Gibson, J. Kleinberg, P. Raghavan. Clustering Categorical Data: An Approach Based on Dynamical Systems, VLDB Conference, 1998.Google Scholar
  42. 42.
    M. Girolami, A Kaban. On the Equivalance between PLSI and LDA, SIGIR Conference, pp. 433–434, 2003.Google Scholar
  43. 43.
    S. Guha, R. Rastogi, K. Shim. ROCK: a robust clustering algorithm for categorical attributes, International Conference on Data Engineering, 1999.Google Scholar
  44. 44.
    S. Guha, R. Rastogi, K. Shim. CURE: An Efficient Clustering Algorithm for Large Databases. ACM SIGMOD Conference, 1998.Google Scholar
  45. 45.
    D. Gusfield. Algorithms for strings, trees and sequences, Cambridge University Press, 1997.Google Scholar
  46. 46.
    Y. Huang, T. Mitchell. Text clustering with extended user feedback. ACM SIGIR Conference, 2006.Google Scholar
  47. 47.
    H. Li, K. Yamanishi. Document classification using a finite mixture model. Annual Meeting of the Association for Computational Linguistics, 1997.Google Scholar
  48. 48.
    Q. He, K. Chang, E.-P. Lim, J. Zhang. Bursty feature representation for clustering text streams. SDM Conference, 2007.Google Scholar
  49. 49.
    T. Hofmann. Probabilistic Latent Semantic Indexing. ACM SIGIR Conference, 1999.Google Scholar
  50. 50.
    A. Jain, R. C. Dubes. Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 1998.Google Scholar
  51. 51.
    N. Jardine, C. J.van Rijsbergen. The use of hierarchical clustering in information retrieval, Information Storage and Retrieval, 7: pp. 217–240, 1971.Google Scholar
  52. 52.
    X. Ji, W. Xu. Document clustering with prior knowledge. ACM SIGIR Conference, 2006.Google Scholar
  53. 53.
    I. T. Jolliffee. Principal Component Analysis. Springer, 2002.Google Scholar
  54. 54.
    L. Kaufman, P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Interscience, 1990.Google Scholar
  55. 55.
    W. Ke, C. Sugimoto, J. Mostafa. Dynamicity vs. effectiveness: studying online clustering for scatter/gather. ACM SIGIR Conference, 2009.Google Scholar
  56. 56.
    H. Kim, S. Lee. A Semi-supervised document clustering technique for information organization, CIKM Conference, 2000.Google Scholar
  57. 57.
    J. Kleinberg, Bursty and hierarchical structure in streams, ACM KDD Conference, pp. 91–101, 2002.Google Scholar
  58. 58.
    D. D. Lee, H. S. Seung. Learning the parts of objects by nonnegative matrix factorization, Nature, 401: pp. 788–791, 1999.CrossRefGoogle Scholar
  59. 59.
    T. Li, S. Ma, M. Ogihara, Document Clustering via Adaptive Subspace Iteration, ACM SIGIR Conference, 2004.Google Scholar
  60. 60.
    T. Li, C. Ding, Y. Zhang, B. Shao. Knowledge transformation from word space to document space. ACM SIGIR Conference, 2008.Google Scholar
  61. 61.
    Y.-B. Liu, J.-R. Cai, J. Yin, A. W.-C. Fu. Clustering Text Data Streams, Journal of Computer Science and Technology, Vol. 23(1), pp. 112–128, 2008.CrossRefGoogle Scholar
  62. 62.
    T. Liu, S. Lin, Z. Chen, W.-Y. Ma. An Evaluation on Feature Selection for Text Clustering, ICML Conference, 2003.Google Scholar
  63. 63.
    Y. Lu, Q.Mei, C. Zhai. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA, Information Retrieval, 14(2): 178-203 (2011).CrossRefGoogle Scholar
  64. 64.
    A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. http://www.cs.cmu. edu/~mccallum/bow, 1996.Google Scholar
  65. 65.
    Q. Mei, D. Cai, D. Zhang, C.-X. Zhai. Topic Modeling with Network Regularization. WWW Conference, 2008.Google Scholar
  66. 66.
    D. Metzler, S. T. Dumais, C. Meek, Similarity Measures for Short Segments of Text, Proceedings of ECIR 2007, 2007.Google Scholar
  67. 67.
    Z. Ming, K. Wang, T.-S. Chua. Prototype hierarchy-based clustering for the categorization and navigation of web collections. ACM SIGIR Conference, 2010.Google Scholar
  68. 68.
    T. M. Mitchell. The role of unlabeled data in supervised learning. Proceedings of the Sixth International Colloquium on Cognitive Science, 1999.Google Scholar
  69. 69.
    F. Murtagh. A Survey of Recent Advances in Hierarchical Clustering Algorithms, The Computer Journal, 26(4), pp. 354–359, 1983.zbMATHGoogle Scholar
  70. 70.
    F. Murtagh. Complexities of Hierarchical Clustering Algorithms: State of the Art, Computational Statistics Quarterly, 1(2), pp. 101– 113, 1984.MathSciNetzbMATHGoogle Scholar
  71. 71.
    R. Ng, J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. VLDB Conference, 1994.Google Scholar
  72. 72.
    K. Nigam, A. McCallum, S. Thrun, T. Mitchell. Learning to classify text from labeled and unlabeled documents. AAAI Conference, 1998.Google Scholar
  73. 73.
    P. Pantel, D. Lin. Document Clustering with Committees, ACM SIGIR Conference, 2002.Google Scholar
  74. 74.
    G. Qi, C. Aggarwal, T. Huang. Community Detection with Edge Content in Social Media Networks, ICDE Conference, 2012.Google Scholar
  75. 75.
    M. Rege, M. Dong, F. Fotouhi. Co-clustering Documents andWords Using Bipartite Isoperimetric Graph Partitioning. ICDM Conference, pp. 532–541, 2006.Google Scholar
  76. 76.
    C. J. van Rijsbergen. Information Retrieval, Butterworths, 1975.Google Scholar
  77. 77.
    C. J.van Rijsbergen, W. B. Croft. Document Clustering: An Evaluation of some experiments with the Cranfield 1400 collection, Information Processing and Management, 11, pp. 171–182, 1975.Google Scholar
  78. 78.
    S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR, pages 232–241, 1994.Google Scholar
  79. 79.
    M. Sahami, T. D. Heilman, A web-based kernel function for measuring the similarity of short text snippets, Proceedings of WWW 2006, pages 377-386, 2006.Google Scholar
  80. 80.
    N. Sahoo, J. Callan, R. Krishnan, G. Duncan, R. Padman. Incremental Hierarchical Clustering of Text Documents, ACM CIKM Conference, 2006.Google Scholar
  81. 81.
    G. Salton. An Introduction to Modern Information Retrieval, Mc Graw Hill, 1983.Google Scholar
  82. 82.
    G. Salton, C. Buckley. Term Weighting Approaches in Automatic Text Retrieval, Information Processing and Management, 24(5), pp. 513–523, 1988.CrossRefGoogle Scholar
  83. 83.
    H. Schutze, C. Silverstein. Projections for Efficient Document Clustering, ACM SIGIR Conference, 1997.Google Scholar
  84. 84.
    J. Shi, J. Malik. Normalized cuts and image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000.Google Scholar
  85. 85.
    C. Silverstein, J. Pedersen. Almost-constant time clustering of arbitrary corpus subsets. ACM SIGIR Conference, pp. 60–66, 1997.Google Scholar
  86. 86.
    A. Singhal, C. Buckley, M. Mitra. Pivoted Document Length Normalization. ACM SIGIR Conference, pp. 21–29, 1996.Google Scholar
  87. 87.
    N. Slonim, N. Tishby. Document Clustering using word clusters via the information bottleneck method, ACM SIGIR Conference, 2000.Google Scholar
  88. 88.
    N. Slonim, N. Tishby. The power of word clusters for text classification. European Colloquium on Information Retrieval Research (ECIR), 2001.Google Scholar
  89. 89.
    N. Slonim, N. Friedman, N. Tishby. Unsupervised document classification using sequential information maximization. ACM SIGIR Conference, 2002.Google Scholar
  90. 90.
    M. Steinbach, G. Karypis, V. Kumar. A Comparison of Document Clustering Techniques, KDD Workshop on text mining, 2000.Google Scholar
  91. 91.
    Y. Sun, J. Han, J. Gao, Y. Yu. iTopicModel: Information Network Integrated Topic Modeling, ICDM Conference, 2009.Google Scholar
  92. 92.
    E. M. Voorhees. Implementing Agglomerative Hierarchical Clustering for use in Information Retrieval,Technical Report TR86–765, Cornell University, Ithaca, NY, July 1986.Google Scholar
  93. 93.
    F. Wang, C. Zhang, T. Li. Regularized clustering for documents. ACM SIGIR Conference, 2007.Google Scholar
  94. 94.
    J. Wilbur, K. Sirotkin. The automatic identification of stopwords, J. Inf. Sci., 18: pp. 45–55, 1992.CrossRefGoogle Scholar
  95. 95.
    P. Willett. Document Clustering using an inverted file approach. Journal of Information Sciences, 2: pp. 223–231, 1980.CrossRefGoogle Scholar
  96. 96.
    P. Willett. Recent Trends in Hierarchical Document Clustering: A Critical Review. Information Processing and Management, 24(5): pp. 577–597, 1988.CrossRefGoogle Scholar
  97. 97.
    W. Xu, X. Liu, Y. Gong. Document Clustering based on nonnegative matrix factorization, ACM SIGIR Conference, 2003.Google Scholar
  98. 98.
    W. Xu, Y. Gong. Document clustering by concept factorization. ACM SIGIR Conference, 2004.Google Scholar
  99. 99.
    Y. Yang, J. O. Pederson. A comparative study on feature selection in text categorization, ACM SIGIR Conference, 1995.Google Scholar
  100. 100.
    Y. Yang. Noise Reduction in a Statistical Approach to Text Categorization, ACM SIGIR Conference, 1995.Google Scholar
  101. 101.
    T. Yang, R. Jin, Y. Chi, S. Zhu. Combining link and content for community detection: a discriminative approach. ACM KDD Conference, 2009.Google Scholar
  102. 102.
    L. Yao, D. Mimno, A. McCallum. Efficient methods for topic model inference on streaming document collections, ACM KDD Conference, 2009.Google Scholar
  103. 103.
    O. Zamir, O. Etzioni. Web Document Clustering: A Feasibility Demonstration, ACM SIGIR Conference, 1998.Google Scholar
  104. 104.
    O. Zamir, O. Etzioni, O. Madani, R. M. Karp. Fast and Intuitive Clustering of Web Documents, ACM KDD Conference, 1997.Google Scholar
  105. 105.
    C. Zhai, Statistical Language Models for Information Retrieval (Synthesis Lectures on Human Language Technologies), Morgan & Claypool Publishers, 2008.Google Scholar
  106. 106.
    D. Zhang, J. Wang, L. Si. Document clustering with universum. ACM SIGIR Conference, 2011.Google Scholar
  107. 107.
    J. Zhang, Z. Ghahramani, Y. Yang. A probabilistic model for online document clustering with application to novelty detection. In Saul L., Weiss Y., Bottou L. (eds) Advances in Neural Information Processing Letters, 17, 2005.Google Scholar
  108. 108.
    T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM SIGMOD Conference, 1996.Google Scholar
  109. 109.
    X. Zhang, X. Hu, X. Zhou. A comparative evaluation of different link types on enhancing document clustering. ACM SIGIR Conference, 2008.Google Scholar
  110. 110.
    Y. Zhao, G. Karypis. Evaluation of hierarchical clustering algorithmsGoogle Scholar
  111. 111.
    for document data set, CIKM Conference, 2002.Google Scholar
  112. 112.
    Y. Zhao, G. Karypis. Empirical and Theoretical comparisons of selected criterion functions for document clustering, Machine Learning, 55(3), pp. 311–331, 2004.zbMATHCrossRefGoogle Scholar
  113. 113.
    S. Zhong. Efficient Streaming Text Clustering. Neural Networks, Volume 18, Issue 5–6, 2005.Google Scholar
  114. 114.
    Y. Zhou, H. Cheng, J. X. Yu. Graph Clustering based on Structural/ Attribute Similarities, VLDB Conference, 2009.Google Scholar
  115. 115. Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations